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Abstract: Based on Utkin’s research work regarding speed control of rotary motors,
a position tracking algorithm for linear permanent magnet synchronous motors
(LPMSM) is designed making use of multi-variable sliding-mode control and
asymptotic observers. It is applicable to LPMSM’s with either interior or surface-
mounted magnets, no matter whether the armature is stationary or movable.
Furthermore, the control signals yielded are able to drive the power transistors
of the inverter feeding the motor directly, hence avoiding the employment of
techniques such as PWM or SVM. Performance of the control structure proposed
is evaluated on the simulation model of a commercially available LPMSM.
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1. INTRODUCTION

Applications entailing linear motors allow remov-
ing mechanical transmission elements, as mag-
netic fields transmit the required forces directly.
As a result, higher speeds and accelerations, along
with better precision at high speeds and reduction
of noise levels and mechanical damages, can be
achieved (Weidner and Quickel, 1999), (Renton
and Elbestawi, 2001). In this context, there is
currently a patent trend towards the employment
of LPMSM’s. This is mainly due to the fact that
they present better dynamic performance and
higher power density than their induction motor
counterparts. But LPMSM’s can also operate with
larger air-gaps between the stationary and mov-
able parts, which is a critical factor for several
industrial sectors (Gieras and Piech, 2000).

On the other hand, position control schemes of
linear motors are typically carried out by cascad-

ing fixed-gain PID-type controllers to vector (VC)
or even direct thrust control (DTC) algorithms
(Gieras and Piech, 2000), (Vas, 1998). Although
satisfactory responses to step demands are pro-
vided, they do not perform so suitably in the
general servo situation. In opposition, trajectory
tracking is a major strength of the sliding-mode
control approach adopted here (Utkin, 1993),
(Utkin et al., 1999) which, in addition to endowing
the system with insensitivity to parameter varia-
tion, allows evading the use of PWM or SVM, just
as DTC.

2. LPMSM MODELLING FOR CONTROLLER
DESIGN

Roughly speaking, the physical structure of the
LPMSM considered is composed of two main
parts, as reflected in Fig. 1. The lower piece cor-
responds to the stationary element containing the



Fig. 1. Physical structure of the LPMSM

permanent magnets, while the upper component
is the movable armature lodging the phase wind-
ings to be fed. Yet, it is not an unusual practice to
place the permanent magnets and armature wind-
ings in the moveable and fixed parts, respectively.
In any case, the air-gap between both elements
allows the movement of the magnetic flux distri-
bution travelling-wave, which interacts with the
currents flowing through the armature windings to
generate the driving force in the motion direction.

Even though different modelling approaches con-
sidering specific phenomena arising in linear mo-
tors —like edge effect— have been investigated,
controller design is typically carried out based
on models which are analogous to those devoted
to rotary motors (Vas, 1996), (Vas, 1998). From
this viewpoint, the state-space electromechanical
model of a LPMSM, expressed according to the
d-q reference frame fixed to the part lodging the
permanent magnets —refer to Fig. 1—, may be
given as follows (Gieras and Piech, 2000), (Boldea
and Nasar, 2001)

did/dt= (vd−Rsid+ωrLqiq)/Ld (1)

diq/dt= [vq−Rsiq−ωr (Ldid+λPM )]/Lq (2)

Fx= 1.5kP (π/τ)[(Ld−Lq) id+λPM ]iq (3)

dus/dt= (Fx−Fload−fus)/M (4)

dx/dt= us, (5)

where id, iq and vd, vq are the armature current
and voltage direct- and quadrature-axis compo-
nents, us and x represent the linear speed and
position of the movable part, Fx and Fload cor-
respond to the motor thrust and load force, and
ωr = k (π/τ)us. Constant k indicates whether the
movable part is that containing the permanent
magnets —k = 1— or the armature —k = −1.
Parameters appearing in (1)–(4) are described in
Table A.1 of Appendix A.

Clarke’s 3-to-2 axes transformation allows ex-
pressing the armature voltage space-phasor, re-
sulting from applying balanced va, vb and vc phase
voltages, according to its natural D-Q reference
frame —fixed to the armature— as:

vD = (2va − vb − vc)/3 (6)

vQ = (vb − vc)/
√

3. (7)

A further Park’s transform, given by

vd = vD cos θr + vQ sin θr (8)

vq =−vD sin θr + vQ cos θr, (9)

where θr = k (π/τ)x, brings its components to
the d-q reference frame. Furthermore, three-phase
voltages va, vb and vc may be derived from the
DC-link Ud voltage and the commutation state
—provided by Boolean variables Sa, Sb and Sc—
of the six power transistors which the inverter
feeding the LPMSM armature is composed of
(Vas, 1998); i.e.:

va = (2Sa − Sb − Sc)Ud/3 (10)

vb = (−Sa + 2Sb − Sc) Ud/3 (11)

vc = (−Sa − Sb + 2Sc) Ud/3. (12)

Each armature phase is connected to the mid-
point of one of the three inverter legs. Si = 1;
i = a, b, c, indicates that the upper transistor of
the leg which armature phase ‘i’ is connected to is
switched on, while its lower one remains switched
off. Alternatively, Si = 0 denotes that upper and
lower transistors of leg ‘i’ are switched off and on,
respectively.

3. SLIDING-MODE CONTROL ALGORITHM

The linear position tracking control algorithm
presented throughout this section takes Utkin’s
research work concerning speed control of rotary
motors as starting point (Utkin, 1993), (Utkin et
al., 1999). Specifically, it is designed by adopting
his particular multi-variable approach to sliding-
mode control, given that three voltages —va, vb

and vc— need to be provided as control signals in
order to feed the motor armature.

As controller design is accomplished by consider-
ing the general model in (1)–(5), it should be high-
lighted that the algorithm devised is valid regard-
less of which motor part is stationary and which
movable —k = 1 or -1. Moreover, LPMSM’s with
both surface-mounted —Ld = Lq— or interior
magnets —Ld < Lq— may be efficiently governed
through the control system proposed next. In con-
trast, typical vector control schemes implemented
on PMSM’s turn out to be significantly different
of one another, depending on whether magnets are
surface-mounted or interior (Vas, 1998).

3.1 Synthesis of the control law

Three switching variables —s1, s2 and s3— are
defined so as to:



• Keep the motor linear position, x, on the
desired trajectory.

• Govern the armature current id component
so that, below the rated speed, the motor
provides maximum thrust per current unit
and, above it, field weakening operation is
adopted to achieve maximum thrust per flux
unit (Vas, 1998).

• Preserve a balanced three-phase voltage sup-
ply.

If, in addition to meeting these three requirements
above, it is sought that time derivatives of s1, s2

and s3 depend explicitly upon control inputs va,
vb and vc, the following switching variables may
be considered

s1 = ẍ0 − ẍ (t) + 2ξωn [ẋ0 − ẋ (t)] +

+ω2
n [x0 − x (t)] = u̇s0 − u̇s (t)+

+2ξωn [us0 − us (t)] + ω2
n [x0 − x (t)]

(13)

s2 = id0 − id (t) (14)

s3 =

t∫

0

(va + vb + vc) dt, (15)

where x0 and us0 represent the desired instanta-
neous linear position and speed, id0 is the refer-
ence value for armature current component id, and
ξ and ωn correspond to the damping factor and
natural frequency of the linear position error dy-
namics while vanishing in sliding regime —s1=0.

Accordingly, if s1, s2 and s3 were all kept equal
to zero all the way through, both the linear posi-
tion and id current component would be steered
to their corresponding desired values, by feeding
the LPMSM armature with balanced three-phase
voltages. As a consequence, the objective may
thus be viewed as keeping the whole system oper-
ating in the intersection of sliding surfaces s1=0,
s2 = 0 and s3 = 0. This implies that the design
task is reduced to enforcing the sliding regime
in the manifold s =

[
s1 s2 s3

]T = 0, for the
system given by (1)–(5), whose control input is
v =

[
va vb vc

]T .

Taking the time derivative on both sides of (13)–
(15) and making use of expressions (1)–(9), the
LPMSM dynamics may be transferred to subspace
s to yield

ṡ = F + Bv, (16)

where

F=




f1

(
id, iq, us, Fload, Ḟload, us0, u̇s0, üs0

)

did0

dt
+

Rs

Ld
id − Lq

Ld
ωriq

0


 (17)

B=




ba bb bc

− 2
3Ld

cos γa − 2
3Ld

cos γb − 2
3Ld

cos γc

1 1 1


, (18)

and

bi=
kPπ

Mτ
(X sin γi−Y cos γi) ; i=a, b, c (19)

X=
1
Lq

[(Ld−Lq) id+λPM ] , Y =
Ld−Lq

Ld
iq (20)

γa= θr, γb = θr−2π/3, γc = θr+2π/3. (21)

Consequently, assuming that it is sought to imple-
ment a multi-variable discontinuous control law of
the form

v=−(Ud/2) sgn(s∗) ; s∗=
[
s∗1 s∗2 s∗3

]T=BT s, (22)

Lyapunov function

υ = 0.5sT s (23)

allows determining the value of the DC-link volt-
age, Ud, required. In fact, taking the time deriva-
tive of (23) on the state trajectories of system (16),
and replacing v with control law (22) produces

υ̇ = sT (F + Bv)︸ ︷︷ ︸
ṡ

= (s∗)T F∗−(Ud/2) |s∗| , (24)

where

F∗ =
[
f∗1 f∗2 f∗3

]T = B−1F (25)

|s∗|= |s∗1|+ |s∗2|+ |s∗3| . (26)

Examination of expressions (24)–(26) leads to
conclude that fulfilment of the conditions given
next

Ud > 2 |f∗i | ; i = 1, 2, 3 (27)

guarantees negativeness of υ̇. In other words, the
origin of subspace s is asymptotically stable and
the sliding regime arises in s = 0, provided that
DC-link voltage Ud is selected so that (27) is satis-
fied despite parameter variations and uncertainty
in f∗i ; i = 1, 2, 3.

In practice, control law (22) can be realized just by
driving the power transistors of the three inverter
legs according to the following switching criterion:

Sa,b,c =
{

1 if s∗1,2,3 < 0
0 otherwise. (28)

3.2 Observer design

Implementation of control law (28) requires that
linear position, speed and acceleration, as well



as armature current id and iq components, are
known. Assuming that both x and us are mea-
sured directly, the rest may be estimated by em-
ploying two different asymptotic observers. In ad-
dition to skipping the use of extra sensors, such
observers allow by-passing control signal high-
frequency components that may excite the un-
modelled dynamics. Consequently, chattering as-
sociated to the latter may be evaded or, at least,
reduced (Bondarev et al., 1985).

Estimates îd and îq of armature current compo-
nents are determined by the nonlinear observer
expressed through state equations

dîd/dt=
(
vd−Rsîd+ωrLq îq

)
/Ld (29)

dîq/dt=
[
vq−Rsîq−ωr

(
Ldîd+λPM

)]
/Lq, (30)

where voltage vd and vq components may be
derived from the commutation state of the in-
verter power transistors —established by control
law (28)— and the DC-link voltage, by following
expressions (10)–(12) and (6)–(9).

Subtracting (1) and (2) from (29) and (30), re-
spectively, the following state equations for esti-
mation errors id = îd − id and iq = îq − iq arise:

did/dt =
(−Rsid + ωrLqiq

)
/Ld (31)

diq/dt =
(−Rsiq − ωrLdid

)
/Lq. (32)

Now, taking the time derivative of Lyapunov
function

υ = 0.5
(
L2

di
2
d + L2

qi
2
q

)
, (33)

and bearing in mind that Ld ≤ Lq, leads to

υ̇ = −Rs

(
Ldi

2
d + Lqi

2
q

)
≤ − (Rs/Lq) υ, (34)

which indicates that υ vanishes according to a de-
cay rate of Rs/Lq —at least— and, as a result, îd
and îq converge exponentially to their respective
actual values.

As far as linear acceleration is concerned, it is
estimated as

dûs/dt =
(
F̂x − F̂L

)
/M, (35)

where FL plays the same role of Fload + fus in
(4), and F̂x is derived just by replacing id and iq
in (3) with their respective estimates; i.e.:

F̂x = 1.5kP (π/τ)
[
(Ld − Lq) îd + λPM

]
îq. (36)

On the other hand, F̂L may be obtained by means
of the Luenberger reduced order linear observer
given next

dF̂/dt = (`/M)
(
−F̂ + `us + F̂x

)
, (37)

where F̂ = F̂L + `us, and parameter ` is the ob-
server gain. Considering that F̂x is a satisfactory
estimate of motor thrust —F̂x

∼= Fx—, (37) may
be rewritten as

dF̂L/dt + `u̇s = (`/M)
(
−F̂L + Mu̇s + FL

)
. (38)

Assuming that FL varies slowly, dFL/dt ∼= 0, and
(38) leads to

d
(
F̂L − FL

)
/dt = − (`/M)

(
F̂L − FL

)
, (39)

revealing that the desired convergence rate of F̂L

to FL may be provided by proper choice of gain `.

4. SIMULATION RESULTS

At this stage of the research work, the control
structure presented throughout the previous sec-
tion has only been tested via simulation. In any
case, given that it is planned to check it exper-
imentally over linear motor 1FN3 050-2WC00-
0AA0 by SIEMENS at a later stage, the values
of the parameters adopted for the LPMSM sim-
ulation model —collected in Table A.1 of Ap-
pendix A— correspond to those of such a motor.
Moreover, Table A.2 shows the parameter values
selected for both the controller and load force
observer.

In an attempt to assess the controller performance
under realistic conditions, both the load cycle
and the tracking trajectory have been determined
based on engineering example “Machining cen-
ter with gantry axis,” described in chapter 3 of
(SIEMENS AG, 1999–2002). However, bearing in
mind that the linear motor considered in such an
example is considerably larger than 1FN3 050, the
values of the total mass shifted, load force and
maximum traversing speed have been adapted.
Thereby, the peak and rms forces developed dur-
ing a complete load cycle do not exceed the
peak and nominal thrust values of linear motor
1FN3 050, respectively.

Both the desired and actual values —practically
indistinguishable— of linear position and speed,
as well as those of linear acceleration, are shown
in Figs. 2(a), 2(b) and 3(a), respectively. The two
latter evidence that the reference trajectory is
composed of 2g acceleration,−2g deceleration and
constant speed sections.

During the first 405.494 ms, the armature moves
forwards up to 483.246 mm, providing a 48-N
machining force at 25 m/min between 284.257
and 384.257 ms —see Figs. 4(a) and 2(b). Then,
the motor returns immediately to the initial po-
sition in 322.617 ms, and remains at a standstill
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Fig. 4. Actual and observed load force, and motor
thrust

for 171.678 ms to conclude the cycle. Maximum
traversing speeds of 143 m/min are reached.

It should be noted that, in addition to the above-
mentioned machining force, Fload comprises also a
13.8-N force caused by Coulomb’s friction, which
obstructs motion in both directions. Motor thrust
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Fig. 6. Three-phase armature currents

in Fig. 4(b) compensates the load force and pro-
vides the acceleration/deceleration required to
achieve satisfactory tracking.

Performances of the load force and current ob-
servers can be examined in Figs. 4(a) and 5. Based
on such estimates, the linear acceleration in Fig.
3(b) has been derived as indicated by (35) and
(36). Note that reference value id0, displayed in
Fig. 5(a), is kept equal to zero during the whole
cycle. Below the rated speed, completion of this
condition leads LPMSM’s with surface-mounted
magnets to provide maximum thrust per current
unit (Vas, 1998). As a result, motor thrust vari-
ations observed in Fig. 4(b) are directly related
to changes in iq. Fig. 6 reflects the three-phase
armature currents corresponding to the id and iq
components shown in Fig. 5(a).

To conclude, the dynamic performance of switch-
ing variables s1, s2 and s3 around zero is presented
in Fig. 7.

5. CONCLUSIONS

To a certain extent, the servo positioning system
discussed in this paper may be viewed as general-
purpose, since it is applicable to LPMSM’s with
either interior or surface-mounted magnets, no
matter which element —armature or magnets—
is movable and which stationary.
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So far, simulation results obtained for different
reference trajectories and load cycles reveal that
sliding-mode control provides the LPMSM under
consideration with an outstanding ability for lin-
ear position tracking. It has also been verified
that considerable variations on both the total
mass shifted and viscous friction do not affect the
tracking performance substantially, even though
neither the sliding-mode controller nor the load
force observer are re-tuned.

As expected, the continuous-time framework as-
sumed for controller design leads to discretization
chatter, which augments appreciably as the sam-
ple rate decreases. However, although the increase
of discretization chatter caused by sample rate
reduction becomes apparent in current, thrust and
acceleration waveforms, it is not that significant in
speed, and even much less in position.
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Appendix A

Table A.1. Characteristic parameters
of LPMSM 1FN3 050-2WC00-0AA0 by

SIEMENS.

Parameter Value Description

Rs 13.9 Ω Armature resistance per
phase at 120 oC

Ld 0.0365 H d-axis armature
inductance per phase

Lq 0.0365 H q-axis armature
inductance per phase

λPM 0.0238 Wb Flux of the permanent
magnets

τ 0.015 m Pole pitch
P 7 Number of pole pairs
k -1 Movable armature and

stationary magnets

Ipeak max 8.2
√

2 A Peak value of the maxi-
mum admissible current

Fx max 550 N Maximum thrust the
motor is able to provide

Fx N 200 N Nominal motor thrust
us rated 143 m/min Rated linear speed at

maximum thrust
M 12.45 kg Total mass —armature

plus load— shifted
f negligible Viscous friction coefficient

Table A.2. Parameters related to the
Sliding-Mode Control algorithm.

Parameter Value Description

Damping factor of the
ξ 1 position error vanishing

dynamics in sliding regime
Natural frequency of the

ωn 580 rad/s position error vanishing
dynamics in sliding regime

Ud 600 V DC-link voltage
` 28884 kg/s Gain of the linear load

force observer
fs 23.2 kHz Sample rate


