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Abstract: This paper presents the hardware implementation of a neural network controller
for a nonlinear system. As a learning algorithm for a neural network, the reference
compensation technique has been implemented on a low cost micro-controller unit (MCU),
while PID controllers with counters and PWM generators are implemented on an FPGA
chip. Interface between an MCU and a field programmable gate array (FPGA) chip has
been developed to complete hardware implementation of a neural controller. The neural
controller has been tested for controlling the inverted pendulum as a nonlinear system.
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1. INTRODUCTION 

 
Nowadays, “Intelligence into the system” has 

become one of the attractive issues in the control 
system communities. An endless dream about 
creating a man-like machine has accelerated 
researches on developing intelligent systems. One of 
main tools of intelligence is a neural network system, 
which mimics a human brain.  

Even though, for the most of motion control 
applications, PID controllers are used as a main 
controller with the merit of simplicity and easy 
implementation, PID controllers for nonlinear 
systems do not work properly as expected.  It is well 
known that fixed PID controller gains have lack of 
robustness due to uncertainties and outer 
disturbances. So, introduction of intelligent tools to 
the nonlinear system will remedy this problem. 

A neural network, as a nonlinear controller, is a 
good candidate that works quite well for a nonlinear 
system (Miller et. al., 1991). Applications of a neural 
network can be found in many areas such as motion 
control systems, signal processing systems, and data 
processing systems. Specially, successful neural 
network applications can be found in controlling 
robot manipulators since they are highly nonlinear 
MIMO systems (Jung et. al., 2000 and Miyamoto et. 
al. 1998). 

Even though the neural network works well, 
problems arise when a real time implementation 
issue of a massively parallel neural network learning 
algorithm is required. Experiments are more difficult 
to be conducted since the fast computing device is 
required. The control-loop in the neural control 
system must be processed fast enough for real time 
control at every sampling period. Recently, with the 
help of high-performance and high speed hardware 



technology, DSPs are available for fast computation 
in the market.  

In our previous researches, successful real time 
neural network applications have been achieved. The 
reference compensation technique has been 
implemented on a high cost DSP system for 
controlling an x-y table robot and an inverted 
pendulum (Jung et. al., 2001 and Cho et. al., 2003). 
As an extension of those researches, we have 
developed a neural network control hardware on a 
DSP board with an FPGA (Field Programmable 
Gate Array) based general purposed PID controller 
(Kim et. al., 2003 and Jung et. al., 2003). In the 
literature, most of real time neural network learning 
algorithms are implemented on DSP boards or even 
in the PCs. However, their cost is somewhat 
expensive for a certain simple application such as 
controlling a DC motor. 

In this paper, we extend our previous researches 
to develop the reference compensation technique of 
training neural network controllers for nonlinear 
systems. The purpose is to develop a low cost neural 
network controller that can be used as a compensator 
in front of the PID controlled system. By using a 
PID controller embedded FPGA chip as a main 
controller for the system, the neural controller can be 
used as an auxiliary controller that can cancel out 
uncertainties in the system.  

Recently, employing a concept of a system-on-
chip (SOC), an FPGA chip as a controller-on-chip 
(COC) has been developed and used in many 
applications (Krips et. al., 2002; Cristea et. al., 2001; 
Abdelkrim et. al., 1997; Thomas et. al., 1999; Oh et al., 
2002; Kongmunvattana et al., 1998). As a COC, by 
using the high flexibility of an FPGA, the additional 
hardware such as an encoder counter and a PWM 
generator, can also be implemented in a single 
FPGA device. As a result, the controller can be 
designed in a compact form so that it has the cost 
effectiveness as well as space savings. In addition, 
noise and power dissipation problems can be further 
minimized. For a neural network controller, a 
commercially available general purposed low cost 
MCU board such as an ARM board is used. The 
price of an ARM board is much less expensive than 
that of a DSP board.  

Back-propagation learning algorithm has been 
implemented on the ARM board. Interface between 
an ARM board and an FPGA has been done to 
complete intelligent control hardware. In order to 
show the performance of the developed controller, it 
was tested for controlling an inverted pendulum. The 
proposed controller is required to control the angle 
of the pendulum and the position tracking of the cart 
simultaneously. Performances of position tracking of 
the cart while balancing the pendulum were 
successfully achieved. 

 
2. OVERALL SYSTEM STRUCTURE 

 
The reference compensation technique is known 

as one of on-line learning control methods of neural 

network applications. The control block diagram is 
shown in Fig. 1.  
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 Fig.1 Reference compensation control system 
structure 

 
A neural network is placed in front of the closed 

loop controlled system. It functions as a pre-filter to 
modify reference trajectories by compensating for 
uncertainties (Jung et. al., 2000). Here we try to 
implement a neural network control algorithm on the 
ARM board.  Fig. 2 shows the block diagram of 
interface structure between each module of the 
neural controller and an FPGA. The ARM board 
communicates with the FPGA to give compensated 
signals and the FPGA calculates errors to form PID 
controllers and then generates PWM signals to 
motor drivers. 

 
Fig.2. Overall system block diagram 

 
A neural network is placed in front of the closed 
loop controlled system. It functions as a pre-filter to 
modify reference trajectories by compensating for 
uncertainties (Jung et. al., 2000). Here we try to 
implement a neural network control algorithm on the 
ARM board.  Fig. 2 shows the block diagram of 
interface structure between each module of the 
neural controller and an FPGA. The ARM board 
communicates with the FPGA to give compensated 
signals and the FPGA calculates errors to form PID 
controllers and then generates PWM signals to 
motor drivers. 

 
3. PID EMBEDDED ON FPGA 

 
The FPGA based PID controller consists of a 

communication block, an encoder counter block, a 
PID calculation block, and a PWM generation block.  
Input signals are 32 bit data, a 6 bit address, control 
signals such as CS, OE, WE, encoder signals, and a 
25MHz clock. Output signals are PWM signals. 
Fig.3 shows the block diagram of inside the PID 
controller. 
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 Fig 3. Inside block diagram of PID controller 

     



 
The detailed description and function of each 

block can be found in the previous paper [7]. 
 

4. MCU BOARD 
 
A commercially available general purposed 
ARM(Advanced RISC Microprocessor) board of 
Samsung is used for neural network controller 
implementation. In order for an ARM to 
communicate with FPGA PID controllers, a 32 bit 
data bus is used to share data. The ARM board has a 
32 bit 66MHz RISC structured microprocessor. At 
every sampling time, the ARM board has to give 
compensation values to the FPGA so that the FPGA 
can add those values to PID controllers. This kind of 
process can be done by communication between the 
MCU and the FPGA. Since a whole calculation has 
to be done in one sample time, the ARM board and 
the FPGA have to be synchronized. 
 

5.  NEURAL NETWORK CONTROLLER 
 
5.1 Reference compensation technique 

In this paper, we are implementing an on-line 
learning algorithm for a neural network. The 
reference compensation technique has been 
proposed by Jung and Hsia [2]. The idea of the RCT 
is that the neural network compensates at input level 
by modifying input signals. The same objective 
function of the feedback error learning method can 
be minimized in on-line fashion [3]. 

The angle error is formed as 
 

 θθθ −= de         (1) 

where dθ  is a desired angle and θ  is an actual 
angle of the pendulum. 
A PID controller for an angle control is defined as 
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where 321 ,, φφφ  are neural network outputs. 
The cart position is controlled as well as the 
pendulum angle. The position tracking error is 
formed as 
 

xxe dx −=          (3) 

where  are a desired cart position and an 
actual cart position, respectively. 

xxd ,

A PID control for a cart can be formed as 
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where 654 ,, φφφ  are neural network outputs. 

The overall control input for the inverted pendulum 
system is to add (2) and (4) as 
 

θuuu x +=          (5) 
 

Fig. 4 shows the control block diagram for an 
inverted pendulum control. Inputs to the neural 
network are desired angle and position as well as 
delays of actual angle and position. Neural network 
outputs are added to PID errors. Those 
compensating signals are multiplied by PID 
controller gains to generate compensating torques to 
the system.    
  

 
Fig.4. Control block diagram 

 
5.2 Neural network learning 

For a neural network structure shown in Fig. 5, we 
have used a general feed-forward structure that has 
an input layer, a hidden layer, and an output layer. 
The numbers of input layer, hidden layer, and output 
layer are 12, 9, and 6, respectively. 
      

 
Fig.5. Neural network structure 

 
For a nonlinear function at hidden layer and 

output layer we have used a hyperbolic tangent 
function as 
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Here, the neural network learning algorithm is 
derived. Since we are doing on-line learning and 
control, selecting the training signal is very 
important. Neural network outputs are defined as 
 

xΦ+Φ=Φ θ                                                     (7) 

321 φφφ θθθθ idp kkk ++=Φ                           (8) 

     



654 φφφ ixdxpxx kkk ++=Φ                            (9) 
 
If is the system dynamics, equation (2) and 
(4) can be represented as follows: 
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Φ−= ),,,,,( xxxf &&&&&& θθθ         (10) 

If we make the left side of (10) become zero, then 
 can be obtained. This means that 

inverse dynamics control can be achieved. So here 
we define the training signal of neural network as 
the left side of  (10). 

),,( θθθ &&&f≅Φ
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The objective function is defined as 
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Differentiating (12) with respect to the weight, we have 
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Here, we have 
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The update equation in the back propagation 
algorithm is  
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5.3 Hardware implementation of neural network 
controller 

We used an ARM board of Samsung and an 
FPGA board of Altera  APEXⅡ EP20K300EQC240.  
Fig. 6 shows a real figure of the designed controller. 
 

 
Fig. 6. MCU-FPGA Hardware 

 

6.  EXPERIMENTAL SETUP 
 

Experiment is to control the angle of pendulum 
and the position of cart simultaneously. Fig. 7 shows 
the experimental setup of the inverted pendulum 
system. The system consists of an inverted 
pendulum, a hardware controller, and a PC. 

 

 

  
 

Fig. 7. Inverted pendulum system 
 

Optimised PID controller gains and neural network 
parameters are listed in Table 1. 
 

Table 1. Controller gains 
Parameters Gain 

pk  -2.3 

ik  0.0008 

 

Angle 

dk  -0.542 

pk  -0.625 

ik  -0.021 

 

Position 

dk  -0.542 

Learning rate(η ) 0.205 

Momentum(α ) 0.3 

 
 

7.  EXPERIMENTS 
 
7.1 Balancing control 

We have found that the maximum sampling time 
can be achieved at 10msec. This sampling rate is 
much slower than that of a DSP board. Even though 
the ARM board is fast enough, computing back-
propagation algorithm can be a burden. For control 
application, however, 10msec sampling time is 
acceptable. The experimental results are shown next. 
Figs. 8 and 9 show the pendulum angle error and the 
cart position error by the controller, respectively. 
The pendulum is well balanced and the cart is well 
maintained at the desired position. 

     



 
Fig. 8. Angle of the pendulum  

 
Fig. 9. Position of the cart 

 
7.2 Position tracking  

Another interesting experiment has been 
conducted to test the performance of the proposed 
controller. The cart is required to track a desired 
sinusoidal trajectory while balancing the pendulum. 
The cart is required to move along axis about 40cm 
in distance. Here we tested two cases: one is when a 
digital filter is used and the other is not. 
 
Case 1 : Without a digital filter 
We have found that derivative terms as a D 
controller after a finite difference computation are 
very noisy. Even though controlling balancing and 
position tracking are successful, vibration has been 
observed. Figs. 10 and 11 show balancing and 
tracking control results. We observed that about 3cm 
overshoot occurred in cart position tracking in Fig 
11. 
 

Fig.10. Pendulum angle when T= sec8π  
 

 

Fig.11. Position tracking of the cart when T = 
sec8π . Blue line is the reference, and the red line is 

actual trajectory. 
 
Fig. 12 shows the corresponding torque that has 

glitches to cause vibration a little bit. In order to 
eliminate vibration, we used a digital filter to get rid 
of glitches. Even though the system is stable, the 
pendulum keeps oscillating with a large error. 
 

 
Fig.12. Control torque when T = sec8π  

 
Case 2 : With a digital filter 

We have used a digital filter for smoothing the 
signal after a finite difference process. We have 
experimentally found that a vibrating frequency at 
above 5Hz. So we filter derivative terms out with a 
low pass filter at the cutoff frequency of 5 Hz. The 
designed 2nd order IIR filter is 
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The results are shown in Figs. 13 and 14. We see 

that performances are much better than that of 
without a filter. Specially, for the cart position 
tracking, overshoots have been minimized very 
much as shown in Fig. 14. We can clearly see the 
reason from Fig. 15 that torques are smoother than 
that of case 1 shown in Fig. 12. 

 

     



Fig.13. Pendulum angle when T= sec8π  

Fig.14. Position tracking of the cart when T = 
sec8π  (blue line : the reference trajectory and the 

red line :the actual trajectory). 

 
Fig.15 Control torque when T = sec8π  

 
In these experiments, the pendulum is balanced 
within a 0.015rad angle error and the cart tracks 
desired trajectories within the error of 1 ㎝. 
 
  8. CONCLUSIONS 
 

This paper presented the hardware 
implementation of a neural network controller with 
an FPGA based PID controller. The proposed 
controller was tested by performing control of an 
inverted pendulum. Even though the overall 
sampling time is less than that of a DSP, the 
proposed controller improves position tracking 
errors of the cart while balancing of the pendulum. 
Experimental studies confirmed that the 
implemented low cost neural network controller can 

be used for any nonlinear system whose output 
signals are available since output signals are used to 
form errors to train a neural network on line. 

However, we failed to control two degrees-of-
freedom pendulum since the sampling time is not 
fast enough for calculating two neural networks 
separately. Real time control of two massively 
parallel neural networks was a burden for a single 
MCU. A faster MCU will be used in the future. 
 

REFERENCES 
Miller. W.T., R. S. Sutton, and P. J. Werbos (1991), 

Neural Networks for Control, The MIT Press 
Jung S. and T. C. Hsia (2000), Neural network 

Inverse Control Techniques for PD Controlled 
Robot Manipulator, ROBOTICA, vol. 19, No 3, 
pp. 305-314  

Miyamoto H., K. Kawato, T. Setoyama, and R. 
Suzuki(1988), Feedback error learning neural 
network for trajectory control for of a robotic 
manipulator, Neural Networks, vol. 1, pp. 251-
265 

Jung S. and S. B. Yim (2001) Experimental studies 
of neural network control technique for 
nonlinear systems, vol. 7, no. 11, pp. 918-926  

Cho H. T. and S. Jung (2003), Balancing and 
Position control of an Inverted pendulum on an 
X-Y Plane using Decentralized neural networks, 
2003 International Conference on Advanced 
Intelligent Mechatronics,  pp. 181- 186.  

Kim S. S and S. Jung S.(2003), Implementation of 
an Intelligent Controller with a DSP and an 
FPGA for Nonlinear Systems, ICCAS, pp.575-
580 

Kim S. S and S. Jung S(2003), Development of a 
General Purpose Motion Controller Using a 
Field Programmable Gate Array, ICCAS, pp. 
360-365 

Krips M, T. Lammert, A. Kummert (2002), FPGA 
implementation of a  neural network for a real-
time hand tracking system, First IEEE 
International Workshop on Electronic Design, 
Test and Applications, pp. 313 317. 

Cristea M., J Khor, M McCormick (2001) FPGA 
fuzzy logic controller for variable speed 
generators, IEEE International Conference on 
Control Applications, pp. 301 304. 

Abdelkrim K. Oudjida et al(1997), A reconfigurable 
counter controller for digital motion control 
application, Microelectronics Journal, vol. 28, 
no. 6-7. 

Thomas F. et al (1999), Design and implementation 
of a wheel speed measurement circuit using 
field programmable gate arrays in a spacecraft, 
Microprocessors and Microsystems, pp. 553-
560  

Oh et al (2002), Design of a biped robot using DSP 
and FPGA, FIRA Robot World Congress. 698-
701. 

Kongmunvattana A. and P. Chongstivatana (1998), 
An FPGA-based Behavioral Control System for 
a Mobile Robot, IEEE Asia-Pacific Conference 
on Circuits and Systems, pp. 759-762, 24-27. 

     




