

 HARDWARE IMPLEMENTATION OF A NEURALNETWORK CONTROLER
WITH AN MCU AND AN FPGA FOR A NONLINEAR SYSTEM

Seul Jung and Sung-Su Kim

Intelligent Systems and Emotional Engineering Lab.
Department of Mechatronics Engineering

Chungnam National University, Daejeon, Korea

Abstract: This paper presents the hardware implementation of a neural network controller
for a nonlinear system. As a learning algorithm for a neural network, the reference
compensation technique has been implemented on a low cost micro-controller unit (MCU),
while PID controllers with counters and PWM generators are implemented on an FPGA
chip. Interface between an MCU and a field programmable gate array (FPGA) chip has
been developed to complete hardware implementation of a neural controller. The neural
controller has been tested for controlling the inverted pendulum as a nonlinear system.
Copyright © 2005 IFAC

Keywords: Reference compensation technique, FPGA, VHDL, ARM, neural controller

1. INTRODUCTION

Nowadays, “Intelligence into the system” has

become one of the attractive issues in the control
system communities. An endless dream about
creating a man-like machine has accelerated
researches on developing intelligent systems. One of
main tools of intelligence is a neural network system,
which mimics a human brain.

Even though, for the most of motion control
applications, PID controllers are used as a main
controller with the merit of simplicity and easy
implementation, PID controllers for nonlinear
systems do not work properly as expected. It is well
known that fixed PID controller gains have lack of
robustness due to uncertainties and outer
disturbances. So, introduction of intelligent tools to
the nonlinear system will remedy this problem.

A neural network, as a nonlinear controller, is a
good candidate that works quite well for a nonlinear
system (Miller et. al., 1991). Applications of a neural
network can be found in many areas such as motion
control systems, signal processing systems, and data
processing systems. Specially, successful neural
network applications can be found in controlling
robot manipulators since they are highly nonlinear
MIMO systems (Jung et. al., 2000 and Miyamoto et.
al. 1998).

Even though the neural network works well,
problems arise when a real time implementation
issue of a massively parallel neural network learning
algorithm is required. Experiments are more difficult
to be conducted since the fast computing device is
required. The control-loop in the neural control
system must be processed fast enough for real time
control at every sampling period. Recently, with the
help of high-performance and high speed hardware

technology, DSPs are available for fast computation
in the market.

In our previous researches, successful real time
neural network applications have been achieved. The
reference compensation technique has been
implemented on a high cost DSP system for
controlling an x-y table robot and an inverted
pendulum (Jung et. al., 2001 and Cho et. al., 2003).
As an extension of those researches, we have
developed a neural network control hardware on a
DSP board with an FPGA (Field Programmable
Gate Array) based general purposed PID controller
(Kim et. al., 2003 and Jung et. al., 2003). In the
literature, most of real time neural network learning
algorithms are implemented on DSP boards or even
in the PCs. However, their cost is somewhat
expensive for a certain simple application such as
controlling a DC motor.

In this paper, we extend our previous researches
to develop the reference compensation technique of
training neural network controllers for nonlinear
systems. The purpose is to develop a low cost neural
network controller that can be used as a compensator
in front of the PID controlled system. By using a
PID controller embedded FPGA chip as a main
controller for the system, the neural controller can be
used as an auxiliary controller that can cancel out
uncertainties in the system.

Recently, employing a concept of a system-on-
chip (SOC), an FPGA chip as a controller-on-chip
(COC) has been developed and used in many
applications (Krips et. al., 2002; Cristea et. al., 2001;
Abdelkrim et. al., 1997; Thomas et. al., 1999; Oh et al.,
2002; Kongmunvattana et al., 1998). As a COC, by
using the high flexibility of an FPGA, the additional
hardware such as an encoder counter and a PWM
generator, can also be implemented in a single
FPGA device. As a result, the controller can be
designed in a compact form so that it has the cost
effectiveness as well as space savings. In addition,
noise and power dissipation problems can be further
minimized. For a neural network controller, a
commercially available general purposed low cost
MCU board such as an ARM board is used. The
price of an ARM board is much less expensive than
that of a DSP board.

Back-propagation learning algorithm has been
implemented on the ARM board. Interface between
an ARM board and an FPGA has been done to
complete intelligent control hardware. In order to
show the performance of the developed controller, it
was tested for controlling an inverted pendulum. The
proposed controller is required to control the angle
of the pendulum and the position tracking of the cart
simultaneously. Performances of position tracking of
the cart while balancing the pendulum were
successfully achieved.

2. OVERALL SYSTEM STRUCTURE

The reference compensation technique is known

as one of on-line learning control methods of neural

network applications. The control block diagram is
shown in Fig. 1.

Neural
Network

Controller Plant

+

-

+ e u
r y

v

 Fig.1 Reference compensation control system
structure

A neural network is placed in front of the closed

loop controlled system. It functions as a pre-filter to
modify reference trajectories by compensating for
uncertainties (Jung et. al., 2000). Here we try to
implement a neural network control algorithm on the
ARM board. Fig. 2 shows the block diagram of
interface structure between each module of the
neural controller and an FPGA. The ARM board
communicates with the FPGA to give compensated
signals and the FPGA calculates errors to form PID
controllers and then generates PWM signals to
motor drivers.

Fig.2. Overall system block diagram

A neural network is placed in front of the closed
loop controlled system. It functions as a pre-filter to
modify reference trajectories by compensating for
uncertainties (Jung et. al., 2000). Here we try to
implement a neural network control algorithm on the
ARM board. Fig. 2 shows the block diagram of
interface structure between each module of the
neural controller and an FPGA. The ARM board
communicates with the FPGA to give compensated
signals and the FPGA calculates errors to form PID
controllers and then generates PWM signals to
motor drivers.

3. PID EMBEDDED ON FPGA

The FPGA based PID controller consists of a

communication block, an encoder counter block, a
PID calculation block, and a PWM generation block.
Input signals are 32 bit data, a 6 bit address, control
signals such as CS, OE, WE, encoder signals, and a
25MHz clock. Output signals are PWM signals.
Fig.3 shows the block diagram of inside the PID
controller.

Data(32)
Address(6)
CS, OE, WE

Communication

Encoder
Counter

PID
Controller

PWM
Generator

Clock
(25MHz)

PWM
signal

Encoder
signal

(CHA,CHB)

 Fig 3. Inside block diagram of PID controller

The detailed description and function of each

block can be found in the previous paper [7].

4. MCU BOARD

A commercially available general purposed
ARM(Advanced RISC Microprocessor) board of
Samsung is used for neural network controller
implementation. In order for an ARM to
communicate with FPGA PID controllers, a 32 bit
data bus is used to share data. The ARM board has a
32 bit 66MHz RISC structured microprocessor. At
every sampling time, the ARM board has to give
compensation values to the FPGA so that the FPGA
can add those values to PID controllers. This kind of
process can be done by communication between the
MCU and the FPGA. Since a whole calculation has
to be done in one sample time, the ARM board and
the FPGA have to be synchronized.

5. NEURAL NETWORK CONTROLLER

5.1 Reference compensation technique

In this paper, we are implementing an on-line
learning algorithm for a neural network. The
reference compensation technique has been
proposed by Jung and Hsia [2]. The idea of the RCT
is that the neural network compensates at input level
by modifying input signals. The same objective
function of the feedback error learning method can
be minimized in on-line fashion [3].

The angle error is formed as

 θθθ −= de (1)

where dθ is a desired angle and θ is an actual
angle of the pendulum.
A PID controller for an angle control is defined as

321

)()()(

φφφ θθθ

θθθθθθθ

DIP

DIP

kkk

tekdttekteku

+++

++= ∫ &
 (2)

where 321 ,, φφφ are neural network outputs.
The cart position is controlled as well as the
pendulum angle. The position tracking error is
formed as

xxe dx −= (3)

where are a desired cart position and an
actual cart position, respectively.

xxd ,

A PID control for a cart can be formed as

654

)()()(

φφφ DxIxPx

xDxxIxxPxx

kkk

tekdttekteku

+++

++= ∫ &
 (4)

where 654 ,, φφφ are neural network outputs.

The overall control input for the inverted pendulum
system is to add (2) and (4) as

θuuu x += (5)

Fig. 4 shows the control block diagram for an
inverted pendulum control. Inputs to the neural
network are desired angle and position as well as
delays of actual angle and position. Neural network
outputs are added to PID errors. Those
compensating signals are multiplied by PID
controller gains to generate compensating torques to
the system.

Fig.4. Control block diagram

5.2 Neural network learning

For a neural network structure shown in Fig. 5, we
have used a general feed-forward structure that has
an input layer, a hidden layer, and an output layer.
The numbers of input layer, hidden layer, and output
layer are 12, 9, and 6, respectively.

Fig.5. Neural network structure

For a nonlinear function at hidden layer and

output layer we have used a hyperbolic tangent
function as

)exp(1
)exp(1)(

x
xxf

−+
−−

= (6)

Here, the neural network learning algorithm is
derived. Since we are doing on-line learning and
control, selecting the training signal is very
important. Neural network outputs are defined as

xΦ+Φ=Φ θ (7)

321 φφφ θθθθ idp kkk ++=Φ (8)

654 φφφ ixdxpxx kkk ++=Φ (9)

If is the system dynamics, equation (2) and
(4) can be represented as follows:

),,(θθθ &&&f

∫ ∫+++++ xixxdxxpxidp ekekekekekek && θθθθθθ

Φ−=),,,,,(xxxf &&&&&& θθθ (10)

If we make the left side of (10) become zero, then
 can be obtained. This means that

inverse dynamics control can be achieved. So here
we define the training signal of neural network as
the left side of (10).

),,(θθθ &&&f≅Φ

∫ ∫+++++= xixxdxxpxidp ekekekekekekv && θθθθθθ

 (11)

The objective function is defined as

2

2
1 vE =

(12)

Differentiating (12) with respect to the weight, we have

w
v

w
vv

w
v

v
E

w
E

∂
Φ∂

−=
∂
∂

=
∂
∂

∂
∂

=
∂
∂

 (13)

Here, we have

)(
ww

v
w

v
w
vv

w
v

v
E

w
E x

∂
Φ∂

+
∂
Φ∂

−=
∂

Φ∂
−=

∂
∂

=
∂
∂

∂
∂

=
∂
∂ θ

 (14)

The update equation in the back propagation
algorithm is

)1()(−Δ+
∂
Φ∂

=Δ twv
w

tw η (15)

)()()1(twtwtw Δ+=+ (16)

5.3 Hardware implementation of neural network
controller

We used an ARM board of Samsung and an
FPGA board of Altera APEXⅡ EP20K300EQC240.
Fig. 6 shows a real figure of the designed controller.

Fig. 6. MCU-FPGA Hardware

6. EXPERIMENTAL SETUP

Experiment is to control the angle of pendulum
and the position of cart simultaneously. Fig. 7 shows
the experimental setup of the inverted pendulum
system. The system consists of an inverted
pendulum, a hardware controller, and a PC.

Fig. 7. Inverted pendulum system

Optimised PID controller gains and neural network
parameters are listed in Table 1.

Table 1. Controller gains
Parameters Gain

pk -2.3

ik 0.0008

Angle

dk -0.542

pk -0.625

ik -0.021

Position

dk -0.542

Learning rate(η) 0.205

Momentum(α) 0.3

7. EXPERIMENTS

7.1 Balancing control

We have found that the maximum sampling time
can be achieved at 10msec. This sampling rate is
much slower than that of a DSP board. Even though
the ARM board is fast enough, computing back-
propagation algorithm can be a burden. For control
application, however, 10msec sampling time is
acceptable. The experimental results are shown next.
Figs. 8 and 9 show the pendulum angle error and the
cart position error by the controller, respectively.
The pendulum is well balanced and the cart is well
maintained at the desired position.

Fig. 8. Angle of the pendulum

Fig. 9. Position of the cart

7.2 Position tracking

Another interesting experiment has been
conducted to test the performance of the proposed
controller. The cart is required to track a desired
sinusoidal trajectory while balancing the pendulum.
The cart is required to move along axis about 40cm
in distance. Here we tested two cases: one is when a
digital filter is used and the other is not.

Case 1 : Without a digital filter
We have found that derivative terms as a D
controller after a finite difference computation are
very noisy. Even though controlling balancing and
position tracking are successful, vibration has been
observed. Figs. 10 and 11 show balancing and
tracking control results. We observed that about 3cm
overshoot occurred in cart position tracking in Fig
11.

Fig.10. Pendulum angle when T= sec8π

Fig.11. Position tracking of the cart when T =
sec8π . Blue line is the reference, and the red line is

actual trajectory.

Fig. 12 shows the corresponding torque that has

glitches to cause vibration a little bit. In order to
eliminate vibration, we used a digital filter to get rid
of glitches. Even though the system is stable, the
pendulum keeps oscillating with a large error.

Fig.12. Control torque when T = sec8π

Case 2 : With a digital filter

We have used a digital filter for smoothing the
signal after a finite difference process. We have
experimentally found that a vibrating frequency at
above 5Hz. So we filter derivative terms out with a
low pass filter at the cutoff frequency of 5 Hz. The
designed 2nd order IIR filter is

21

21

572398.045445.01
7559611.0511922.075596.0)(

−−

−−

++

++
=

zz
zzzH

The results are shown in Figs. 13 and 14. We see

that performances are much better than that of
without a filter. Specially, for the cart position
tracking, overshoots have been minimized very
much as shown in Fig. 14. We can clearly see the
reason from Fig. 15 that torques are smoother than
that of case 1 shown in Fig. 12.

Fig.13. Pendulum angle when T= sec8π

Fig.14. Position tracking of the cart when T =
sec8π (blue line : the reference trajectory and the

red line :the actual trajectory).

Fig.15 Control torque when T = sec8π

In these experiments, the pendulum is balanced
within a 0.015rad angle error and the cart tracks
desired trajectories within the error of 1 ㎝.

 8. CONCLUSIONS

This paper presented the hardware
implementation of a neural network controller with
an FPGA based PID controller. The proposed
controller was tested by performing control of an
inverted pendulum. Even though the overall
sampling time is less than that of a DSP, the
proposed controller improves position tracking
errors of the cart while balancing of the pendulum.
Experimental studies confirmed that the
implemented low cost neural network controller can

be used for any nonlinear system whose output
signals are available since output signals are used to
form errors to train a neural network on line.

However, we failed to control two degrees-of-
freedom pendulum since the sampling time is not
fast enough for calculating two neural networks
separately. Real time control of two massively
parallel neural networks was a burden for a single
MCU. A faster MCU will be used in the future.

REFERENCES
Miller. W.T., R. S. Sutton, and P. J. Werbos (1991),

Neural Networks for Control, The MIT Press
Jung S. and T. C. Hsia (2000), Neural network

Inverse Control Techniques for PD Controlled
Robot Manipulator, ROBOTICA, vol. 19, No 3,
pp. 305-314

Miyamoto H., K. Kawato, T. Setoyama, and R.
Suzuki(1988), Feedback error learning neural
network for trajectory control for of a robotic
manipulator, Neural Networks, vol. 1, pp. 251-
265

Jung S. and S. B. Yim (2001) Experimental studies
of neural network control technique for
nonlinear systems, vol. 7, no. 11, pp. 918-926

Cho H. T. and S. Jung (2003), Balancing and
Position control of an Inverted pendulum on an
X-Y Plane using Decentralized neural networks,
2003 International Conference on Advanced
Intelligent Mechatronics, pp. 181- 186.

Kim S. S and S. Jung S.(2003), Implementation of
an Intelligent Controller with a DSP and an
FPGA for Nonlinear Systems, ICCAS, pp.575-
580

Kim S. S and S. Jung S(2003), Development of a
General Purpose Motion Controller Using a
Field Programmable Gate Array, ICCAS, pp.
360-365

Krips M, T. Lammert, A. Kummert (2002), FPGA
implementation of a neural network for a real-
time hand tracking system, First IEEE
International Workshop on Electronic Design,
Test and Applications, pp. 313 317.

Cristea M., J Khor, M McCormick (2001) FPGA
fuzzy logic controller for variable speed
generators, IEEE International Conference on
Control Applications, pp. 301 304.

Abdelkrim K. Oudjida et al(1997), A reconfigurable
counter controller for digital motion control
application, Microelectronics Journal, vol. 28,
no. 6-7.

Thomas F. et al (1999), Design and implementation
of a wheel speed measurement circuit using
field programmable gate arrays in a spacecraft,
Microprocessors and Microsystems, pp. 553-
560

Oh et al (2002), Design of a biped robot using DSP
and FPGA, FIRA Robot World Congress. 698-
701.

Kongmunvattana A. and P. Chongstivatana (1998),
An FPGA-based Behavioral Control System for
a Mobile Robot, IEEE Asia-Pacific Conference
on Circuits and Systems, pp. 759-762, 24-27.

