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Abstract: In this paper, stable indirect adaptive control with recurrent neural 
networks is presented for multi-input multi-output (MIMO) square non linear plants 
with unknown dynamics. The control scheme is made of a neural model and a neural 
controller based on fully connected RTRL networks. On-line weights updating law, 
closed loop performance, and boundedness of the neural network weights are derived 
from the Lyapunov approach. Sufficient conditions for stability are obtained 
according to the adaptive learning rate parameter. Copyright © 2005 IFAC  
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1. INTRODUCTION 

 
Research in non linear control theory has been 
motivated by the inherent characteristics of the 
dynamical systems to control. Concerning the non 
linear nature of the dynamics: if we consider the fact 
that most systems are not perfectly known, therefore 
the choice of a model is not an easy task. Adaptive 
control seems today an efficient strategy to tackle the 
stabilization and tracking of highly uncertain 
dynamical systems.  

 
Since neural networks (NN) have general properties 
like learning ability, approximation capability and 
generalization, they have been successfully applied to 
the identification and control of non linear systems. 
In closed loop control using NN the problems 
associated with implementation are complicated, so 
that the control system must satisfy three conditions: 
boundedness of the NN weights, boundedness of the 
tracking errors and stability of the global system 
under control. In an attempt to guarantee these 
criterions, a considerable research effort has 
concerned advanced neural control systems with high 

accurate tracking performance and strong robustness. 
A major design technique has emerged, namely, 
neural controller design using Lyapunov stability 
theory. One main advantage of this approach is that 
the parameter adaptation laws are based on Lyapunov 
synthesis in order to satisfy the stability of the closed 
loop system. In most of the above works, the neural 
control schemes are divided into two groups: “pure” 
neural controllers (Druaux et al., 2004; Wang, 2003) 
and neural controllers combined with other 
conventional control strategies such as back stepping 
and sliding mode (Sanner and Slotine, 1992; Zhihong 
et al., 1998; Ge et al., 2002). In that case, the role of 
neural networks is to approximate the non linear 
input-output relations. Recently, many works 
concerning the stability of NN controllers have also 
been published. In (Tian and Collins, 2004; Ge et al., 
2002), direct and indirect adaptive control schemes 
based on a recurrent NN and radial basis functions 
models of the unknown system are proposed. 
Lyapunov methods were also investigated to provide 
answers to the problems of stability, convergence and 
robustness (Wang, 2003). In (Tian and Collins, 
2004), stability of the whole control system is 



     

governed by the characteristics of the dynamic 
recurrent neural network, which can be established 
and analyzed according to the learning rate choice. 
For multivariable nonlinear systems, due to the 
couplings among various inputs and outputs, the 
control problem is more complex and few results are 
available in the literature. In (Ge et al., 2000; Ge et 
al., 2001), the authors presented a stable adaptive 
control scheme for a multivariable nonlinear systems 
with a triangular structure using multilayer neural 
networks. The control design is based on integral 
type Lyapunov function and the block-triangular 
structure properties. These control schemes, 
however, cannot be extended to the general class of 
MIMO nonlinear systems. 

 
In this paper, we further investigate stable indirect 
recurrent NN control for unknown non linear 
multivariable systems. (i.e. no model is drawn of the 
process because of a lack of information about it) 
(Druaux et al., 2004; Leclercq et al., 2005). The 
process is considered as a black box, known as series 
of input and output measurements. The proposed 
algorithm does not depend on any preliminary 
knowledge about dynamics. We consider the case of 
square MIMO (i.e. input-output numbers are 
assumed to be equal) controllable systems. The 
proposed adaptation algorithm is inspired by the real 
time recurrent learning (RTRL) which was proposed 
by R.J. William and D. Zipser (Williams and Zipser, 
1989). The main advantage of this method is that 
adaptation is obtained whatever the process evolution 
is. Starting from zero initial conditions, the proposed 
controller adapts itself, so as the learning rate and the 
time parameter, in order to track dynamical 
behaviors. Analyzing the error functions in term of 
Lyapunov criterion, we show that the stability of the 
closed loop can be reinforced. As a consequence, 
sufficient conditions for asymptotic stability are 
obtained according to the learning rate parameter.  
 
The paper is organized as follows: design of the 
indirect adaptive neural network controller is 
described in section 2; self adaptation algorithm for 
the parameters of the controllers is also presented; in 
section 3, the convergence and stability of the on-line 
RTRL control algorithm based on discrete Lyapunov 
function is studied; simulations are proposed in 
section 4. 
 
 

2. ADAPTIVE NN CONTROL 
 
Indirect neural network controller (IDNC) consists of 
two separate neural networks, namely the neural 
controller (NC) and the neural model (NM). The 
complete scheme of IDNC is shown in Fig. 1. The 
updating of NC and NM is synchronous. Let us 
define NIN and NOUT respectively as the number of 
plant inputs and outputs and assume that NIN = NOUT , 
where IN and OUT represent the set of inputs and 
outputs index . For NM, the total number of neurons 

Nm, is chosen equal to NIN+NOUT , so that any node is 
either an input node or an output node but not both at 
same time, in order to avoid to perturb any output 
signal with input ones. For NC, the total number of 
neurons Nc, is chosen equal to NOUT , so that each 
neuron is simultaneously an input and an output. 
 
Inputs and outputs signals of the NM, NC and plant 
are normalized in the range of [-1,1]. Let us define t 
= k∆T where ∆T is a sampling period and k an 
integer. For the sake of simplicity, let us refer to 
instant t by using the integer k. The subscripts m and 
c are used to distinguish the NM and NC 
respectively. 
 
 
2.1. Neural model 
 
The NM is developed with fully connected recurrent 
neural networks (Leclercq et al., 2005). The 
dynamics of the Nm neurons take the following form 
in continuous time: 
 

ˆ ( )1 ˆ ˆ( ) tanh  ( ) ( ) ( )
( ) 1

NdY t mi Y t W t Y t X ti ij j it dt jmτ

 
= − + + ∑ = 

  (1) 

 
with Xi(t) = Ui(t) if i ∈ IN and Xi(t) = 0 if i ∈ OUT. 

)(ˆ tiY , Wij ,1/ )t(mτ  and Ui(t) represent respectively 
the ith neuron state, the NM weight from jth neuron to 
ith neuron, the NM adaptive time parameter and the 

NC output. Let us define ˆ ˆ( ) [ ( )]i
TY k Y k= , i ∈ OUT, 

as the estimated output vector of the plant at time t = 
k∆T. A matrix representation of (1) is given in 
sampled time with (2): 
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The vector B is considered constant during each 
sampling period. The autonomous adaptation 
algorithm is inspired by the principle of RTRL. Let 
us consider the instantaneous square error between 
the estimated output vector and the plant output 
vector defined as in (4): 
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The objective is to minimize Em(k) with respect to the 
parameters: weights are updated according to (5): 
 

( ) ( ) ( ) ( ) ( )1ij ij ij m ijW k W k W k T Hm k P kη Τ
− ∆ = − − = − ∆  

 (5) 
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Fig. 1. Structure of the indirect neural network 

controller  
 
The subscript “_“ in the notation [ ],..., 21 ijijij PPP =Τ

−  
is used to indicate a vector of the 3D matrix P. The 
notations ηm, ˆ /lij l ijP Y W= ∂ ∂  and ( ) ( )ˆHm Y k Y k= −  
represent respectively the learning rate, the network 
sensitivity with respect to weights and the model 
error vector. Plij is updated according to (6):  
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The vector B’ is considered constant during each 
sampling period 
 
 
2.2 Neural controller 
 
The NC is also a fully connected recurrent neural 
network based on autonomous RTRL algorithm. The 
NC input is the plant desired output vector γ(t), and 
the NC output is the control signal vector U(t). The 
control signals are calculated by comparing the NM 
output with the desired system responses and 
according to the neurons dynamic activation given by 
(8) in continuous time: 
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where ijΦ  and 1/ )(tcτ  represent respectively the 
NC weights value from jth neuron to ith neuron and 
the NC adaptive time parameter. A matrix 
representation of (8) is given in sampled time by (9): 
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with D(k) = (Di(k)) ∈ IRNc and: 
 

1
( ) tanh  ( ). ( ) ( )

cN

i ij j i
j

D k k U k kγ
=

 = Φ +∑ 
 

 (10)

 
The vector D is considered constant during each 
sampling period. The adaptation of the NC weights is 
also obtained with an optimization algorithm inspired 
by the gradient descent. The cost function for training 
the NC is given by (11): 
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The weights are then updated using (12):  
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where ( ) ( ) ( )ˆHc k Y k kγ= −  represents the tracking 
error vector and: 
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Q_ij and J_d are defined in the same way as P_ij and 
are computed as follows: 
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D’(k) = (0,…,0,Di’,0,…,0)T ∈ IRNc with Di’(k) = 
Si(k).Uj(k), D”(k) = (0,…,0,Dd”,0,…,0)T ∈ IRNm with 
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2.3. Automatic adaptation of the parameters τ and η 
 
In order to obtain an autonomous control able to 
adapt itself to a large variety of uncertain or unknown 
processes with few initial constraints, we consider 
updating rates ηm(k) and ηc(k) and time parameters 
1/τm(k) and 1/τc(k) as time varying functions. The 
dynamics of ηc(k) and τc(k) are worked out in order 
to get the dynamics of the NC close to the NM one. 
 
τc(k) = τm(k) =τ(k),         ηc(k) = ηm(k) = η(k) (16)

  
τ(0)= τ0 and η(0)= η0 are very small constants 
necessary for the control process to start. Using the 
instantaneous square model error ( )mE k , parameters 
τ(k) and η(k) are updated using (17): 
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Our objective is to design a stable self adaptive 
neuronal controller, as simple as possible in term of 
parameters and calculations to be carried out. To 
achieve this objective we suppose that 

lll VVV == τη . Considering the analogy between 
( )lV k and Plij(k), we can write: 
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with ε = (dVl / dt)t=0 > 0 in order to start the 
adaptation process. As a consequence, we notice that 
the network evolves in an autonomous way starting 
from zero initial conditions.  
 
 

3. STABILITY ANALYSIS 
 
Stability properties of the closed loop system are 
important issues to be addressed. Abrupt variations 
of the reference signal make the process to move 
away from the equilibrium state. To reach a new 
equilibrium, the adaptation procedure can cause 
oscillations or divergences: instabilities may arise as 
a consequence. 
 
We propose to study the stability of the IDNC with 
the well-known Lyapunov approach. The purpose of 
control is to force the output of the controlled process 
to track a desired trajectory. From this point of view, 
Lyapunov function candidate is investigated 
according to the model-tracking error; sufficient 
condition for stability is derived as a consequence. 
The Lyapunov function candidate is defined as: 
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The output of the closed loop system will accurately 
track the desired output and remains near the desired 
trajectory if ∆Emc(k)≤0, with 
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Let us introduce the following notations:  
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So, (20) can be rewritten as: 
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where I is the identity matrix. A sufficient condition 
to ensure the close loop asymptotic stability is 
expressed by the following quadratic form: 
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Hence concerning |η| condition for the stability of the 
indirect neural network controller is given by (24):  
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η
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with ∆’ = b2 + a.c .When the sufficient condition 
(24) is not verified, the process is stabilized by 
replacing the current value of parameter |η| with the 
nearest limit value (i.e. (b+√∆’)/a or (b-√∆’)/a). 
 
 

4. SIMULATION RESULTS 
 
Let us consider the dynamical model of a planar 
robotic manipulator with 2 links. The dynamics of 
this system are non linear and coupled according to 
the freedom degrees of both arms. The equations of 
motion in terms of the angular positions of arms 1 
and 2 are given by: 
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where q1, q2 are the angular positions; m1, m2 are the 
masses; L1 ,L2 are the lengths of both arms. The plant 
parameters are chosen as m1 = 3Kg , m2 = 2.3 Kg, L1 
= 1.1 m , L2=1 m, g = 9.81 m/s2 and f1 = f2= 10 
kg.m2.s-1.rad-1. For this purpose the NC has 2 neurons 
and the NM has 4 neurons (Leclercq et al., 2005). 
The neural networks parameters are starting from 
zero initial conditions. For our algorithm, this plant is 
supposed to be completely unknown and can be 
considered like a black box. 
 
Simulations are obtained using a four-order Runge–
Kutta method with an integral step of 0.1s (to solve 
the plant non-linear differentials equations 
numerically), a controller sampling interval ∆T = 0.1 
s and ε = 1. Fig 2(a)-(d) show respectively the system 
outputs, the control inputs and the η and τ 
parameters. Without stability constraint, closed loop 
system diverges. Instabilities are due to the descent 
gradient. We observe such instabilities because the 
network state does not reach the global minima and 
jumps from a local minima to another one (Leclercq 
et al., 2005). Both outputs present a divergence when 
the learning rate parameter grows infinitely. But 
concerning the control signals, they are still bounded. 
 
Fig 3(a) -(d) show the first and second arm positions, 
the control input and the η and τ parameters with the 
stability sufficient condition index. This index is 

shown on the bottom of Fig. 3(d) and could take 
three values, {-1, -3, -5}: (-1): the stability criterion 
is not verified and the learning rate is updated; (-3): 
the stability criterion is verified; (-5): stability 
criterion is not verified but the upper bound of the 
criterion is negative. On Fig. 3(a) transient 
behaviours arise, due to some steps input signals. 
These transients not arise on the second arm because 
the corresponding reference signal has no switch. 
 
The comparison between both series of simulations, 
proves firstly that the network divergences can be 
related to the variation of a single parameter, namely 
the time parameter, and secondly that these 
instabilities are avoided by application of the 
sufficient stability criterion. 
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Fig. 2. Simulation results without stability criterion: 

(a) normalized output (solid line) and reference 
(dashed line) for arm 1; (b) normalized output 
(solid line) and reference (dashed line) for arm 
2;(c) control input; (d) parameters τ(t) (solid line), 
η(t) (dashed line). 
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Fig.3. Simulation results with the stability criterion: 

(a) normalized output (solid line) and reference 
(dashed line) for arm 1; (b) normalized output 
(solid line) and reference (dashed line) for arm 2; 
(c) control input; (d) parameters τ(t) (solid line), 
η(t) (dashed line) and stability sufficient 
condition index (lowest curve).  

 
However, the apparent poor performance of the 
controller for arm 1 can be explained by the strong 
interaction between both arms and the continuous 
large swing of arm 2 which causes deviation of arm1 
from the target position.  

5. CONLUSIONS 

A stable indirect adaptive control with recurrent 
neural networks is developed for MIMO square non 
linear plants with unknown dynamics. Stability 
analysis of the on-line RTRL learning algorithm for 
the closed loop system has been given, based on 
Lyapunov theory. It results a sufficient conditions. 
To guarantee stability, the learning rate must be 

bounded with two functions that are explained. 
Simulation results show that our approach results in 
good performance, simple structure and self tuning of 
the adaptation rates and time parameters. The method 
is easy to implement because stability is obtained 
thanks to the evaluation of a single parameter. Our 
further works concern the investigation of noise 
sensitivity in order to design robust control. 
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