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Abstract: In this paper, an adaptive tracking controller is proposed using
Extremum-seeking strategy. For unknown disturbances satisfying matching condi-
tion, the controller can adaptively seek for a proper magnitude level large enough
for disturbance rejection without excessive control efforts. The proposed control
strategy is robust to disturbances and uncertainties and is continuous in nature.
As a result, there will be no chattering phenomenon and control energy will be
largely saved comparing with a classic sliding mode output tracking controller.
As an example, the proposed control strategy is applied to an adaptive vehicle
following control to test it in a problem with high uncertainties. Copyright c©2005
IFAC
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INTRODUCTION

This paper treats the problem of tracking an
external reference signal with modeling uncer-
tainties in system. Taking advantage of the
Extremum-seeking methodology, the proposed
method rejects the unknown disturbances adap-
tively with only necessary control efforts.

Extremum-seeking control (ESC) strategy is con-
sidered as an adaptive control methodology. In
(S.K.Korovin and V.I.Utkin, 1972) and (Korovin
and Utkin, 1974), a static optimization and non-
linear programming algorithm with sliding mode
control was proposed by Korovin and Utkin. Af-
ter that, pioneering work on Extremum-seeking
control via sliding mode appeared in (Drakunov
and Özgüner, 1992). Successful application of
Extremum-seeking control dates back to Özgüner
et al, (Drakunov et al., 1995) where an Anti-lock
Braking System was designed with ESC strategy

via sliding mode. In (Haskara et al., 2000), opti-
mal set-point determination was analyzed in de-
tail with a two time scale sliding mode optimiza-
tion method. Extremum-seeking via sliding mode
to system with time lags was studied in (Yu and
Özgüner, 2002a) and (Yu and Özgüner, 2002b).
In (Yu and Özgüner, 2003), Extremum-seeking
strategy is developed with second order sliding
mode control considering control smoothness.

Based on the Extremum-seeking strategy pro-
posed in (Yu and Özgüner, 2002b), the main con-
tribution of this paper is to extend the application
of Extremum-seeking control to tracking prob-
lems. For accurate tracking, it is usually expected
to have enough knowledge on the system model
and reference signal as in adaptive control or to
have enough control potential as in sliding mode
control. Working in a highly uncertain environ-
ment, knowledge on system model may not always
be sufficiently available and it is usually unde-



sired to operating the control actuation system
at its maximum level for long time. All those
considerations make Extremum-seeking strategy a
better substitution for classic sliding mode control
in tracking problems. First, a tracking controller
with Extremum-seeking strategy can adaptively
seek for a magnitude level of control effort large
enough to counteract all disturbances and uncer-
tainties. Thus, it avoids using up all its control
potential and saves control energy. Second, the
proposed method is continuous in nature and
avoids high feedback control gains such that there
will be no chattering phenomenon accompanying
in the control system designed.

The paper is organized as follows: In Section 1,
the tracking control strategy is proposed for a
nominal system and a lemma governing its sta-
bility is given. In Section 2, the proposed method
is applied to an adaptive vehicle following control
problem. Simulations are carried out in TruckSim.
Robust and adaptive tracking performance has
been obtained in this example. Conclusions are
made in section 3.

1. A PROTOTYPE TRACKING PROBLEM

The typical structure of adaptive tracking con-
trol with Extremum-seeking strategy is shown in
Figure 1. Due to the uncertainties in model, the
gradient information of the user defined cost func-
tion C(t, x, r) = e2

2 is unavailable directly in this
problem. In order to extract the gradient informa-
tion to minimize the cost function, the Extremum-
seeking strategy exerts perturbation signal to ob-
tain a projection of the gradient and and involve
it in an online optimization problem. As a result
C(t, x, r) → 0 and x → r asymptotically.

Fig. 1. Control Scheme of adaptive tracking
control with ESC

Consider a nominal system:

ẋ = g(t, x)u + δ (1)

where x ∈ < is the system’s state and u ∈ < is the
control input. For general nonlinear SISO system
with high order of relative degree, the nominal sys-
tem could be obtained through feedback lineariza-
tion and backstepping technology. The control
gain g(t, x) may be time varying uncertainly. In
this paper, |g(t, x)| is assumed to be bounded both
from below and from above by positive constant γ
and gm, (i.e. gm ≥ |g(t, x)| ≥ γ, ∀t > 0, ∀x ∈ <),
and g(t, x) is continuous almost everywhere ex-
cept at finite time instants. δ accounts for all the
disturbances and |δ| is bounded from above by a
positive constant δm. The reference signal is given
by:

r = f(t) (2)

It is assumed that the absolute value of the
first order derivative of r is bounded from above
|ṙ| ≤ rm. The control objective is to design
u(t, x, r) such that the system state x tracks the
reference signal r(t) stably and asymptotically in
the presence of uncertainty in g(t, x) and unknown
disturbance δ.

Let e = x− r. Define cost function:

C(t, x, r) =
e2

2
=

(x− r)2

2
(3)

which is a measure of the difference between x and
r. The control input u is designed as follows

s = C + h(t) (4)

ḣ(t) =
{

ρ > 0 if C > ρ
C if C ≤ ρ

u =−κ sin
(π

α
s
)

(5)

where h(t) is a monotonically increasing function
of time and ρ, κ and α are positive constants. The
control parameters at our disposal are κ,ρ and α
and their values will be determined according to
stability and performance conditions.

Lemma 1. For system (1) with control input (5),
the state variable x converges to r(t) asymptoti-
cally as C(t, x, r) goes to zero in finite time if

γκ > rm + δm +
√

ρ

2
+ ε (6)

where ε is a small value and accounts for moving
rate of a manifold as shown later.

Proof: With Extremum-seeking control de-
signed as (5), the following inequality:

|x− r| ≥ ḣ

|g(t, x)κ| − |δ| − |ṙ| (7)



holds both in the region where C(t, x, r) > ρ and
in region where C(t, x, r) ≤ ρ if only the condition
(6) is satisfied ∀x ∈ < and ∀t > 0. Without loss of
generality, assume initially that x(0) − r(0) > 0.
The corresponding initial state of control variable
s(0) = s̃(0) + nα, for some value of integer n. By
definition n = 2j + (1 + sgn(x(0) − r(0)))/2 and
j = fix(s(0)/2α). The function fix(z) rounds the
element z to the nearest integer. n is even in the
region where x(t)−r(t) > 0 and n is odd in region
where x(t)−r(t) < 0. The value of n is determined
according to the initial value of x(0) and s(0).
Define manifold

M(t, x, r) =
α

π
arcsin

(
ḣ + (x− r)(ṙ − δ)

(x− r)gκ

)

|Ṁ(t, x, r)|< ε

−α−M(t, x, r)≤ s̃(0) ≤ α−M(t, x, r)

Taking the first order derivative of s along the
system trajectory:

ṡ =
∂C

∂x
ẋ +

∂C

∂r
ṙ + ḣ

ṡ = (x− r)[−g(t, x)κ sin(
πs

α
) + δ − ṙ] + ḣ

Let s(t) = s̃(t) + nα, then

˙̃s = (x− r)[−g(t, x)κ sin(
πs̃

α
) + δ − ṙ] + ḣ

by design, κ is large such that the dynamics of s
and that of x can be decomposed into two time
scale. In the fast time scale, manifold M(t, x, r)
is substituted by its instant value and is viewed
as constant in the boundary-layer model of s. Let
S = s̃−M(t, x, r). Select the Lyapunov candidate
function V = S2/2 and take the derivative of
function V along the system trajectory:

V̇ ≈ (s̃−M(t, x, r)) ˙̃s

If M(t, x, r) < s̃ ≤ α−M(t, x, r),

(s̃−M(t, x, r)) > 0, ˙̃s < 0, Thus, V̇ < 0

If 0 < s̃ < M(t, x, r),

(s̃−M(t, x, r)) > 0, ˙̃s > 0, Thus, V̇ < 0

If −α < s̃ ≤ 0,

(s̃−M(t, x, r)) < 0, ˙̃s > 0, Thus, V̇ < 0

If −α−M(t, x, r) < s̃ ≤ −α,

(s̃−M(t, x, r)) > 0, ˙̃s < 0, Thus, V̇ < 0

It is clear that for positive definite Lyapunov func-
tion V , its derivative along the system trajectory
is negative definite. Thus, S → 0 asymptotically.
As a result

s̃(t) → α

π
arcsin

(
ḣ + (x− r)(ṙ − δ)

(x− r)gκ

)

where 0 < α
π arcsin

(
ḣ+(x−r)(ṙ−δ)

(x−r)gκ

)
< α/2. Mean-

while,

s(t) → nα +
α

π
arcsin

(
ḣ + (x− r)(ṙ − δ)

(x− r)gκ

)

That is C(t, x, r)−h(t) → (nα + M(t, x, r)). After
s(t, x, r) reaches the manifold nα + M(t, x, r)

C(t, x, r)− h(t)− (nα + M(t, x, r)) = 0 (8)

Note that h(t) is an monotonously increasing
function of time if e 6= 0 and M(t, x, r) is bounded
as (n − 1)α ≤ (nα + M(t, x, r)) ≤ (n + 1)α.
Thus, C(t, x, r) is forced to decrease simulta-
neously as h(t) increases according to the con-
strain equation (8). As C(t, x, r) → 0, x →
r asymptotically. Adaptive tracking is achieved
consequently. Along the s̃ plane, the stable re-
gion is an non-symmetry interval defined by
(−α−M(t, x, r), α−M(t, x, r)) with the conver-
gence manifold at M(t, x, r). The width of the
stable region is 2α and the stability radius is
defined to be the width from the upper bound
of the region to the convergence manifold, i.e.
α− 2M(t, x, r), since this is the narrowest region
to keep stability.

As x converges towards r, the convergence mani-
fold M(t, x, r) and the upper bound of the stable
region of s̃ move slowly toward α and 0 respec-
tively as

ḣ

(x− r)gκ
→ 0

Thus, the control variable s(t, x, r) converges to a
bounded moving manifold defined by

s(t, x, r) → nα +
α

π
arcsin

(
(ṙ − δ)

gκ

)

Remark 2. Although it is assumed that x(0) −
r(0) > 0 in this proof, the results obtained are true
with initial condition x(0) − r(0) < 0. The only
difference is that when x(0)− r(0) < 0, definition
for s̃ changes to be s(t) = s̃(t)+(2j−1)α for some
integer j.



2. ADAPTIVE VEHICLE FOLLOWING
CONTROL

In automated vehicle control systems, adaptive
vehicle following control adjusts both speed and
inter-vehicle distance with respect to a leading
vehicle or a moving obstacle for safety spacing
purpose. This is a general problem that can be ap-
plied to agents like robots, cars and trucks for au-
tonomous operation. Uncertainties both from sur-
rounding environment and the agents themselves
make such a problem challenging. In recent years,
linear vehicle following control methods, like PID
and pole placement control, have been studied as
in (Zhang and et al., January 1999). The para-
meters of these linear controllers must be sched-
uled according to different vehicle type and loads
change, etc. in order to achieve good tracking
performance with changing operation conditions.
Sliding mode has also been applied to vehicle fol-
lowing control (Lu and Hedrick, 2002), especially
in the presence of large system uncertainties. For
precise tracking performance, feed-forward infor-
mation on disturbances like road loads, air forces
is necessary. Otherwise, sliding mode controller
needs to take large control magnitude to reject
all sources of unknown disturbances undiscrimi-
natingly even though some of them may be very
small. In vehicle control system, both the throttle
control system and braking control system can
not sustain such a large control magnitude for
long time considering fuel efficiency. The time lags
embedded in the throttle and braking system will
degrade the performance of sliding mode control
and chattering phenomenon is unavoidable. As
seen in the nominal tracking control system, the
adaptive search characteristic of ESC enables the
vehicle following controller to adaptively seek for a
magnitude level of throttle or braking efforts that
are necessary to reject disturbance without wast-
ing even though the variations of disturbances
are unknown. Furthermore, the control input is
continuous and thus it will not incur chattering in
operation.

In this paper, the leading vehicle’s longitudinal
dynamic is described as:

Ẋl = Vl, V̇l = al (9)

where the leading vehicle’s acceleration al is un-
known and is viewed as bounded disturbance.
Constant time headway policy is employed with
vehicle following control design. Vehicle following
control with constant time headway uses only
information derived from sensors, and it main-
tains spacing proportional to Vf . By definition,
the safety distance is:

ds = τVf + d0 (10)

where d0 is the minimum spacing to be kept in
between.

The speed control loop of the host vehicle is con-
sidered as a two-input (throttle angle command
and brake torque command) one-output (vehicle
speed) system. However, the system is still a SISO
system since the throttle and brake will never
work simultaneously. Assuming that the input
scale of the throttle and brake pedal are (0 ∼ 1)
with 1 as the maximum effort. The control gain Rt

and Rb from these inputs to vehicle speed dynamic
are usually unknown and are time varying due to
the complexity of mechanical properties of power-
train and braking systems, like transmission etc.
The longitudinal dynamics of the host vehicle are:

Ẋf = Vf

V̇f = af

=
1
M

(Rt(t, Vf )Td −Rb(t, Vf )Tb

−Rl(Vf )−Mg sin(φ) + σ(t))

= g(t, Vf )T + δ (11)

where Td is the total traction/drive torque and
Tb is the total braking torque applied on wheels.
Since the traction and braking torques are pro-
portional to the corresponding throttle and brake
pedal input, they are substituted by variable T
denoting throttle or pedal input, 0 ≤ T ≤ 1,
and proportional gains are combined together
by an unknown term g(t, Vf ). Road loads as
Rl(Vf ),Mg sin(φ) and disturbance forces σ(t) are
clustered together by a unknown but bounded
disturbance δ. Now, the control objective is to
generate proper traction and braking input T such
that the safety distance ds is kept between the
leading vehicle and the host vehicle with measure-
ments of the leading vehicle’s speed and inter-
vehicle spacing. T denotes traction input when
it is positive and it denotes braking input when
negative. Define the error variables as:

Xe = Xl −Xf , Xf (0) = 0, Xl(0) = Ll > 0

Ve = Vl − Vf , Vf (0) = Vf0, Vl(0) = Vl0

ae = al − af

The dynamic model for two vehicle platoon is:

Ẋe = Ve

V̇e =−g(t, Vf )T + δ (12)

Xe(0) = Ll

Ve(0) = Vl0 − Vf0

Assumption 1. ∀t > 0, Xf (t) < Xl(t) with colli-
sion happens if Xf (t) = Xl(t). The following vehi-
cle has acceleration and deceleration capability no



less than the leading vehicle. There is no limit on
leading vehicle’s speed in our study even though it
does exist in real life. The following vehicle, i.e. the
host vehicle, can not exceed its maximum speed
setpoint Vset.

The reference speed command is generated by:

Vref = k1X̃e + k2Ve + Vl

Vref = min(Vset, Vref )

where k1, k2 are positive constant determined ac-
cording to performance requirements. If Vref is
less then Vset, it is desired for Vf to track the ref-
erence speed Vref asymptotically. Once Vf = Vref ,
consequently

Ẋe = Ve, V̇e = −k1X̃e − k2Ve

such that

Xe → ds, Ve → 0

asymptotically. A tracking controller needs be de-
signed such that Vf → Vref asymptotically in the
presence of uncertainties from both host vehicle’s
dynamics and from environment. Design adaptive
speed control law according to the adaptive track-
ing strategy proposed in Section 1:

V̇f = g(t, Vf )T + δ

T =−κ sin
(π

α
s
)

s = C(t, Vf , Vref )− h(t)

C(t, Vf , Vref ) =
(Vf − Vref )2

2

ḣ(t) =
{

ρ > 0 if C > ρ
C if C ≤ ρ

Asymptotical tracking of Vf to Vref is achieved.
As a result, adaptive vehicle following control is
realized in this two car platoon problem.

Simulations are carried out in TruckSim with
the proposed adaptive control system designed.
TruckSim is a comprehensive software package
for vehicle simulation. In the first simulation, the
leading vehicle is originally at 30 meters ahead
and is running constantly at 10m/s. Figures 2–
4 show the simulation results. It is clear that Vf

converges to Vl after 20 seconds and Xe → ds,
Ve → 0 asymptotically. In the second simulation,
the leading vehicle has the same original states as
in the first simulation. It begins slowing down with
a constant deceleration −1m/s2 at t = 50s until
fully stopped. Simulation results shown in Fig-
ures 5–8 further consolidate the successful appli-
cation of the proposed adaptive tracking control
methodology in adaptive vehicle following control

problem. Throttle and braking control inputs are
continuous and are small when the magnitude of
combined disturbances is small.

3. CONCLUSION

In this paper, a new adaptive tracking control
strategy is proposed using Extremum-seeking con-
trol. Working in a highly uncertain environment,
the proposed tracking control method is robust to
disturbances and uncertainties. Furthermore, its
adaptive seeking characteristic makes it applicable
for systems with continuous control inputs and
control energy can be largely saved. The proposed
controller is simple in structure and easy to de-
sign and tune. Its application to adaptive vehicle
following control problem has demonstrates great
tracking quality in the presence of uncertainties.
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