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Abstract: Precision positioning and manipulation systems often rely on data from
sensors delivering a sinusoidal signal pair. These signals can be interpolated to
provide a high resolution measurement.
The paper presents a novel method for removing signal differences and drifts by
automatic self-calibrating the sinusoidal signal pair. Then, manual calibration is
avoided and slow varying effects, like thermal drifts or imprecise sensor mounting,
can be effectively compensated.
The proposed method can be implemented on a DSP. It uses an on-line gradient
search to minimize a given performance index. Copyright c©2005 IFAC

Keywords: Precision Control, Sinusoidal encoders, Measurement interpolation,
Measurement calibration.

1. INTRODUCTION

Precision positioning and manipulation systems
often rely on data from sensors delivering a si-
nusoidal signal pair. From the signal pair, a high
resolution measurement can be obtained with res-
olutions of more than 1000 times finer than the
length of the signal period.

Unfortunately, the signal pair is often affected
by different gains and unknown offsets which
may depend on the individual sensor or even on
the mounting. Additionally, these quantities may
change during time because of thermal drifts or of
dirt affecting the sensor.

The compensation of these effects can be per-
formed either in software or implemented in digi-
tal interpolation circuits which deliver a position
measurement based on the signal pair. In both
cases, gains and offsets are often corrected on-

1 The author wishes to thank Stephen Boyd for valuable
suggestions

line by measuring and evaluating the extremes of
the two signals. This is not satisfactory because
the signals may be affected by additional non-
linearities or by noise, which influence the com-
putation of the correction.

A different approach (Venema and Hannaford,
1995) makes use of the dynamics of the system
to be controlled. It estimates the position by
exploiting the known model of the system and
by considering the effect of gains and offsets
as noise to be filtered out. However, this may
deliver unsatisfactory results during slow motions,
in particular if the signal pair is affected by
unmodeled effects. Moreover, the estimation must
be tailored for the system to be controlled, and
can not be used in a standalone, generic sensor.

The method presented in this paper relies on
an on-line computation of the correction parame-
ters, i.e. it calibrates the sensor during operation.
Then, both effects due to the sensor mounting or
to the characteristics of the individual sensor and
slow varying changes can be compensated.



The paper first presents three different variations
of a discrete-time, digital interpolation algorithm
which is inspired by an equivalent closed-loop
analog circuit. Then it recalls the Heydemann
correction method, an off-line parameter compen-
sation based on a least-square minimization. It
then proceeds with a variation of the Heydemann
correction, which is suitable for on-line use and
finally presents a new search method based on the
minimization of the residual compensation error.

2. SIGNAL INTERPOLATION

A sinusoidal interface encoder provides two sig-
nals: sin(α) and cos(α). For a displacement sensor
(see Figure 1) the angle α is given by

α = ksincos · x =
2 · π

lperiod
· x (1)

where x indicates the displacement and lperiod the
signal period length when increasing x.
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Fig. 1. Sinusoidal encoder signals in function of
the displacement x

Most digital interpolators first square the sinu-
soidal signals and deliver the position with a reso-
lution of lperiod/4 like in quadrature encoders. The
estimate within the quarter of period is given by

α̂ = arctan
(

sin(α)
cos(α)

)

either by computing the trigonometric function or
by using a table with the two signal pair values
as inputs. Common to all these implementations
is the difficulty in obtaining precise estimates in
presence of signal non-linearities and/or of noise.

3. THE CLOSED-LOOP INTERPOLATION

Before the advent of digital interpolators, interpo-
lation was performed using an analog control loop
circuit having the characteristic of a low-pass filter
(see Figure 2). Then, signal non-linearities as well
as measurement noise can be filtered out.

The signal e at the input of the filter is given by

e = sin(α) · cos(α̂)− cos(α) · sin(α̂) = sin(α− α̂)

and for small values of α−α̂ it is possible to write:

e = sin(α− α̂) ≈ α− α̂
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Fig. 2. Closed-loop estimation of α = ksincos · x
showing that the signal e approximates the error
between the value of α and its estimate α̂. As
shown in Figure 3, α̂ converges to the value of
α for stable closed-loops.
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Fig. 3. Simplified interpolation closed-loop system

From α̂ it is then possible to obtain the position
estimate with x̂ = α̂

ksincos
.

4. THE DIGITAL FILTER

A digital implentation of the closed-loop circuit
above is already object of a DSP application note
of AnalogDevices (2000). In this section three
possible choices of the discrete-time filter are
presented. Our objective is to estimate both the
position and the speed of the motion.

4.1 Method 1: Second order filter and position
derivative

For the filter shown in Figure 2 the following
second order discrete-time realization is proposed.

Gfilter(z) =
Nfilter(z)
Dfilter(z)

=
z · a + b

z2 + z · c + d
(2)

Two discrete-time closed-loop poles

p1 = eps1·Ts = e
−ω0·ts·

(
ξ−
√

ξ2−1
)

p2 = eps2·Ts = e
−ω0·ts·

(
ξ+
√

ξ2−1
)

are chosen with appropriate frequency ω0 and
damping coefficient ξ. Then, the discrete-time
desired characteristic polynomial is:

Dcl(z) = (z − p1) · (z − p2)

= z2 − (p1 + p2) · z + p1 · p2

If the filter denominator z2 + z · c + d is given,
it is possible to obtain the desired closed-loop



denominator by choosing an appropriate filter
numerator. In fact:

Gcl(z) =
Ncl(z)
Dcl(z)

=
Nfilter(z)

Nfilter(z) + Dfilter(z)
(3)

the comparison of the two denominators Dcl(z)
and Nfilter(z) + Dfilter(z) yields

Nfilter(z) = Dcl(z)−Dfilter(z)

= z · (−p1 − p2 − c) + p1 · p2 − d

The speed is computed by taking the derivative of
the position estimate, thus causing extra on-line
computational load (see Figure 4).
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Fig. 4. Closed-loop interpolator with speed esti-
mate from position derivative

Zero steady state error is achieved, if the filter is
of type 1, i.e. if at least one of the filter poles is
at 1. Choosing both poles at 1 (the filter is then of
type 2) also guarantees that a ramp (i.e. caused by
a constant motion) can be followed without error.

4.2 Method 2: First order stage and integrator

The second order filter can be separated into two
first order terms as in Figure 5.
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Fig. 5. Closed-loop interpolator with speed esti-
mation without derivation

Thanks to the integral term ts·z
z−1 , the speed is

obtained without having to explicitly taking the
derivative of the position estimate.

The two desired closed-loop poles can be chosen
as in Method 1. With the filter of the form

Gfilter(z) =
a

z − b
· ts · z
z − 1

the closed-loop transfer function becomes

Gcl(z) =
ts · z · a

z2 + z · (a · ts − b− 1) + b

Then, comparison of the desired closed-loop de-
nominator with the denominator of the closed-
loop transfer function yields the coefficients





a =
p1 · p2 − p1 − p2 + 1

ts
b = p1 · p2

Note that the filter pole b is used to place the
closed-loop poles. Thus, the second filter pole
cannot be freely chosen and it is impossible to
implement a filter of type 2.

4.3 Method 3: Second order stage and integrator

Finally, for the filter shown in Figure 2 a second
order realization is proposed with the structure
shown in Figure 6.
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Fig. 6. Closed-loop interpolator with speed esti-
mation without derivation

Apparently, the filter is a third order one. In
reality, for the choice of a filter of type 1 or
higher, the resulting parameters are the same as
in Method 1 with the only difference that an
additional pole and a zero at the origin are now
present, which cancel out in the filter transfer
function.

The advantage of this form is that the most recent
estimate of the speed can be extracted while it is
also possible to implement a second order type 2
filter.

This form does not cause additional divisions and
multiplications. The only price to pay with respect
to Method 1 is one additional variable definition
and a variable copy per cycle.

5. CALIBRATION

The signals measured in Figure 2 are not ideal
but are affected by offsets, unknown gains, phase
shift differences between the two signals and by
non-linearities.

Considering the effect of gains, offsets and phase
shifts only, the signal pair measured can be ex-
pressed by

yc,k = ac · cos αk + bc

ys,k = as · sin(αk − β) + bs
(4)



5.1 Heydemann correction

A calibration method has been proposed by Hey-
demann (1981) (see also (Birch, 1990)). This cor-
rection relies on a least-square estimate and on
the solution of a set of non-linear equations.

The measurements given by equation (4) can be
rearranged as

1
ac
· yc,k +

−bc

ac
= cos(αk)

1
as
· ys,k +

−bs

as
= sin αk · cos β − cosαk · sin β

After replacement of cos(αk) in the second expres-
sion and introduction of the notation gc = 1/ac

and gs = 1/as the equations above can be rewrit-
ten as

gc · (yc,k − bc) = cos(αk)

gs · (ys,k − bs) + (gc(yc,k − bc) · sin β

cosβ
= sin(αk)

The equality sin2 α + cos2 α = 1 gives

θ1 · y2
c + θ2 · y2

s + θ3 · yc · ys + θ4 · yc + θ5 · ys = 1

with

θ1 =
g2

c

K · cos2 β

θ2 =
g2

s

K · cos2 β

θ3 =
2gcgs sinβ

K · cos2 β

θ4 = − 2gc

K · cos2 β
(gcbc + gsbs sin β)

θ5 = − 2gs

K · cos2 β
(gsbs + gcbc sin β)

K = 1− g2
cb2

c + g2
sb2

s + 2gcbcgsbs sin β

cos2 β

(5)

or equivalently

[y2
c , y2

s , yc · ys, yc, ys]︸ ︷︷ ︸
Y

· [θ1, θ2, θ3, θ4, θ5]′︸ ︷︷ ︸
Θ

= 1

For a set of measurement pairs the equation
extends to the equation set

Y ·Θ = 1

Then the least square estimate

Θ̂ = (Y′ ·Y)−1 ·Y′ · 1

can be computed. Unfortunately, the parameter-
scannot be used to directly compensate the mea-
surements yc and ys. Given Θ̂ the set of non-
linear equations (5) must be solved for the five
compensation parameters gc, bc, gs, bs and β. The
necessary computational complexity is high and
makes this method unsuitable for on-line use.

5.2 Gradient search: correction of gains and offsets

A first idea would be to use a gradient search giv-
ing directly the correction parameters. Consider-
ing only the effect of gains and offset, equation (4)
reduces to

yc,k = ac · cosαk + bc

ys,k = as · sin αk + bs

This expression can be rewritten as

θ1 · yc,k + θ2 = cos αk

θ3 · ys,k + θ4 = sin αk

where θ1 = 1/ac, θ2 = −bc/ac, θ3 = 1/as and
θ4 = −bs/as. The trigonometric equality used
before can be rewritten as

‖M ·Θ‖22 = 1

where Θ = [θ1, θ2, θ3, θ4]′ and

M =
(

yc,k 1 0 0
0 0 ys,k 1

)
(6)

The minization of the error ‖Mk ·Θ‖22−1 leads to
the objective function

J =
∑

k

ε2k =
∑

k

(‖Mk ·Θ‖22 − 1)2

to be minimized. The corresponding gradient is

∇J =
∑

k

4 ·M ′
k ·Mk ·Θ · (Θ′ ·M ′

k ·Mk ·Θ− 1)

which can be used off-line for estimating Θ and
thus the parameters ac, bc, as and bs. This is
performed by iterating Θ → Θ − γ · ∇J with a
suitably small γ. Note that explicit estimate of
the offsets and of the gains is not needed. The
estimate of the parameter vector Θ is sufficient
for the calibration of our measurements.

An on-line version can be implemented in various
ways, e.g. by calculating the gradient over a num-
ber of steps before updating Θ or also by comput-
ing a time-smoothed version of the gradient with
a forgetting factor λ as in the following formula

∇Jk = 4 ·M ′
k ·Mk ·Θ · (Θ′ ·M ′

k ·Mk ·Θ− 1)

+ λ · ∇Jk−1

5.3 Gradient search: correction of gains, offsets
and phase shifts

The phase difference between the two sinusoidal
signals in the measurement is not always exactly
90 degrees. The gradient search with elimination



of the angle α can be extended, like in the Hey-
demann correction, to include the estimate of the
phase deviation β from the ideal 90 degrees. Then
the equations for the compensation of the two
measurements (4) can be rewritten as

θ1 · yc,k + θ2 = cos(αk)
θ3 · ys,k + θ4 + θ5 · yc,k = sin(αk)

where θ1 = 1
ac

, θ2 = − bc

ac
, θ3 = 1

as cos β , θ4 =
− bs

as cos β − bc·tan β
ac

and θ5 = tan β
ac

. Similarly to the
previous gradient search, the new matrix

M =
(

yc,k 1 0 0 0
0 0 ys,k 1 yc,k

)
(7)

can be defined together with a five element vector
Θ which delivers the five compensation parame-
ters. Again, no explicit estimate of offsets, gains
and phase difference has to be computed.

5.4 Gradient search: correction of non-linearities

The sinusoidal signals may be affected by non-
linearities given by the general expression

yc,k = fc(cos αk) ys,k = fs(sinαk)

Assuming that the non-linearities are invertible
(which is reasonable in practice) the inverse func-
tions

f−1
c (yc,k) = cosα f−1

s (ys,k) = sin α

can be defined. For the functions f−1
c and f−1

s

a third order polynomial approximation can be
chosen, which leads to

θ1 · yc,k + θ2 · y2
c,k + θ3 · y3

c,k + θ4 = cos αk

θ5 · ys,k + θ6 · y2
s,k + θ7 · y3

s,k + θ8 = sin αk

The steps defined in sections 5.2 and 5.3 can be
re-applied here with the only difference that the
matrix M is now of the form

M =
(

yc,k y2
c,k y3

c,k 1 0 0 0 0
0 0 0 0 ys,k y2

s,k y3
s,k 1

)

and that there are 8 compensation parameters θi.

5.5 Gradient based on residual

The calibration methods above require com-
plex computations. Moreover, static measure-
ments (constant x) may bias the estimates. An-
other method considers the error residuals

rk =
(

θ1 · yc,k + θ2 − cos α̂k

θ3 · ys,k + θ4 − sin α̂k

)
(8)

i.e. the error between the estimated sine and
cosine values and the compensated measurements.

Consider the objective function J =
∑

k ‖rk‖2.
The first order approximation of J with respect
to a parameter variation δΘ is
∑

k

‖rk+∇rkδΘ‖2≈
∑

k

‖rk‖2+2·
∑

k

rT
k ·∇rk · δΘ

The objective function value can be reduced with
the following choice of the parameter update:

δΘ = −γ ·
∑

k

(∇rk)T · rk

where the small scalar value γ controls the speed
of convergence of the parameter vector Θ.

The gradient ∇rk is

∇rk =




yc,k + sin α̂k · ∂α̂k

θ1
− cos α̂k · ∂α̂k

θ1

1 + sin α̂k · ∂α̂k

θ2
− cos α̂k · ∂α̂k

θ2

sin α̂k · ∂α̂k

θ3
ys,k − cos α̂k · ∂α̂k

θ3

sin α̂k · ∂α̂k

θ4
1− cos α̂k · ∂α̂k

θ4




T

=
(

yc,k 1 0 0
0 0 ys,k 1

)

︸ ︷︷ ︸
Mk

+
(

sin α̂k

− cos α̂k

)
· ∇α̂k

where Mk is again the matrix of equation (6).

For ∇α̂k take the recursive equation

α̂k+1 = −c · α̂k − d · α̂k−1 + a · ek + b · ek−1 (9)

from the filter (2). Then

∇α̂k+1 = −c·∇α̂k − d·∇α̂k−1 + a·∇ek + b·∇ek−1

Consider now the error

ek = (θ3 ·ys,k + θ4)·cos α̂k − (θ1 ·yc,k + θ2)·sin α̂k

The derivative of ek with respect to θ1 is
∂ek

∂θ1
=−yc,k · sin α̂k

−(θ3 ·ys,k + θ4)·sin α̂k · ∂α̂k

∂θ1

−(θ1 ·yc,k + θ2)·cos α̂k · ∂α̂k

∂θ1

and considering that θ3·ys,k +θ4 ≈ sinαk and that
θ1 ·yc,k + θ2 ≈ cos αk the gradient

∂ek

∂θ1
= −yc,k · sin α̂k − cos(αk − α̂k) · ∂α̂k

∂θ1

is obtained. Finally, for α̂k ≈ αk

∂ek

∂θ1
= −yc,k · sin α̂k − ∂α̂k

∂θ1

Proceeding in the same way for the other variables
the gradient ∇ek can be obtained



∇ek =



−yc,k · sin α̂k

− sin α̂k

ys,k · cos α̂k

cos α̂k




T

︸ ︷︷ ︸
wk

−∇α̂k (10)

Now, with this equation

∇α̂k+1 =−(c + a)·∇α̂k − (d + b)·∇α̂k−1

+a·wk + b·wk−1 (11)

Then the parameter update can be expressed as

δΘ = −γ ·
∑

k

(
Mk +

(
sin α̂k

− cos α̂k

)
· ∇α̂k

)T

· rk

where wk comes from (10) and ∇α̂k from (11).

5.5.1. Approximation of the gradient The gra-
dient ∇rk can be simplified by noting that equa-
tion (11) corresponds to the equation of the
closed-loop (3) with w as input and ∇α̂ as ouput.

The closed-loop system is stable and well damped
(by design). Because the filter is of type 2, the
steady-state amplification is 1. Assuming that the
dynamics of the measured system are slower than
the dynamics of the interpolator closed-loop, ∇α̂k

can be approximated by wk. Then the parameter
update becomes

δΘ =−γ ·
∑

k

(
Mk +

(
sin α̂k

− cos α̂k

)
· wk

)T

· rk

=−γ ·
∑

k

(
MT

k · rk + wT
k ·

(
sin α̂k

− cos α̂k

)T

· rk

)

and with the definition (8) for rk

δΘ =−γ ·
∑

k

(
MT

k · rk − wT
k · ek

)

Further noting that

wk = (− sin α̂k cos α̂k ) ·Mk

the final form

δΘ =−γ ·
∑

k

MT
k ·

(
rk +

(
sin α̂k

− cos α̂k

)
· ek

)

is obtained. Because the value of ek is already
needed for the closed-loop interpolation, the cal-
culation of δΘ only involves 6 additional multipli-
cations and 6 additions per cycle.

Of course, the idea above can be extended to the
compensation of the phase difference or to the
compensation of a general non-linearity as shown
previously for the first search method.

The simulation of Figure 7, where the parame-
ter update at time k is δΘk = −γ · (∇rk)T ·
rk, shows how the compensation parameters for
offsets, gains and phase difference converge ap-
proximately to the corresponding parameter val-
ues from the Heydemann correction (for mea-
surements affected by additional distortions, the
estimates are necessarily identical, because the
objectives functions are different).
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Fig. 7. Simulation of the 5 parameter update
for compensation of offsets, gains and phase
difference.

6. CONCLUSIONS

In this papers a novel method for calibrating on-
line the compensation parameters for measure-
ments from sinusoidal encoders is discussed. It
limits the on-line computation burden, thus al-
lowing its implementation on standard hardware
components like DSPs.

The implementation on a fixed-point DSP will
follow soon.
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