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Abstract: This paper considers the problem of estimating the parameters of an autoregres-
sive (AR) process in presence of additive white noise and proposes a new identification
method, based on theoretical results originally developedin errors–in–variables contexts.
This approach allows to estimate the AR parameters, the driving noise variance and the
variance of the additive noise in a congruent way in that these estimates assure the positive
definiteness of the autocorrelation matrix. The performance of the proposed algorithm is
compared with that of bias–compensated least–squares methods by means fo Monte Carlo
simulations. The results show the effectivenesss of the newmethod also in presence of
high amounts of noise.Copyright c© 2005 IFAC
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1. INTRODUCTION

Autoregressive (AR) models are commonly used in
a wide range of signal processing applications, like
spectrum estimation, speech analysis, noise cancel-
lation and digital comunications (Haykin, 1991). A
considerable attention has been dedicated, in the liter-
ature, to the problem of estimating the AR parameters
from signals corrupted by white noise. This is, in fact,
a very common situation. A correct description of
AR plus noise models requires also the introduction
of zeros so that the estimates obtained with classical
AR identification methods are poor, particularly for
low signal–to–noise ratio conditions (Kay, 1980; Pali-
wal, 1986).

Since noisy AR processes can be described by means
of ARMA models, the usual approach for solving
this problem is to use standard ARMA identifica-
tion techniques for recovering their autoregressive
part (Pagano, 1974). This can be done, for instance,
by means of modified Yule–Walker equations (Kay,
1988), the maximum–likelihood method (Tong, 1975)

and the prediction error method (Nehorai and Sto-
ica, 1988).

Another class of methods is based on the bias–
compensation technique. In this case the noise vari-
ance is assumed as known or is estimated. This in-
formation is then used to correct the estimates given
by an AR identification method. In many speech en-
hancement applications, for example, the white noise
variance can be estimated from preceding silent por-
tions of speech (silent frames), when present. In many
other contexts, however, this procedure cannot be ap-
plied and the noise variance estimation constitutes an
essential part of the identification problem.

In the last years a large variety of bias–compensated
least–squares (BCLS) techniques have been proposed
(Sakai and Arase, 1979; Zheng, 1999; Jinet al.,
2002). These methods are based on iterative proce-
dures where, at each step, the current estimate of the
noise variance is used to improve the estimate of the
AR parameters andvice versa. A comparative analy-
sis of various BCLS algorithms is reported in (Jiaet
al., 2003).



This paper introduces a novel approach based on the
theoretical results originally developed in errors–in–
variables contexts in (Beghelliet al., 1990). This ap-
proach relies, in particular, on the properties of the
family of solutions of the dynamic Frisch scheme and
on the shift property of time–invariant dynamic sys-
tems. The method allows to estimate the AR parame-
ters, the driving noise variance and the variance of the
additive noise in a congruent way since these estimates
assure the positive definiteness of the autocorrelation
matrix.

The effectiveness of the proposed algorithm has been
tested by means of Monte Carlo simulations. The
results show that this approach yields better estimates
than those obtained with BCLS methods, especially in
presence of low signal–to–noise ratios.

The contents are organized as follows. Section 2 de-
fines the noisy AR identification problem. Section
3 concerns some asymptotic properties of noisy AR
models that are at the basis of the new identifica-
tion method presented in Section 4. In Section 5 the
performance of the proposed algorithm is compared
with that of BCLS methods by means of Monte Carlo
simulations. Some conclusions are finally reported in
Section 6.

2. STATEMENT OF THE PROBLEM

Consider a noisy autoregressive model of ordern
described by the equations

x(t) = α1 x(t − 1) + · · · + αn x(t − n) + e(t), (1)

y(t) = x(t) + w(t), (2)

wherex(t) is the output of the noise–free AR model,
driven by the inpute(t) while y(t) is the available
observation, affected by the noise processw(t). The
following assumptions will be assumed in the sequel.

A1. e(t) and w(t) are zero–mean white processes,
mutually uncorrelated, with unknown variances
σ2∗

e andσ2∗
w respectively.

A2. e(t), x(t) andw(t) are ergodic processes.
A3. The system order,n, is known.

By defining the vectors

ϕx(t) = [x(t − n) . . . x(t − 1) x(t) ]T , (3)

ϕy(t) = [y(t − n) . . . y(t − 1) y(t) ]T , (4)

ϕw(t) = [w(t − n) . . . w(t − 1) w(t) ]T , (5)

and the parameter vector

θ∗ =
[
αn · · · α1 − 1

]T
, (6)

it is possible to represent model (1)–(2) in the form

(
ϕT

x (t) − [ 0 . . . 0 e(t) ]
)

θ∗ = 0, (7)

ϕy(t) = ϕx(t) + ϕw(t), (8)

that will be used in the subsequent analysis.

The problem that will be considered is the following.

Problem 1. Estimate the AR parametersα1, . . . , αn

and the variancesσ2∗
e , σ2∗

w starting from the avail-
able measurementsy(1), y(2), . . . , y(N), generated
by model (1)–(2) under assumptions A1–A3.

3. ASYMPTOTIC PROPERTIES OF NOISY AR
MODELS

Define the following covariance matrices

Σn = E [ϕy(t)ϕT
y (t) ], (9)

Σ̂n = E [ϕx(t)ϕT
x (t) ] − diag [ 0 . . . 0

︸ ︷︷ ︸

n

σ2∗
e ]. (10)

From (7), (8) and assumption A1 it follows that

Σ̂n θ∗ = 0, (11)

Σn = E [ϕx(t)ϕT
x (t) ] + E [ϕw(t)ϕT

w(t) ], (12)

E [ϕw(t)ϕT
w(t) ] = σ2∗

w In+1, (13)

whereE[·] denotes mathematical expectation. In par-
ticular, relation (11) can be obtained premultiplying
(7) by ϕx(t) and applying the operatorE[·], taking
into account thatE[x(t) e(t)] = E[e2(t)] = σ2∗

e . By
combining (10) and (12) it is finally possible to write

Σn = Σ̂n + Σ̃∗

n, (14)

where

Σ̃∗

n =










σ2∗
w 0 · · · · · · 0
0 σ2∗

w 0 · · · 0
...

. . .
...

... σ2∗
w 0

0 · · · · · · 0 (σ2∗
w + σ2∗

e )










(15)

= diag [σ2∗
w In, σ2∗

s ],

with σ2∗
s = σ2∗

w + σ2∗
e .

Consider now the family of non-negative definite di-
agonal matrices̃Σn = diag [σ2

w In, σ2
s ] such that

Σn − Σ̃n ≥ 0. (16)

This set can be described in a way similar to that
reported in (Beghelliet al., 1990) with reference to
errors–in–variables (EIV) models. The following the-
orem can be easily derived by considering noisy AR
instead than EIV models.

Theorem 1. The set of all matrices̃Σn satisfying
relation (16) defines the pointsP = (σ2

s , σ2
w) of a

convex curveS(Σn) belonging to the first quadrant



of the noise planeR2 and whose concavity faces the
origin. Every pointP = (σ2

s , σ2
w) of S(Σn) satisfies

the relation

Σ̂n(P ) = Σn − diag [σ2
w In, σ2

s ] ≥ 0 (17)

and can be associated with a coefficients vectorθ(P )
satisfying the relation

Σ̂n(P ) θ(P ) = 0. (18)

Figure 1 shows a typical shape ofS(Σn). Note that
the points(σ2

s , σ2
w) of the curve withσ2

s ≤ σ2
w (dotted

line) are non admissible because they do not satisfy the
conditionσ2

e = σ2
s − σ2

w > 0. The set of admissible
solutions (continuous line) is thus delimited by the
straight lineσ2

w = σ2
s .

0 0.5 1 1.5 2 2.5 3 3.5 4
0

0.1

0.2

0.3

0.4

0.5

0.6

σ2
s

σ2
w

σ2
w = σ2

s

PA

PB

P
P ∗

*

r

S(Σn)

Fig. 1. Typical shape ofS(Σn). All admissible solu-
tions lie on the continuos line.

Remark 1. The intersection ofS(Σn) with the σ2
s

axis is the pointPB = (σ2
smax

, 0) given by the least
squares solution

σ2
smax

=
det (Σn)

det (Σ′

n)
, (19)

whereΣ′

n is obtained fromΣn by deleting its(n +
1)–th row and column. The intersection ofS(Σn)
with the straight lineσ2

w = σ2
s is the pointPA =

(σ2
wmax

, σ2
wmax

), given by the eigenvector solution

σ2
wmax

= min eig (Σn). (20)

Since pointPA corresponds toσ2
e = 0 it is not a

solution for Problem 1.

Because of (11) and (14), the pointP ∗ = (σ2∗
s , σ2∗

w )
associated with the actual noise variances belongs
to S(Σn) and the AR model associated withP ∗ is
characterized by the true coefficients, i.e.θ(P ∗) = θ∗.
In this asymptotic context, the determinaton ofP ∗ on
S(Σn) leads to the solution of Problem 1.

The locusS(Σn) of solutions defined by (16) can
be parameterized on the basis of the following result
(Guidorzi and Pierantoni, 1995).

Theorem 2. Let ξ = (ξ1, ξ2) be a generic point of
the first quadrant ofR2 andr the straight line from
the origin throughξ (see Fig. 1). Its intersection with
S(Σn) is the pointP = (σ2

s , σ2
w) defined by

σ2
s =

ξ1

λM

, σ2
w =

ξ2

λM

, (21)

where

λM = max eig
(

Σ−1
n diag

[
ξ2 In, ξ1

])

. (22)

This theorem allows to associate a solution with every
straight line from the origin lying in the first quadrant.

Remark 2. In some applications the ratioη =
σ2∗

e /σ2∗
w is a priori known (Zheng, 2001). In this case

the pointP ∗ can be easily determined by means of
Theorem 2 takingξ = (1 + η, 1). In fact

Σ̃∗

n = diag [σ2∗
w In, σ2∗

w + σ2∗
e ]

= σ2∗
w diag [In, 1 + η], (23)

so thatP ∗ is the intersection betweenS(Σn) and the
straight line from the origin with slope1/(1 + η).

4. AR IDENTIFICATION

As pointed out in Section 3, the solution of Problem 1
requires the determination of the pointP ∗ onS(Σn).
Define, for this purpose, the vectors

ϕ̄x(t) = [ϕT
x (t) x(t + 1) ]T , (24)

ϕ̄y(t) = [ϕT
y (t) y(t + 1) ]T , (25)

ϕ̄w(t) = [ϕT
w(t) w(t + 1) ]T . (26)

From (1) it follows that
(
ϕ̄T

x (t) − [0 . . . 0 e(t + 1)]
)

θ̄∗ = 0, (27)

where

θ̄∗ =
[
0 αn · · · α1 − 1

]T
=

[
0 θ∗T

]T
. (28)

Define also the covariance matrices

Σn+1 = E[ ϕ̄y(t) ϕ̄T
y (t) ], (29)

Σ̂n+1 = E[ ϕ̄x(t) ϕ̄T
x (t) ] − diag [ 0 . . . 0

︸ ︷︷ ︸

n+1

σ2∗
e ]. (30)

Sinceϕ̄y(t) = ϕ̄x(t)+ ϕ̄w(t), from (27) and Assump-
tion A1 it is easy to obtain

Σ̂n+1 θ̄∗ = 0, (31)

Σn+1 = Σ̂n+1 + Σ̃∗

n+1, (32)

with Σ̃∗

n+1 = diag [σ2∗
w In+1, σ

2∗
s ].



Making reference toΣn+1 we can now introduce the
curveS(Σn+1), belonging to the first quadrant of the
noise planeP = (σ2

s , σ2
w) , whose shape is similar to

that ofS(Σn). Every pointP = (σ2
s , σ2

w) of this curve
satisfies the condition

Σ̂n+1(P ) = Σn − diag [σ2
w In+1, σ

2
s ] ≥ 0. (33)

It is also possible to prove (Beghelliet al., 1990) that
S(Σn+1) lies underS(Σn). It can be easily verified
that, because of (31) and (32),P ∗ belongs to both
S(Σn) andS(Σn+1).

In this asymptotic context, the determination of the
common pointP ∗ leads to the solution of Problem 1.
However, when the lengthN of the sequences is finite,
Σn andΣn+1 must be replaced by the sample quanti-
tiesΣN

n , ΣN
n+1. In this case,S(ΣN

n ) andS(ΣN
n+1) do

no longer exhibit any common point so that it is nec-
essary to introduce a suitable and consistent criterion
to select a single model onS(ΣN

n ). The criterion that
will be proposed in the following is based on the shift
property of time–invariant dynamic systems described
by relation (31).

Let P ′ = (σ2
s

′

, σ2
w

′

) and P ′′ = (σ2
s

′′

, σ2
w

′′

) be the
intersections of a line from the origin withS(Σn) and
S(Σn+1) respectively, so that

σ2
w

′

σ2
s
′

=
σ2

w

′′

σ2
s
′′
· (34)

Define then the cost function

J(P ′, P ′′) = ‖Σ̂n+1(P
′′) v(P ′)‖2

2

= vT (P ′)Σ̂2
n+1(P

′′) v(P ′), (35)

where

v(P ′) = [ 0 θT (P ′) ]T . (36)

This function exhibits the following properties:

i) J(P ′, P ′′) ≥ 0
ii) J(P ′, P ′′) = 0 ⇔ P ′ = P ′′ = P ∗.

It is thus possible to solve Problem 1 searching for the
solution that minimizes (35).

The following consistent algorithm for identifying
noisy AR processes from finite sequences of data can
thus be considered.

Algorithm 1.

(1) Compute the estimates ofΣn andΣn+1 given by
the sample quantities

ΣN
n =

1

N − n

t=N∑

t=n+1

ϕy(t)ϕT
y (t),

ΣN
n+1 =

1

N − n − 1

t=N−1∑

t=n+1

ϕ̄y(t) ϕ̄T
y (t).

(2) Start from a generic point (a generic direction)
ξ = (ξ1, ξ2), ξ1 ≥ ξ2 in the first quadrant of
R2 and compute, by means of (21)–(22), the
corresponding pointsP ′ = (σ2

s

′

, σ2
w

′

), P ′′ =

(σ2
s

′′

, σ2
w

′′

) onS(ΣN
n ) andS(ΣN

n+1).

(3) Compute Σ̂n(P ′), Σ̂n+1(P
′′) and θ(P ′) by

means of the relations

Σ̂n(P ′) = ΣN
n − diag [σ2

w

′

In, σ2
s

′

],

Σ̂n+1(P
′′) = ΣN

n+1−diag [σ2
w

′′

In+1, σ2
s

′′

],

Σ̂n(P ′) θ(P ′) = 0.

(4) Compute the cost functionJ(P ′, P ′′).

(5) Search onS(ΣN
n ) for the pointP ◦ = (σ2◦

s , σ2◦
w )

associated with the minimum ofJ(P ′, P ′′).

(6) Estimate the driving noise variance as

σ2◦
e = σ2◦

s − σ2◦
w .

The ergodicity property A2 and property ii) assure the
consistency of the proposed procedure since

lim
N→∞

ΣN
n = Σn, (37)

lim
N→∞

ΣN
n+1 = Σn+1, (38)

lim
N→∞

min
P ′∈S(ΣN

n
)

P ′′∈S(ΣN

n+1
)

J(P ′, P ′′) = 0, (39)

and relation (39) holds only forP ′ = P ′′ = P ∗.

5. SIMULATION RESULTS

The performance of Algorithm 1 has been tested by
means of numerical simulations whose results have
been compared with those of the bias–compensated
least–squares method proposed by Zheng (Zheng,
1999), which, according to the author, gives better
results than previous traditional methods. Consider the
following 4th–order AR model (Jiaet al., 2003)

x(t) = 2.4 x(t − 1) − 3.03 x(t − 2) + 1.986 x(t− 3)

− 0.6586 x(t− 4) + e(t),

where e(t) is white noise with unknown variance
E[e2(t)] = σ2∗

e = 1. Two Monte Carlo simulations
of 100 independent runs have been performed with
signal–to–noise ratios (SNR), defined as

SNR = 20 log10

√

E[x2(t)]

E[w2(t)]

= 20 log10

√

E[x2(t)]

σ2∗
w

, (dB)

of 20 dB and 10 dB. Differently from (Jiaet al., 2003),
the number of samples has been limited toN = 1000.



Table 1. True and estimated values of parameters and variances for Algorithm 1 and the
BCLS method, SNR = 20 dB.

α1 α2 α3 α4 σ2∗

e σ2∗

w

true 2.4 −3.03 1.986 −0.6586 1 0.3973

Alg.1 2.3940 ± 0.0635 −3.0244 ± 0.1312 1.9828 ± 0.1259 −0.6656 ± 0.0509 1.0254 ± 0.1868 0.3924 ± 0.0283

BCLS 2.3945 ± 0.0639 −3.0253 ± 0.1320 1.9832 ± 0.1266 −0.6658 ± 0.0512 1.0249 ± 0.1842 0.3933 ± 0.0281

Table 2. True and estimated values of parameters and variances for Algorithm 1 and the
BCLS method, SNR = 10 dB. * The values reported for the BCLS method have been

averaged over 97 runs because of its lack of convergence in three runs.

α1 α2 α3 α4 σ2∗

e σ2∗

w

true 2.4 −3.03 1.986 0.6586 1 3.9730

Alg.1 2.3239 ± 0.4648 −2.8904 ± 0.9159 1.8578 ± 0.8577 −0.6170 ± 0.3288 1.6099 ± 1.9908 3.8376 ± 0.4464

BCLS∗ 0.9815 ± 0.0727 −0.4349 ± 0.0918 −0.3532 ± 0.0667 0.1500 ± 0.0241 10.5626 ± 1.3009 1.4053 ± 0.6292

In every run, a gaussian white noise sequencew(·) has
been generated by means of the functionrandn of
MATLAB and added to the AR outputx(·).

The results are summarized in Tables 1 and 2 that
report the true values of parameters and variances, the
mean values of their estimates and the corresponding
standard deviations.

The good selectivity of cost function (35) can be ob-
served in Figure 2 that reports the values ofJ(P ′, P ′′)
versus the noise varianceσ2

w alongS(ΣN
n ) in a typical

run of the Monte Carlo simulation.
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Fig. 2. Values ofJ(P ′, P ′′) alongS(ΣN
n ) in a typical

run of the Monte Carlo simulation, SNR = 20 dB.

It can be observed from Table 1 that, for high SNR, Al-
gorithm 1 and the BCLS method give similar results.
In these cases the BCLS method can be preferable
because of its simpler implementation. Table 2 shows,
on the contrary, that in presence of high amounts of
noise, the BCLS algorithm has convergence problems
and is significantly outperformed by Algorithm 1.

6. CONCLUSIONS

In this paper, a new identification method for iden-
tifying autoregressive models in presence of additive
white noise has been proposed. This approach relies,
in particular, on the properties of the family of solu-
tions of the dynamic Frisch scheme and on the shift
property of time–invariant dynamic systems.

The effectiveness of the proposed algorithm has been
tested by means of Monte Carlo simulations which
show that this approach yields better estimates than
those obtained with bias–compensated least–squares
methods, especially in presence of low signal–to–
noise ratios.
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