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Abstract: Possible faults existing in electronic diesel fuel injection control (EDC) systems 
include rack deformation, solenoid valve failure, and rack-travel sensor malfunction.  
Among these problems, the solenoid failure is the most likely to occur for in-use diesel 
engines. This paper focuses on developing the algorithm that can clearly classify the 
usability of a solenoid valve without disassembling the fuel pump of the EDC system.  
Key parameters to feature the failure of the solenoid valve are determined.  And a 
detection algorithm is discussed.   Experimental results show that the proposed 
algorithm can identify the solenoid valve failure precisely. Copyright © 2005 IFAC 
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1. INTRODUCTION 
 

The control of road vehicles emissions has become 
an important issue globally.  Fuel injection control 
system directly affects the fuel efficiency and 
emissions of diesel engines.  Recently, the 
advancement in electronics and measurement 
technologies has led to substantial improvement of 
engine fuel injection control, both in hardware 
configuration and control methodology. A typical 
example is the BOSCH electronically controlled 
P-EDC in-line fuel-injection pump.  In this system, 
a linear solenoid valve instead of conventional 
mechanical governor is used to actuate the control 
rack of the fuel pump to regulate the injected fuel 
quantity. A rack-travel sensor is used in the pump to 
measure the rack position.  The rack position is 
related to the injected fuel quantity through a 
calibrated map. The electronic control unit (ECU) 
controls the rack position to achieve desired fuel 
quantity.   
 
Possible faults in the diesel fuel injection control 
system include rack deformation, solenoid valve 

failure, and rack-travel sensor malfunction. The 
solenoid failure is most likely to occur due to those 
factors such as long period of usage, lubricant 
degradation and over heat. According to 
manufacturer’s specification, the acceptable values of 
the coil resistance and plunger clearance are 0.6-0.9Ω 
and 0.12mm, respectively. However, the plunger 
clearance is difficult to measure in situ because the 
solenoid is mounted inside the pump. To improve 
vehicle repairability and serviceability, a method for 
detecting the solenoid failure without disassembling 
the pump is needed.     
 
Component fault detection and diagnosis (FDD) for 
vehicles has been studied for two decades. The 
resulting methodologies support both on-board and 
service applications.  Examples include the 
observer-based approaches (Patton et. al., 1989; 
Patton and Chen, 1991; Ge and Fang, 1988) and 
parameter-estimation method approaches (Isermamn, 
1984; Freyermuth, 1991; and Bloch et al, 1995).  
These methods have been proven to be capable of 
detecting certain types of system faults.  However, 
most of the previous works focused on diagnosing 



 

 

Fig. 1. Block diagram of the proposed diagnostic system 
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the circuit faults for sensors or actuators. The work 
for mechanical fault diagnosis of actuator is limited.   
 
The present paper is intended to develop the 
technique that detect the solenoid valve failure 
presented in the diesel fuel injection control system 
without dissembling the system. Generally, failed 
solenoid valves in the EDC system are difficult to 
ascertain, because there exists no evident mechanical 
or electrical damages on it. Only the plunger 
clearance can be used for reference to diagnose.  
Since excessive plunger clearance indicates worn 
plunger or sleeve, it is suspected that the solenoid 
valve failure may be caused by plunger wear. Thus in 
this study, we first investigated how the wear 
condition relates to malfunction to the system. Then 
the system’s parameters were identified to 
characterize the wear. Finally, a neural network based 
classfier was applied to diagnose the fault.  

 
 

2. SYSTEM MODELING 
 

In EDC systems, the dynamic equation for its rack 
motion can be expressed as follows: 

 
mmf FFtxFkxxcxm =+++ )),(( &&&&       (1) 

where x is the rack position (measurable), Ff ( ,Fx& m) 
includes the friction force and other unmodeled 
forces, k is the elasticity coefficient of the spring, c is 
the damping coefficient, m is the mass of the moving 
parts, Fm is the driving force of the solenoid valve.  
When the solenoid is excited by a voltage, u, the 
developed current in its coil windings is governed by: 
 

)(tukiR
dt
diL Ac =+ ,            (2) 

where Rc is coil resistance, L is coil inductance, and 
kA  is the gain of power amplifier.   Linearizing Fm 
about the operation point of the system yields 
 

         Fm = –kx x + ki i.              (3) 
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fâ sgn()

û f

s

+
+ Fcsgn( ) 

s 

     Fcomp

û1

 Fault detection 

 

 

 

 

 

 

 

 

 

In general, the most significant friction components 
in a servo-mechanical system are the static friction 
(F0), the Coulomb friction (Fc), and the viscous 
friction, i.e., 
 

Ff ( ,Fx& m)= F0 ( ,Fx& m ) +Fc sgn( )      (4) x&
The viscous friction depending on the velocity is not 
included, because its effect is combined into the 
damping behavior of the system. 
 
 
3. PARAMETER IDENTIFICATION AND FAULT 

DIAGNOSIS 
 

This section is intended to investigate how the wear 
condition of the solenoid valve relates to malfunction 
of the EDC system and then identify the system’s 
parameters to characterize the wear.  
 
The study is proceeded by driving the rack of the 
EDC system steadily using a sinusoidal reference 
input.  To guarantee stable tracking, a feedback 
controller is applied.  Then the parameters are 
identified through feedforward path of the system. 
The proposed method is shown in Fig.1. Here, G4 
denotes the dynamics of the plant corresponding to 
the time domain models (1) and (3), G3 the dynamic 
characteristics of the current through the coil of the 
actuator corresponding to Eq.(2), G2 the feedback 
controller, G1 the feedforward model, r the position 
reference, x the position output of the control plant, 
u1 the output of G1, and u2 the output of the feedback 
controller. In addition to G1, the feedforward path 
also includes the friction compensation (Fcomp).  
From Fig.1, the displacement response, x, of the rack 
is determined by 
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and the tracking error, e, is  
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Since the output of the feedback controller G2 is u2 = 
G2(s)e, we can obtain the relation among u2, Ff and r 
as: 
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If the parameters in G1 and Fcomp are identified 
properly such that the characteristics of the controlled 
plant and the associated friction are captured, i.e., if 
the conditions 

G1 = (k0G3G4)-1              (8) 

       ff F

ig. 2. Identification for valve V1. (a) â3: solid line, 
â2: dot-solid line, â1: dot line; (b) â0: solid line, âf: 
dot line; (c) the tracking signal (solid line) and the 
reference input (dot line) during identification. 
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are satisfied, then the pump rack will perfectly track 
the desired trajectory determined by the position 
reference with zero state errors. Consequently the 
feedback controller effort will become u2 = 0 such 
that u = u1.   
 
Based on this idea, the parameter identification 
algorithm is proposed as follows. The output of the 
friction compensation in Eq.(9) can be approximated 
by 
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G1 can be expanded as  
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where s being the Laplace variable.  Thus the total 
feedforward effort becomes 
 

)sgn(  11 ⋅+= farGu .            (12) 

Using Eqs. (10)-(12), the estimation of total 
feedforward output can be obtained as: 
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where âf and â0-3 are the parameters to be identified.  
The true values of â’s are related to the physical 
parameters by the following equations: 
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If all the parameter are identified properly so as to 
make â’s = a’s, then u1 = u will be obtained.  In 
other words, we estimate the parameters in model (13) 
to make u1 equal to u.  Thus the parameter 
identification can be accomplished by defining the 
following estimating error equation: 

e2 = u - u1 = aWWaaW ~ˆ =− ,        (16) 

where [ ]TrrrrrW )sgn(   &&&&&&&=  and â = [â3 â2 â1 â0 âf]T. 
With these notations, the gradient method can be 
applied to obtain the following on-line parameters 
estimator: 
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where the scalar gain matrix P is positive definite 
called the estimator gain. This on-line algorithm 
allows us to update the estimate â easily. By starting 
with an initial estimate â(0) and the corresponding 
e2(0), we can sequentially update â while new data 
are continuously obtained. It is noted that, in this 
algorithm, only the reference data are included in W. 
Thus the identification is not sensitive to disturbance. 
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Also note that the feedforward effort û1 in Fig.1 is 
not introduced into the controlled system. This is 
especially important to the system with a failure 
solenoid valve.  Because the system with a failure 
solenoid valve is always in the state of marginally 
stable, the transient in updating the parameters in â 
would increase the chance of destabilizing the system.  
As a result, the elements in gain matrix P in Eq.(17) 
should be selected as small as possible. Consequently, 
the convergent speed of the estimate of â will be 
decreased. However, with the idea without the 
introduction of û1 into the controlled system, this 
situation can be avoided. More importantly, the 
selection of the parameters in the gain matrix P will 
become more flexible. 

 
 

4. EXPERIMENTS 
 

To study how the wear condition relates to 
malfunction to EDC systems, several experiments 
were carried on a BOSCH P-EDC fuel pump. 
Seventeen different solenoid valves collected from 
diesel fuel pump service shops were used for the test. 
Among these solenoid valves, four were brand new 
while thirteen had different worn conditions. 
Experimental apparatus includes a power amplifier, a 
controller, and a BOSCH P-EDC fuel pump equipped 
with LVDT type position sensor. The controller was a 
personal computer using Matlab XPC real time 
control software, which was consisted of the 
feedback controller, feedforward parameter identifier, 
and a digital filter with bandwidth of 20Hz. A 0.5Hz 
sinusoidal pattern was used for the desired motion 
near the middle stroke of the solenoid. 
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The algorithm as shown in Fig.1 is implemented as 
follows. The conventional PID controller is adopted 
as the feedback controller G2. Initially, G1 was set to 
be zero and the gains in G2 were adjusted such that a 
stable rack motion can be achieved.  Then the 
parameters in G1 were identified using Eqs.(16) and 
(17). The tests were performed on the pump for 
respective solenoid with different degrees of wear 
using the same controller gains in G2. Before each 
test, the coil resistance and the clearance between 
plunger and sleeve of the solenoid were measured. 
According to the manufacturer’s specification, the 
acceptable values of the coil resistance and plunger 
clearance are 0.6-0.9Ω and 0.12mm, respectively. In 
the experiments, all the resistances of the solenoid 
valves were acceptable, but the measured plunger 
clearances showed large variations depending on 
their usage period. In the followings, three critical 
cases are presented for demonstration. 
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 Fig. 3. Parameter identification for valve V2. (a) â3: 
solid line, â2: dot-solid line, â1: dot line; (b) â0: 
solid line, âf: dot line; (c) the tracking signal 
(solid line) and the reference input (dot line) 
during identification. 

Figure 2 shows the first case for a brand new 
solenoid valve (denoted by V1). The plunger 
clearance and the coil resistance were measured with 
0.09mm and 0.7Ω, respectively. It can be seen that 

the estimated values rapidly converge to its final 
value with  

 
âV1=[0.0001,0.0630,0.0118,0.6819,0.0469]T. 

Although equipped with a brand new solenoid valve, 
the overall system still exists small extent of friction 
(âf = 0.0469) caused by other mechanical components. 
With this solenoid valve, Fig.2(c) shows that the rack 
tracks the reference input satisfactorily. 
 
Figure 3 shows the identification results for the pump 
equipped with a worn solenoid valve (denoted by V2). 
The coil resistance and the plunger clearance were 
measured with 0.7Ω and 0.25mm, respectively.  It 
was disassembled from a vehicle whose idle speed 
still could be stabilized but produced a certain 
amount of smoke emission. The parameters are 
obtained as:  
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âV2 =[0.0001,0.0583,0.0239,0.6649, 0.0715] T. 

Due to the wear, the plunger clearance increase to 
0.25mm and the identified friction coefficient (âf) 
increases to 0.0715. The effect of the increased 
friction can be clearly seen in Fig.3(c), where the 
rack trajectory (solid line) and the reference input 
(dot line) are shown.  Due to the friction force, the 
rack motion exhibits chattering phenomenon. 
 
Figure 4 indicates the identification results for a more 
serious case.  Here a faulty solenoid valve (V3) with 
service life over 97000km is used.  The parameters 
were measured to be 0.7Ω and 0.2mm for coil 
resistance and plunger clearance, respectively.  The 
smoke emission level from the diesel engine was too 
high to pass the EPA standard in Taiwan; and 
furthermore, a hunting phenomenon occurs with it. 
When this solenoid valve is fitted on the test pump, 
the identified parameters are obtained as:  

 
 

 

 

 

 

 

 

 

 

Fig. 4. Parameter identification for valve V3. (a) â3: 
solid line, â2: dot-solid line, â1: dot line; (b) â0: 
solid line, âf: dot line; (c) the tracking signal 
(solid line) and the reference input (dot line) 
during identification. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

âV3 = [0.0001,0.0546,0.0471,0.7321,0.1284]T.   

Although the plunger clearance (0.2 mm) was less 
than that of the V2, it still produced a greater 
frictional force (âf = 0.7321).  It is believed that the 
rough surface between the plunger and sleeve of the 
solenoid valve due to uneven wear attributes to the 
increase in friction. As can be seen from Fig.5(c), the 
chattering phenomenon is shown more violently. 
 
By comparing the identified parameters of the worn 
solenoid valves (V2 and V3) with that of the brand 
new one (V1), the percentage increases on â0-3 as well 
as âf were obtained as listed in table 1. Here, only the 
two critical cases are shown for simplicity; the other 
cases were shown having the same trend as these two 
cases in our experiments. From this table, it is seen 
that, in addition to âf, the wear of the solenoid valve 
also induces the changes on â1 significantly.  The 
changes on â0, â2, and â3 are not clear.  This is 
because that the wear of the solenoid valve also 
increases the damping force of the valve plunger 
resulting in the increase of â1. Therefore the fault of 
pump rack control system are mainly due to the 
solenoid valve wear, and this kind of fault can be 
diagnosed by monitoring the values of âf and â1.  

 
Table 1 List of parameter changes 

 Solenoid V2 Solenoid V3

∆âf/âf 52.45% 100.74% 
∆â0/â0 -2.5% 7.36% 
∆â1/â1 102.5% 316.9% 
∆â2/â2 -7.46% -13.3% 

 
 

5. NEURAL NETWORK BASED FAULT 
DIAGNOSIS 

  
As presented in section 4, since the vector (âf, â1) can 
feature the wear condition of the solenoid valve, the 
failure of solenoid valve wear can be diagnosed by 
monitoring its variation. Thus the diagnostic work 
becomes focusing on the value of (âf, â1) instead of 
all the system parameters. This reduces the 
dimensionality of the input data for diagnosis; and 
the computation time can then be reduced 
significantly.  It is noted that the changes in the 
physical parameters are still unable to be detected, 
since the number of model parameters is less than 
that of the physical parameters. For diagnostic 
application, however, it is not necessary to display 
the changes in the physical parameters. Only a 
malfunction signal to trigger an alert is needed.  In 
other words, we need a decision boundary to classify 
fault component. This leads to the two-dimensional 
two-classes classification problem.  
 
In this section, a neural network classifier was used 
for this purpose. The network was a three layers 
(including the input and output layers) feedforward 



 

 
network with nonlinear hidden and output units in 
which the weights were assigned using the 
generalized back propagation algorithm. The neural 
network training was performed off-line utlizing a 
previously generated training data, which consisted 
of input patterns (âf, â1) and the corresponding output 
being the 0/1 Boolean value to indicate whether the 
solenoid is abnormal or not.  Six solenoids were 
utilized to train the network, where two were with 
severe worn conditions and four were brand new 
solenoids. Using these solenoids, a total of 18 
input/output patterns were obtained by performing 
three tests for each solenoid.   
 
After training, a decision boundary which partitions 
the input space (âf, â1) into regions corresponding to 
normal and abnormal components was obtained as 
shown in Fig.5. Another eighteen old solenoids were 
used to test the effectiveness of the classification, 
where ten of them were reusable and eight were 
faulty. In this figure, the solenoids classified as 
normal are marked as “O”, while the abnormal 
solenoids are “+”.  Since every solenoid were tested 
three times, the three data points belong to the same 
solenoid were circled by a dash line.  As can be 
seen in this figure, the ten reusable solenoids were 
classified into normal region.  For the eight faulty 
solenoids, seven are successfully classified into the 
abnormal region except for the one near the decision 
boundary. Two data points of this solenoid are 
classified into abnormal region while one is in 
normal region.  This indicates that its wear 
condition is not so severe as the others but should 
also be classified as an abnormal component. By 
observing the data points belong to the same solenoid, 
the closeness of these data points reveals the 
repeatability of parameter identification. 
 

 
 
 
 
 
 
 
 
 
 
 
 

 
 

 
 
 
 
 
 
 
 

6. CONCLUSIONS 
 
This paper proposes a method to detect the solenoid 
valve failure for electronic diesel fuel injection 
control systems without the need of disassembling 
the pump. The proposed diagnostic algorithm 
comprises a feedback controller, a parameter 
identifier, and a neural network classifier, which is 
found acceptably accurate through experiments. The 
genuine idea of this work is helpful for the design of 
a diagnostic device used to monitor the operation of 
the solenoid valve.  If the solenoid valve is found to 
be abnormal, the device will generate an alarming 
signal. This improves the vehicle repairability and 
serviceability in the field. 
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