
     

 
 

 
 
 
 
 
 
 
 
 
 
 

ONLINE FAULT DIAGNOSIS OF NONLINEAR SYSTEMS 
BASED ON NEUROFUZZY NETWORKS 

 
 

H.T. Mok and C.W. Chan 
 
 

Department of Mechanical Engineering, 
The University of Hong Kong, Hong Kong 

 
 
 
 

Abstract: Artificial intelligence techniques such as neural networks and fuzzy logic have 
been widely used in fault detection and diagnosis. Combining these two techniques, 
referred to as neurofuzzy networks, provides a powerful tool for modelling. B-spline 
neurofuzzy networks are used to model the residuals. The weights of the networks are 
trained online using recursive least squares method. Fuzzy rules are extracted from the 
networks and they provide linguistic description of the residuals. The qualitative 
information of the residuals facilitates isolation of the system faults. The proposed 
scheme is illustrated using a simulation example of a DC motor.  Copyright © 2005 IFAC 
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1. INTRODUCTION 

 
Fault detection and diagnosis of dynamic systems is 
important in engineering, as it helps to improve the 
reliability and safety of the systems. Complete 
reliance on human operators to cope with the 
situation when faults occurred has become 
increasingly difficult due to the high complexity of 
practical systems. To overcome the difficulties, 
automated fault monitoring procedures are developed. 
 
During the last two decades, many investigations 
have been made using analytical approaches, based 
on quantitative models (Isermann, 1997). Residuals 
are generated to reflect inconsistencies between 
normal and faulty operations (Gertler, 1993). 
However, requirement for accurate analytical model 
implies any modelling error will affect the 
performance of the fault detection and diagnosis 
(Patton, et al., 2000). This is particularly true for 
nonlinear systems, which represent the majority of 
real processes. 
 
Another approach to tackle this problem is to use 
qualitative model based on fuzzy logic (Fenton, et al., 
2001) instead of quantitative model. In the fuzzy 
models, knowledge is expressed using fuzzy rules 
such as, IF-THEN. In this way, the requirement for 

accurate model can be relaxed (Venkatasubramanian, 
et al., 2003). 
 
For monitoring purpose, the fault diagnostic scheme 
should be able to update its states so that any 
abnormal-changes can be captured. Neural networks 
is a strong candidate since it is able to be trained 
online and to approximate the nonlinear function 
with arbitrary accuracy (Frank and Köppen-Seliger, 
1997). However, they do not give much insight into 
the behaviour of the system. 
 
With the combination of fuzzy logic, which can 
express expert knowledge in linguistic form, a 
powerful tool for modelling nonlinear systems is 
formed and is referred to as neurofuzzy networks 
(Brown and Harris, 1994). Based on the neurofuzzy 
networks, expert knowledge can be included, 
extracted, and provides linguistic description of the 
faults. This facilitates isolation of system faults 
(Patton, et al., 2000b; Al-Jarrah and Al-Rousan, 
2001). 
 
Recently, a number of works have proposed the use 
of B-spline neurofuzzy network (BSNN) to 
implement the diagnostic system and effectiveness of 
BSNN in fault detection and isolation have been 
demonstrated (Patton, et al.,2000a; Uppal and Patton, 



2000; Wang, et al., 2001). However, there is no 
existing systematic method to use BSNN model for 
fault diagnosis. 
 
In this paper, a system is first modelled by a BSNN 
with a set of training data. Another BSNN is then 
used to model the residuals online. Based on the 
residual model, a fuzzy rule base describing the 
residuals is extracted from the BSNN during 
operation. A coding procedure is then used to code 
the rule base into a simple pattern so that any fault 
can be detected readily and efficiently. For altered 
digits in the code, specific fuzzy rules corresponding 
to the symptoms are located and the fault can then be 
diagnosed. 
 
The paper is organized as follows. A brief review of 
BSNN is presented in Section 2 and the fault 
diagnosis using BSNN is described in Section 3. The 
proposed scheme is illustrated by a simulation 
example of a DC motor given in Section 4. 
 
 

2. B-SPLINE NEUROFUZZY NETWORK 
 

 
Fig. 1. B-spline neurofuzzy network. 
 
The BSNN shown in Fig. 1 provides a useful link 
between neural networks and fuzzy systems and 
allows both approaches to be treated within a unified 
framework. It has the learning abilities of neural 
networks, which can approximate nonlinear 
functions with arbitrary accuracy, and the ability to 
incorporate fuzzy rules, which allows expert 
knowledge in linguistic form to be included. 
 
An example of a fuzzy rule Rp in the BSNN: 
 

Rp: IF x1(t) is negative big, 
x2(t) is positive medium, 

  and …, 
  and xn(t) is positive small, 

THEN  is negative medium. )(ty
 
Brown and Harris (1994) proposed to use B-spline 
basis functions as the membership functions of the 
fuzzified network input x(t) = x = [x1, …, xn]T, since 
they are compact and positive over the 
support ],,[ jj λλ ρ−

 i.e., for ,0)( >xj
ρµ

),,( jjx λλ ρ−∈ and  for ,0)( =xj
ρµ ],,[ jjx λλ ρ−∉ and 

they form a partition of unity, i.e., 
, where λ is the knot 
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ρ. A ρth order B-spline function is given by the 
following recurrent relationship:  
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It is shown that under certain conditions (Brown and 
Harris, 1994), the output of BSNN is given by: 

θ))(()( txaty T=  (3) 
where θ = [θ1, θ2, …, θp]Tis the network weight, a(x(t)) 
= [a1(x(t)), a2(x(t)), …, ap(x(t))]T is the transformed 
input, ai(x(t)) is the tensor product of the univariate 
B-spline basis functions: 
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and p is the number of weights in the network: 
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where r is the number of inner knots in the partition 
of x(t). As the fuzzy sets in the BSNN are distributed 
over the neighbourhood regions, the approximation 
of a nonlinear function by the BSNN is generally 
smooth. 
 
The training of BSNN involves finding a set of 
weights θ that minimizes the cost function: 
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where n is the number of training data, e(k) is the 
error term between the target output and the network 
output. Since the network output is linear-in-the-
weight of the network inputs, the well-known 
recursive least squares  (RLS) estimator can be used 
to find the optimal set of weights θ online: 
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and the covariance matrix P is updated by: 
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3. FAULT DIAGNOSIS USING BSNN 
 
When a system is operating normally, there will be 
no difference between the output observed from the 
system and that predicted from the model. The 
difference, referred to as residual, will depart from 
zero when faults occur.  However, it does not contain 
information of the nature of fault occurred. B-spline 
neurofuzzy networks are used to model the residual 
so that symbolic information of the fault can be 
obtained and this helps to diagnose the fault. 
 
 
 
 

     



3.1 Residual model 
 
In the BSNN, residual is the network output while 
any controllable input of the system can be chosen as 
the network input. Some parameters of the BSNN 
have to be selected before the training of the network. 
In this paper, as an example, a network with a second 
order (triangular) basis function and one inner knot is 
used to implement the residual model in both input 
and output partition spaces. This configuration 
divides the input and output partition space into three 
linguistic variables as shown in Fig. 2. The input 
variables S, M, and B denotes respectively small, 
medium, and big while the output variables N, Z, and 
P denotes respectively negative, zero, and positive. 
 

 
Fig. 2. Input and output partition spaces of BSNN 
 
 
3.2 Fuzzy rules extraction 
 
With the presence of residual model, a set of optimal 
weights is obtained after a period of training. A fuzzy 
rule base can then be extracted from the weights and  
it provides linguistic descriptions of the residual and 
thus the fault. 
 
Consider a fuzzy rule Rij in the BSNN: 

Rij: If x is Ai, then y is Bj (cij), 
for i = 1,…,p and j = 1,…,q 

where Ai, Bj denote respectively fuzzy sets in the 
input and output partition spaces, p is the input 
partition space number, q is the output partition 
space number, cij is the level of confidence of the 
rule Rij being true. Brown and Harris (1994) showed 
that, given a set of optimal weights θ of the network, 
it is possible to find the equivalent fuzzy 
representation with the level of confidence given by: 

)( iBij j
c θµ=  (9) 

Level of confidence of a rule is simply the B-spline 
basis function of the associated network weight. 
Figure 3 shows the fuzzy rule extraction from an 
optimal weight θi and the resulting rule base can be 
interpreted as follows: 
 
 (1) If x is Ai, then y is B1 (0.0000) 
 (2) If x is Ai, then y is B2 (ci2) 
 (3) If x is Ai, then y is B3 (ci3) 
 
This feature allows the integration of both numerical 
data and symbolic knowledge within a single 
framework and therefore BSNN is a very powerful 
tool in fault diagnosis. 
 

 
Fig. 3. Fuzzy rules extraction. 
 
 
3.3 Fault diagnosis 
 
Residual model is built using BSNN and a fuzzy rule 
base describing the residual is extracted from the 
BSNN. The next step is to use the fuzzy rule base to 
diagnose the fault. 
 
For online monitoring purpose, the weights of the 
BSNN are updated recursively using the algorithm 
discussed in Section 2. Whenever a fuzzy rule base is 
obtained, it is compared with the one obtained under 
normal operating condition to see if there is any 
inconsistency. The discrepancy accounts for the 
symptom of fault. Faults are then classified based on 
the symptoms. 
 
A systematic approach is proposed here to locate the 
difference. For each group of rules under the same 
antecedent, the one with the highest level of 
confidence is highlighted and the position is coded. 
For example, the second rule within the group is the 
one with the highest confidence, a digit of 2 will be 
given to the group as shown in Fig. 4. 
 
Therefore, when a code obtained is different from the 
normal one, a fault is detected and the change of each 
particular digit helps to locate the problem occurred 
in the system more efficiently. When a complete 
code set is built for every single fault, the fault can 
then be classified readily with the fault code. For 
example, 2-2: normal, 1-1: fault 1, 3-3: fault 2, 1-3: 
fault 3… etc. 
 

 
Fig. 4. Coding of fuzzy rule base 
 
 

4. DC MOTOR EXAMPLE 
 
Consider a DC motor with a shunt field circuit as 
shown in Fig. 5. The motor is described by a set of 

     



nonlinear ordinary differential equations (Watanabe, 
et al., 1985): 
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where if is the field current, ia the armature current, ω 
the rotational speed, U the input voltage, Rf and Lf 
the field resistance and inductance, Ra and La the 
armature resistance and inductance, I the mutual 
inductance between La and Lf, D the viscous 
resistance of the load and J the inertia moment of the 
load. 
 

 
Fig. 5. DC motor with a shunt field circuit. 
 

Table 1. Values of parameters of DC motor 
 

Parameter Value 
Rf 50 Ω 
Lf 20 H 
Ra 3.8 Ω 
La 0.5 H 
D 0.042 Nms rad-1

J 0.4 kgm2

M 0.221 H 
  

     

 
Let the state vector [x1 x2 x3]T = [if ia ω]T, and the 
measurement output vector [y1 y2]T = [if + ia ω]T. 
Substituting the parameter values in Table 1 into 
equation (10-12) yields: 
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The input voltage is given by U = 10sin(πt/15)+100V 
and the initial states, x1(0), x2(0), and x3(0) are all 
zeros. Two BSNNs, each with a second order basis 
function and one inner knot in both input and output 
partition spaces, are used to approximate the DC 
motor and the outputs are shown in Fig. 6. 

 

 
Fig. 6. Model outputs of DC motor. 
 
A fault of 20% increase in parameter Ra, arising from 
a fault in the brush in the rectifier of the motor is 
introduced into the DC motor at t = 100s. Outputs of 
the motor under the faulty operation are shown in Fig. 
7 and both the outputs y1 and y2 decrease when the 
fault occurs. 
 

 
Fig. 7. Faulty outputs of DC motor. 
 
 
4.1 Residual model 
 
Two residuals r1 and r2 are obtained by the difference 
between the measured outputs and the model outputs. 
B-spline neurofuzzy networks are then used to model 
the residuals r1 and r2 with input voltage U as the 
network input so that symbolic information of the 
residuals can be obtained. 
 
The two BSNNs are implemented with three 
triangular basis functions for U, r1, and r2. From (5), 
the total number of weights in the each network is 3. 
The B-spline fuzzy membership functions for input 
and output spaces are shown in Fig. 8. The initial 
weights and the covariance matrix of the RLS 
estimator are set to 0 and I respectively. The residual 
models and the adaptations of the network weights 
for 250s are shown in Fig. 9-10 and it can be seen 
that the network weights converge after a period of 
training. 
 



 
Fig. 8. Fuzzy sets of network input and outputs 
 

 
Fig. 9. Residual model and adaptation of network 

weights for r1. 
 

     

 
Fig. 10. Residual model and adaptation of network 

weights for r2. 
 
 
4.2 Fuzzy rules extraction 
 
A rule base containing 18 fuzzy rules is extracted 
from the BSNNs. Table 2 shows the rule base under 
normal operating condition while Table 3 shows the 
rule base under faulty operating condition at t = 250s. 
 
For each group of rules, the one with the largest 
confidence is highlighted with italic font and the 
position is coded. Obviously, under normal operation 
the middle rules in each group with “r is Z” as rule 
consequent are highlighted as residual always equals 
zero. However, this pattern changes from 2-2-2-2-2-
2-2 to 1-1-1-1-1-1-1 when a fault occurs as shown in 
Table 4. Both the r1 and r2 are shifted from zeros (Z) 

to negative (N) values. Since a pattern different from 
the normal one is observed, a fault is detected. The 
next step is to diagnose the fault using classification 
techniques. 
 
 

Table 2. Rule base under normal condition 
 
No. Rule Confidence
1 If u is S, then r1 is N 0.0001 
2 If u is S, then r1 is Z 0.9999 
3 If u is S, then r1 is P 0.0000 
   
4 If u is M, then r1 is N 0.0000 
5 If u is M, then r1 is Z 1.0000 
6 If u is M, then r1 is P 0.0000 
   
7 If u is B, then r1 is N 0.0000 
8 If u is B, then r1 is Z 1.0000 
9 If u is B, then r1 is P 0.0000 
   
10 If u is S, then r2 is N 0.0000 
11 If u is S, then r2 is Z 0.9996 
12 If u is S, then r2 is P 0.0004 
   
13 If u is M, then r2 is N 0.0008 
14 If u is M, then r2 is Z 0.9992 
15 If u is M, then r2 is P 0.0000 
   
16 If u is B, then r2 is N 0.0000 
17 If u is B, then r2 is Z 0.9999 
18 If u is B, then r2 is P 0.0001 
   
 Code: 2-2-2-2-2-2  
   
 
 

Table 3. Rule base under faulty condition 
 
No. Rule Confidence
1 If u is S, then r1 is N 0.9406 
2 If u is S, then r1 is Z 0.0594 
3 If u is S, then r1 is P 0.0000 
   
4 If u is M, then r1 is N 0.7035 
5 If u is M, then r1 is Z 0.2965 
6 If u is M, then r1 is P 0.0000 
   
7 If u is B, then r1 is N 0.6257 
8 If u is B, then r1 is Z 0.3743 
9 If u is B, then r1 is P 0.0000 
   
10 If u is S, then r2 is N 0.6627 
11 If u is S, then r2 is Z 0.3373 
12 If u is S, then r2 is P 0.0000 
   
13 If u is M, then r2 is N 1.0000 
14 If u is M, then r2 is Z 0.0000 
15 If u is M, then r2 is P 0.0000 
   
16 If u is B, then r2 is N 0.9305 
17 If u is B, then r2 is Z 0.0695 
18 If u is B, then r2 is P 0.0000 
   
 Code: 1-1-1-1-1-1  
   
 
 
 



     

4.3 Fault diagnosis 
 
From the faulty rule base, it is observed that both r1 
and r2 become negative (N) and this accounts for the 
symptoms of the fault. With some expert knowledge 
shown in Table 4, the fault can be isolated readily 
using the symptoms. (For validity of Table 4, the 
magnitude of the each fault is 20% deviated from its 
normal value.) 
 

Table 4. Mapping from symptoms to fault 
 

r1 r2 Fault 
P Z Rf↑ 
N Z M↓ 
P N D↑ 
N N Ra↑ 
   

 
In this example, the fault can be simply classified as 
an increase in the system parameter Ra using Table 4. 
This may be due to a fault in the brush in the rectifier 
of the motor. However, when the system is highly 
nonlinear with the input, the complete fault code can 
be utilized for classification purpose. 
 
 

5. CONCLUSION 
 
An intelligent fault diagnosis scheme based on B-
spline neurofuzzy networks is proposed for 
monitoring nonlinear systems. A residual model is 
first built using the BSNN. The weights of the 
network are then trained online using recursive least 
squares algorithm for monitoring purpose. Fuzzy 
rules are extracted from the network and the rule 
base is coded. The discrepancy from the normal rule 
base accounts for the heuristic symptoms, which 
facilitates the fault diagnosis of the system. The 
proposed scheme is illustrated using a simulation 
example of a DC motor system. 
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