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Abstract: A sliding mode control scheme is developed for nonlinear, non-minimum phase,
uncertain, input-delay processes. The proposed scheme, which integrates a time-advanced
nonlinear predictor and a statically equivalent output map, is able to compensate the
process's input-delay and to circumvent the negative effect of inverse response. The
convergence properties of the proposed sliding mode control system are guaranteed
theoretically by a Lyapunov-based approach. Furthermore, we applied the proposed
scheme to the regulation control of a Van de Vusse reactor in the presence of diversified

dynamics. Copyright © 2005 IFAC
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1. INTRODUCTION

During the past few decades, the robust control
system designs for uncertain processes have received
considerable attention from control community.
Among the established design approaches for robust
process control, sliding mode control (SMC) plays an
important role because it not only stabilizes certain
and uncertain systems but also provides the
capability of disturbance regjection and insensitivity
to parameter variations (Utkin, 1992). Therefore the
design of SMC control schemes has attracted
considerable attention and many techniques have
been proposed (Shyu and Yan, 1993; Hu et al., 1998;
Roh and Oh, 2000; Li and Yurkovich, 2001;
Spurgeon and Lu, 1997; Camacho et a., 1999;
Herrmann et al., 2003).

However, athough the SMC strategy has established
many successful application in handling diversified
process dynamics, the SMC control of nonlinear
processes which possess simultaneously the
dynamics behavior of uncertainties, input-delay and
inverse response has not ever been addressed in the
literature. To tackle with this difficult control
problem, we propose a novel SMC control scheme
which integrates a statically equivalent output map

(SEOM) and a time-advanced nonlinear predictor.
The main ideas are based on using the SEOM for
eliminating the undesirable inverse response and a
predictor for curbing the negative effect of input-
delay, which therefore facilitates the design of a
dliding mode controller. The convergence properties
of the whole SMC control system are guaranteed by
utilizing the Lyapunov stability theorem. Besides, we
applied the proposed scheme to control a Van de
Vusse reactor in the presence of diversified dynamics.

2. A PREDICTOR-BASED SMC SCHEME FOR
NONLINEAR, UNCERTAIN, NON-MINIMUM
PHASE, INPUT-DELAY PROCESSES

2.1 Control system configuration and system
description

Consider a single-input/single-output non-minimum
phase nonlinear input-delay process whose dynamics
are modeled by the following uncertain equations:

(1) = (f () + AF (X)) + (9(x) + Ag(x) u(t-6)  (1a)
y(t) = h(x) (1b)
wherex(t)eR',ut) eR, y(t)eR and 6 € ([0,»), R) are
state vector, control input, system output and the



time delay respectively. Without loss of generdlity,
we assume that the origin x=0 is a uniformly
asymptotically stable equilibrium point of the
unforced nominal system and h(x) vanishes at that
equilibrium point. This means that y represents the

tracking error. The proposed scheme shown in Fig. 1
will describe through the following individual parts.
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Fig. 1. Schematic diagram of the proposed predictor-
based SMC scheme.

2.2 Design of a statically egquivalent output map

An auxiliary output design method using zero
assignment technique. Consider the following
nonlinear non-minimum phase input-delay system
X(t) =f(x) +g(x)u(t - 0) (29)
y(t) = h(x) (2b)
An auxiliary process which is statically equivalent to
the nonlinear system of Eq. (2) can be given by

X(t) =f(x) +g(x)u(t - 0) (39)

y.(t) =h.(x) (3b)
where h,(-) isanauxiliary output to make the system
locally minimum phase. A formulation for h,(:)
using the original system dynamics can be given by
(Kravariset al., 1998):

h,(x) = h(x) + ”Zlgpyl x) 4
where

fxX) g&x| .
¥ (X) =det| ' ) , j=12,...,n-1 (5)
' {fn(X) gn(X)}

are functions vanishing on the equilibrium curve and
£,]=12...,n-1, are constant weights being chosen

such that h (x) is statically equivalent to h(x) .Let
(x,,u,) beareference equilibrium point, then we can
define the zeros polynomials corresponding to h(x)
and ¥, (x), j=12,...,n-1, respectively, as

5(5) = 6h(X )AdJ|:S| [afa(;( ) ag(X )ﬂg( ) (6)

= po + pls+ et ﬁHS“fl
~ A, (x,) A(x) , 6g(x )
Q9= x Ad{ [ x x HQ(X ) )

=G, s+-+q,, S, j=12..,n-1

n-—1, be the desirable
zeros for h,(x) at the reference equilibrium point.
The given values of z, and the requirement of static

Furthermore, let z, j=12,...,

equivalence with h(x) completely specifies the
desirable zero polynomial for h (x) as.

PY(9)= 501_[[1_ Zi] =P+ Pis+-+pis™ (8)

=1 j
The necessary vaues of the adjustable weights ¢,
can be obtained by solving the following equation

B(9)+ S £,0,(9=P(9) )

Synthesis of a datically equivalent output map
(SEOM) for use under process uncertainties. The
purpose of this subsection is two folds. The first one
is to ensure the minimum phase behaviour under the
influence of process uncertainties and the other one
is to guarantee the statically equivalent output
property of y . To meet the first goal, a new

agorithm for redesign of ¢, is proposed as follows:

Initialization: Choose the desired zeros, z) € LHP,
at the reflections of the RHP zeros with respect to
the imaginary axis. Also, set Az, >0 for pole
shifting. Let i =1 and z = Z].

Step 1: Set P*(s) based on the zeros Z,. Calculate
¢, j=12,..,n-1, from Eq. (9) and then construct
h!(x) according to Eq. (4).

Step 2: Check whether v (x) is minimum phase or
not under process uncertainties by Monte Carlo
simulations. If yes, stop. Otherwise, go next step.

Step 3: Shifting the desired zeros by z* =z -Az,
then set i =i +1 and go back to step 1.

To achieve the statically equivalent property for the

second goal, we suggest the following auxiliary

output for control:

=h(x)=y+(y.-y)e™ (10)
where y. =h (x), y=h(x) and A >0 is the tuning
constant. The role of A in this auxiliary output map
is to make a smooth transition from the minimum
phase one to actual process output. Actualy, the
selection of A, depends on the process dynamic

characteristics. Asaresult, y, appearsto be a SEOM

to the actua process output, which ensures no steady
state offset and minimum phase behaviour despite of
the influence of process uncertainties.

2.3 Design of a predictor-based diding mode
controller

Based on the synthesized auxiliary output y,, the
nonlinear uncertain input-delay model used for
controller design is given by

X(t) = (F(x) + Af (X)) + (9(x) + Ag(x)) u(t - 6)  (118)



Y (t) =h,(x) (11b)

It should be noted here that the present system is
minimum phase under uncertainties and the auxiliary
output . is statically equivalent to the actual process

output y . Let the Lie derivative of a smooth function
h.(x) along avector field g(x) be defined as:

=T 0000=3 a0 (1)
In terms of Lie derivative, the relative degree of the
system (11) is defined as p = min{m: L L"*h,(x) = 0}
Similarly, let x=minfm:L,L"*h,(x) =0} and
w= min{m: L L h(x) = O} be the relative degrees

of the uncertainties Af and Ag, respectively. Also,

we assume the uncertainties satisfy the generalized
matching condition, i.e.,, w> p=x.

Design of a diding mode controller. Based on the
input-output linearization technique, there exists a
local coordinate transformation as follows:

(&) =T @
=(h(9,Lh (), L., 77,., (%))

Then, we can transfer the nonlinear uncertain system
to its normal form as

=&, 1=12-p-1 (14)
& =[b(&,m)+ A& )] +[al&, m) + Aa(&, )] u(t - 6) (14b)
1 =0q(&,m)+#(&.n) (14c)
Y. =& (14d)

where a(g,7) , Aa(&,7n), b(&,n) . Ab(S,7), a(S.m)
and ¢ (&,n) aredgiven, respectively, by

aig,m=LL hoT(&n) (15)
Aa(g,n) =L,L"h o T7(&,7) (16)
b(&,7)=L7h o T7(£,7) (17)
Ab(&, ) =L, L7 o T7(5m) (18)
q&m=LT,.(x), i=12-n-p (19)
¢ (&m=L,T,(9+L,T  (x)ut-0),i=12...,n-p (20)
and x=T*(&,n) (22)

Since the process is of internal stability, the
following state feedback control law:

u(t - 0) = (v(t) - b(£,m))/alg,n) (22)
can be applied, where all the quantities in the right-
hand side are at time t. To give the current control
inputs, the control law of Eq. (22) isrewritten as

u(t) = Y+ ) ~bE(t+0).n(t +0)) (23)

a(S(t+0),n(t+0)
In this work, we modify the robust SM C approach of
Chen and Dai (2001) to give v(t+6) as

Wt+6) =kt +6) ~sa(5(t +6)/ B) D5 o | S+ O))] (24)
where the adaptive gain k is tuned by
k=7(5t+0)* (7y>0); f_, b, , st+) ad
sat(S(t + 0)/ B) are given, respectively, by

Ab(&E(t+0),n(t + 9))
. (25)

max

b(£(t+6).5(t +6))

a(s(t+0).n(t+0))

b, —1- |[aa(e(t+6),n(t+0))] (26)
(5JI)ET(U)| a(c(t+0),n(t+0)) |

— Aa(&(t+0),n(t+09))

= sup
(EmeT (V)

§(t+6)=CT§(t+9)=Zﬂ:q§i(t+9), ¢ -1 (27

St+9)/B, if |ot+6)/4<1
signst+6)/p), it |ot+6)/4=1
In the control law, g is the user-specified boundary

layer thickness used to eliminate the input chattering,
and coefficients ¢ in 5(t+6) are chosen such that
the polynomial T'(4) =" +c, A" +---+C,A+c has
all roots in the LHP. At this stage, the SMC control
law (23) for input-delay processes has been
constructed. However, this controller can not be
directly implemented without having the predictive
states. Therefore, in the next subsection we shall
introduce a nonlinear predictor to obtain time-
advanced predictive states.

sat(E(t+6)/ ) ={ (28)

A nonlinear predictor and the robustness of the
predictor-based diding mode control scheme. To
compensate the time delay of the process and
therefore estimate the process's time-advanced states,
we suggest the use of the following nonlinear
predictor:

X' () =f(x"(t) + 9(><*(t))U(t)~ (299)
X(t) =T (X(1) + 9(X(t))u(t - 6) (29D)
R(t+0 |t) = X(t) + X (1) - X(t) (29)

where x'(t), X(t) and x(t) e R" denote, respectively,
the model state vector, the nomina state vector, and

the actual plant’s state vector; 6 >0 isthe estimated
time delay in the manipulated input and

X(t+ 0 [t)e R represents the corrected time-
advanced predictive state vector. By comparing Egs.
(298) with (29b), it follows that x*(t):i(t+6’~) if
the predictor is initialized as x*(O):i(é) . This
initialization can be achieved at steady state because
in this case X(@) = X(0) . As a result, in the absence

of plant/model mismatch the prediction model yields
the plant state vector one time delay ahead, i.e

X(t+0 |t)=x(t+0) if & =80. With the introduction
of the nonlinear predictor, the transformed system
(14) can be represented as

§=E&, i=120,p-1 (30a)
£, =IB(. ) + B, 7)] + (A7) + AB(E. )] u(t— ) (30b)
1=G6(E,7) +P(E7) (300)
¥.=¢ (30d)

where &, 77, 4, A4, b, Ab, g and ¢ are defined
similarly as those in &, 17, a, Aa, b, Ab, q and



¢ , respectively. Besides, the current input u(t) is
modified from Eq. (23) to be computed by

u(t) = 01D =D +0 1070 |1) (31)
a(g(t+0 [t),n(t+0 1)

of which the futureinput V(t + @ |t) iscalculated as
U(t+0 |t) =—kSt+0 |t)

—sat(5(t+6 |t)/p)Ib;.

min

(f +‘3(t+9~ |t)‘)] (32

where the adaptive gain k is tuned by

k=7@(t+0 1) (7>0); 5t+01t), f

b, are given, smilarly as s(t+6), f, and b, .
With the incorporation of the nonlinear predictor and
the insertion of the control law (31), the resultant

closed-loop system can be formulated as follows:

and

max !

max

E=AE4B[0+b(f +cE) (33a)
7 =G6(E.7) +4(E.7) (330)
X =f(x") +g(x)u(t) (33¢)
X =f(X) +gX)u(t—0) (33d)
where
i 1 0 0 .. 0 0]
o 0 1 0 .. 0 ©
[ A S (34)
A= O o o O .. 1 o0
o 0 0O 0 .. 0 1
|-¢& -¢ -¢ -¢ .. —-C, -1
Bc:[O .0 BS]T (35)
f= L En=0bE ) -aaGn e (3)
a(s,n)
and B, - b (,7) -1+ 2351 37)
ag,n)

The robust stability and desired behaviour of the
closed-loop system are described in the following
theorem.

Theorem 1. Suppose that the system (11) is subject

to the control law (31) and the stable nonlinear
predictor (29). If Bmm >0, then the closed-loop
system (33) possesses the following properties.

(P1) Uniform stability: For each d >d , given any

7(): [t >R, and 7 (t,) =7, of the closed-loop
system (33), there exists a constant 9(d) >0 such
that |7 < 9(@) impliesthat |77 (t)|<d forall t>t,.
(P2) Uniform boundedness: Let 7 =[&",7"]" and
7, =[&.7] . Given any r>0 and any 7():
[t,,t) >R and 7(t,)=7, of the closed-loop
system (33) with |i7,[ <r , there exists a constant
d(r)>0 suchthat [7(t)| <d(r) forall tet,t,).

(P3) Uniform ultimate boundedness: For each d > d
and r>0 , gven any 7(): [t,,0) > R" and
n(t,)=n, of the closed-loop system (33) with
|7, <t . there exists a finite time f(d,r) >0 such
that [7(t)|<d foral t>t,+f(d,r).

Proof: Since the system (11) is of interna stability,
the nomina system of system (11) possesses the
property of hyperbolically minimum phase. Besides,

for internal stability, the function §(,7) is assumed
to be Lipschitzin f uniformly in 77, i.e.
lac.m-ac.m| <[4 (38)

where L is called a Lipschitz constant of (&,7) .

Under the condition of Eq. (38) and using a converse
theorem of Lyapunov, there exists a Lyapunov
function V,(7) which satisfies the following

inequalities:

o il <V, <o)l (39)
N, ., . “

Mz G(0,7) <-4’ (40)
v, /a7] < .| (41)

where o,, 0,, 4, and A, are positive constants. To
include the effects of uncertainties on the dynamics

of 77, we also make the supposition on ¢(&,7) as
o) <144 +lab+1. (42)

for all (f,ﬁ)ef(U) , where |, and |, are positive
constants. Now, let's consider the Lyapunov
candidate as

V(E,7) = mVi(E) + i, () (43)
where V(&) =1/25°+7/2k?> and k=k—k' with
k™ being the desired steady state feedback gain; g,
and y, are positive constants to be specified later.

The time derivative of V isgiven by

V(gvﬁ) = /11\}1(9;) + ,uov.n(ﬁ)

= i (ETec A E +B.5(0 (. + ¢ E) ~ st (5/ B, (e +[OPT)
#BR(-5+RB77) - BIC57) + s, S @(00) + )

—8(0.7) + $EA) < (-ETQE B k8 + ug(%d(aﬁ)

oV

0
o

oV,
an"

< #1(7§ATQ§A - 6sk‘éz) - (#0/11 - /uu/‘{zll) X HﬁHz
+ (o2, 2 AAE] + 2o ]

6(E.17)

+

X

a(é.A) - a7+ )

X

< Lt @ FE - (- e < il + mtaL ]
' (44)
wherek = (b, /)52 = 75? with 7 >0 and a non-negative

value of l2(0) has been applied in the above



derivation. In Eq. (44), Q=-cc'A, is a positive
definite matrix, A (Q) denotes the minimum
eigenvalue of Q , and =y -4l) and
e =ut(L+l) ae set with the inequality of

e Jill¢é

appropriately chose g, and x such that al the
square terms in Eq. (44) are negative. Finaly, by

‘so.zsﬂé“z +e[7]". Since I, < 4/4, , we can

letting 7 =[E",/#"]" , one can rewrite the above
inequality as
V@) <-c i+l (45)

where ¢ = min{/ﬁﬂ“min(Q)_%*q_gz} and C, = 4yl .

The time derivative V is strictly negative for a
sufficient large |7]. Noticing that from Egs. (39)-
(41), and (43) and following a similar procedure of
Li et al. (1995), the closed-loop system properties
(P1), (P2) and (P3) then follow upon using standard
arguments in the literature (Corless and Leitmann,
1981; Li et a., 1995) by taking

0, if r<(r,/r)d

rr?—rr,'d?

orrid? —orkrd’

12 72

td,r)=

if otherwise

12 H < —
d(r)_{((rrz//?)“:' ilff rr>_ FF:' d=@,/r)?R and gd)=R
where r, =minfu4,,,(Q).140.}, T, =maxfu4.(Q).u0},
R=c/g and A _(Q denotes the maximum
eigenvaue of Q . This completes the proof.

3. REGULATION CONTROL OF A NON-
MINIMUM PHASE NONLINEAR UNCERTAIN
INPUT-DELAY CHEMICAL PROCESS

The mathematical model of a nonisothermal Van de
Vusse reactor in its deviation form is given by

X(t) = (F (x(V)) + AF (x(1))) + (9(Xx(1)) + Ag(x (1)) u(t —6) (4623)
y(t) = h(x(t)) (46b)
where

f_ (x(t)) =

= Ky 06 (1) + Xa) - (6 (1) + %) = Ky (%5 (0) + X ) - (X, (1) + %,,)°
+k1(xad)' Xy +k3(X3a)’X12d _X1(t)’ud
Ky (% (0) + Xa0) - (4 (0) + X3 ) = K (X, (0) + X5 ) - (%, (1) + %)
- kl(de) Xy kz(xad)' Xoa — Xz(t)'Ud
1

[_AHlkl(x3 (t) + Xsd) : (X1(t) + Xm) —-AH zkz(xs (t) + X3d)

s—P

: (Xz(t) + de) - AHsks(Xs(t) + Xad) : (Xl(t) + Xy )2 + AHlkl(XSd)

- € X1(t) 1

Af(x@®)=| 0 | agx(t)=¢e,|1 (49)
0 1

h(x(t)) = x,(t) (50)

of which 0.1<e, <03 and 0.2<e, <0.4. Besides, the
rate coefficients k(T) are given by k (T)=k,exp(-E /RT).

The vaues for the model parameter constants and
operation conditions are listed as follows:

k,=1.287-10° h™ AH,, = -11kJ- mol™
k, =1.287-10° h™* AH, =-41.85kJ- mol ™
k, =9.043-10° L(mol -h)* p, =09342kg-L"

E,/R=9758.3K C, =3.0LkJ(kg-K)™
E,/R=9758.3K 6 =0.01hr
E,/R=8560 K X, =5gmol- L™
AH, = 4.2kJ-mol * X, = 403.15K

L X +Aszz(X3a)’de +AH3k3(X3d)'X12d]_X3(t)’ud

(an
X = Xy — Xl(t)
g(X(t)) = - de - Xz (t) (48)
X =Xy =% (t)

The control objective is to maintain the process
output x, as close as possible to the set point
(steady-state value) by adjusting the dilution rate, u .
In this case, the given steady-state vaues are
X, =1.25, x,, =090, x, =40715 and u, =19.5218.

By linearizing this process model around the
reference  steady state, it exhibits locally
asymptoticaly stable and locally non-minimum
phase owing to no RHP pole (-96.518 and
—-33.141+9.8118i ) and the presence of a RHP zero

(-11.1673 and +122.6824). To construct a SEOM for
the proposed SMC scheme, an auxiliary output is
synthesized as

y,=h(X) =X, +&¥,(X) +&,¥,(X) (512)
Let 2°=[-11.1673 -122.6824] and Az=[0.2 2], and
following the proposed searching algorithm, we have
£ =-6.2415.10 and ¢, =-2.5991-10°. Based on the
auxiliary output y, , it is easlly verified
p=x=w=1, which satisfy the condition of
w> p=x. With the vaues of e =€ tr and
e, =€ +7, where 7=01, € =02 and € =0.3,
we use the estimated maximum bound values of
fmax =7 and Bmm =0.3 for the diding mode
controller. The other parameters are set as 4, =0.3,

c,=10, k(0)=1.0, 7 =10 and =001 In order
to verify the regulation ability, we suppose that the
system states are perturbed to move away from their
steady statesto be x(0) =[-0.7 -0.2 1] initially.

3.1 The presence of extra disturbances

The extra disturbances introduce significantly
additional modeling errors, which leads the

uncertainty vector Af to be Af(x):[—e,x1 d, dz]T

where d,=05 and d,=2. For SMC design, f_
should be increased to 10 in order to accommodate
this extra disturbances. The simulation result is
depicted in Fig. 2.
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Fig. 2. Closed-loop system performance in face with
the unmodeled side reaction, measuring error and
extra disturbances.

From this figure, it is clear to observe that the SMC
control system simply using y, results in a small
offset on the steady state because the design of vy,

does not consider the influence of uncertainties. In
contrast, the proposed SMC designed on the basis of
y. is capable of driving the process output gradually

to achieve zero steady state offset performance.
3.2 Parameter uncertainties

In this case, we assume that the process's kinetic
parameters k,, k,, and k,, have +25% as well as
p, and C, have -25% variation from their nominal
values after time of 0.5 hr while these parameter
values in the model remain unchanged. In designing
SMC, the value of fmax is set as 10. The closed-loop

system performance is shown in Fig. 3,
demonstrating that the proposed scheme is robust
despite of the presence of the parameter variations.
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Fig. 3. Closed-loop system performance in face with
parameter uncertainties.

4. CONCLUSIONS

This work has presented a systematic and robust
SMC scheme for the regulation control of uncertain
chemical processes in the presence of simultaneously
the non-minimum phase behaviour and input-delay.
A new algorithm has been proposed such that the
designed auxiliary output is statically equivalent to
the actual output and makes the resultant system

minimum phase despite the influence of the process
uncertainties. With the incorporation of the
congtructed SEOM as well as a time-advanced
nonlinear predictor, a predictor-based SMC scheme
can be easily established. The effectiveness of the
proposed approach has been illustrated through the
control of aVan de Vusse reactor.
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