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Abstract: A sliding mode control scheme is developed for nonlinear, non-minimum phase, 
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1. INTRODUCTION 

 
During the past few decades, the robust control 
system designs for uncertain processes have received 
considerable attention from control community. 
Among the established design approaches for robust 
process control, sliding mode control (SMC) plays an 
important role because it not only stabilizes certain 
and uncertain systems but also provides the 
capability of disturbance rejection and insensitivity 
to parameter variations (Utkin, 1992). Therefore the 
design of SMC control schemes has attracted 
considerable attention and many techniques have 
been proposed (Shyu and Yan, 1993; Hu et al., 1998; 
Roh and Oh, 2000; Li and Yurkovich, 2001; 
Spurgeon and Lu, 1997; Camacho et al., 1999; 
Herrmann et al., 2003). 
 
However, although the SMC strategy has established 
many successful application in handling diversified 
process dynamics, the SMC control of nonlinear 
processes which possess simultaneously the 
dynamics behavior of uncertainties, input-delay and 
inverse response has not ever been addressed in the 
literature. To tackle with this difficult control 
problem, we propose a novel SMC control scheme 
which integrates a statically equivalent output map 

(SEOM) and a time-advanced nonlinear predictor. 
The main ideas are based on using the SEOM for 
eliminating the undesirable inverse response and a 
predictor for curbing the negative effect of input-
delay, which therefore facilitates the design of a 
sliding mode controller. The convergence properties 
of the whole SMC control system are guaranteed by 
utilizing the Lyapunov stability theorem. Besides, we 
applied the proposed scheme to control a Van de 
Vusse reactor in the presence of diversified dynamics. 
 
 

2. A PREDICTOR-BASED SMC SCHEME FOR 
NONLINEAR, UNCERTAIN, NON-MINIMUM 

PHASE, INPUT-DELAY PROCESSES 
 

2.1 Control system configuration and system 
description 

 
Consider a single-input/single-output non-minimum 
phase nonlinear input-delay process whose dynamics 
are modeled by the following uncertain equations: 

)())()(())()(()( θ−∆++∆+= tut xgxgxfxfx&  (1a) 
)()( xhty =   (1b) 

where nRt ∈)(x , Rtu ∈)( , Rty ∈)(  and )),,0([ R∞∈θ are 
state vector, control input, system output and the 



     

time delay respectively. Without loss of generality, 
we assume that the origin 0=x  is a uniformly 
asymptotically stable equilibrium point of the 
unforced nominal system and )(xh  vanishes at that 
equilibrium point. This means that y  represents the 
tracking error. The proposed scheme shown in Fig. 1 
will describe through the following individual parts.  
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Fig. 1. Schematic diagram of the proposed predictor-

based SMC scheme. 
 
2.2 Design of a statically equivalent output map  

 
An auxiliary output design method using zero 
assignment technique. Consider the following 
nonlinear non-minimum phase input-delay system 

)()()()( θ−+= tut xgxfx&  (2a) 
)()( xhty =  (2b) 

An auxiliary process which is statically equivalent to 
the nonlinear system of Eq. (2) can be given by  

)()()()( θ−+= tut xgxfx&  (3a) 
)()( xee hty =  (3b) 

where )(⋅eh  is an auxiliary output to make the system 
locally minimum phase. A formulation for )(⋅eh  
using the original system dynamics can be given by 
(Kravaris et al., 1998): 
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are functions vanishing on the equilibrium curve and 
1,,2,1, −= njj Kε , are constant weights being chosen 

such that )(xeh  is statically equivalent to )(xh .Let 
),( ss ux  be a reference equilibrium point, then we can 

define the zeros polynomials corresponding to )(xh  
and )(xjΨ , 1,,2,1 −= nj K , respectively, as 
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Furthermore, let 1,,2,1, −= njz j K , be the desirable 
zeros for )(xeh  at the reference equilibrium point. 
The given values of jz  and the requirement of static 
equivalence with )(xh  completely specifies the 
desirable zero polynomial for )(xeh  as: 
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The necessary values of the adjustable weights jε  
can be obtained by solving the following equation 
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Synthesis of a statically equivalent output map 
(SEOM) for use under process uncertainties. The 
purpose of this subsection is two folds. The first one 
is to ensure the minimum phase behaviour under the 
influence of process uncertainties and the other one 
is to guarantee the statically equivalent output 
property of sy . To meet the first goal, a new 
algorithm for redesign of jε  is proposed as follows: 
Initialization: Choose the desired zeros, LHP0 ∈jz , 

at the reflections of the RHP zeros with respect to 
the imaginary axis. Also, set 0>∆ jz  for pole 

shifting. Let 1=i  and 0
j

i
j zz = . 

Step 1: Set )(~ sP d  based on the zeros i
jz . Calculate 

1,,2,1, −= nji
j Kε , from Eq. (9) and then construct 

)(xi
eh  according to Eq. (4).  

Step 2: Check whether )(xi
eh  is minimum phase or 

not under process uncertainties by Monte Carlo 
simulations. If yes, stop. Otherwise, go next step. 

Step 3: Shifting the desired zeros by j
i
j

i
j zzz ∆−=+1 , 

then set 1+= ii  and go back to step 1. 
To achieve the statically equivalent property for the 
second goal, we suggest the following auxiliary 
output for control: 

t
ess

seyyyhy λ−−+=≡ )()(x  (10) 
where )(xee hy = , )(xhy =  and 0>sλ  is the tuning 
constant. The role of sλ  in this auxiliary output map 
is to make a smooth transition from the minimum 
phase one to actual process output. Actually, the 
selection of sλ  depends on the process dynamic 
characteristics. As a result, sy  appears to be a SEOM 
to the actual process output, which ensures no steady 
state offset and minimum phase behaviour despite of 
the influence of process uncertainties. 

 
2.3 Design of a predictor-based sliding mode 

controller 
 

Based on the synthesized auxiliary output sy , the 
nonlinear uncertain input-delay model used for 
controller design is given by 

)())()(())()(()( θ−∆++∆+= tut xgxgxfxfx&  (11a) 



     

)()( xss hty =   (11b) 
It should be noted here that the present system is 
minimum phase under uncertainties and the auxiliary 
output sy is statically equivalent to the actual process 
output y . Let the Lie derivative of a smooth function 

)(xsh  along a vector field )(xg  be defined as: 
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In terms of Lie derivative, the relative degree of the 
system (11) is defined as { }0)(:min 1 ≠= − xfg s

m hLLmρ . 

Similarly, let { }0)(:min 1 ≠= −
∆ xff s

m hLLmκ  and 
{ }0)(:min 1 ≠= −

∆ xfg s
m hLLmw  be the relative degrees 

of the uncertainties f∆  and g∆ , respectively. Also, 
we assume the uncertainties satisfy the generalized 
matching condition, i.e., κρ =≥w .  

 
Design of a sliding mode controller. Based on the 
input-output linearization technique, there exists a 
local coordinate transformation as follows: 
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Then, we can transfer the nonlinear uncertain system 
to its normal form as 

1,,2,1,1 −== + ρξξ L& iii  (14a) 

)()],(),([)],(),([ θηξηξηξηξξρ −∆++∆+= tuaabb& (14b) 
),(),( ηξφηξη += q&  (14c) 

1ξ=sy  (14d) 
where ),( ηξa , ),( ηξa∆ , ),( ηξb , ),( ηξb∆ , ),( ηξq  
and ),( ηξφi  are given, respectively, by 

),(),( 11 ηξηξ ρ −−= Tfg oshLLa  (15) 

),(),( 11 ηξηξ ρ −−
∆=∆ Tfg oshLLa  (16) 

),(),( 1 ηξηξ ρ −= Tf oshLb  (17) 
),(),( 11 ηξηξ ρ −−

∆=∆ Tff oshLLb  (18) 
ρηξ ρ −== + niTLq ii ,,2,1,)(),( Lxf  (19) 

ρθηξφ ρρ −=−+= +∆+∆ nituTLTL iii ,,2,1),()()(),( Kxx gf  (20) 

and ),(1 ηξ−= Tx  (21) 
Since the process is of internal stability, the 
following state feedback control law: 

),()),()(()( ηξηξθ abtvtu −=−  (22) 
can be applied, where all the quantities in the right-
hand side are at time t . To give the current control 
inputs, the control law of Eq. (22) is rewritten as  
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In this work, we modify the robust SMC approach of 
Chen and Dai (2001) to give )( θ+tv  as 
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where the adaptive gain k  is tuned by 
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In the control law, β  is the user-specified boundary 
layer thickness used to eliminate the input chattering, 
and coefficients ic  in )( θδ +t  are chosen such that 
the polynomial 12

2
1

1)( ccc ++++=Γ −
−

− λλλλ ρ
ρ

ρ L  has 
all roots in the LHP. At this stage, the SMC control 
law (23) for input-delay processes has been 
constructed. However, this controller can not be 
directly implemented without having the predictive 
states. Therefore, in the next subsection we shall 
introduce a nonlinear predictor to obtain time-
advanced predictive states. 

 
A nonlinear predictor and the robustness of the 
predictor-based sliding mode control scheme. To 
compensate the time delay of the process and 
therefore estimate the process’s time-advanced states, 
we suggest the use of the following nonlinear 
predictor: 

)())(())(()( tuttt ∗∗∗ += xgxfx&  (29a) 

)~())(~())(~()(~ θ−+= tuttt xgxfx&  (29b) 

)(~)()()|~(ˆ ttttt xxxx −+=+ ∗θ  (29c) 
where )(t∗x , )(~ tx  and nRt ∈)(x  denote, respectively, 
the model state vector, the nominal state vector, and 
the actual plant’s state vector; 0~

≥θ  is the estimated 
time delay in the manipulated input and 

nRtt ∈+ )|~(ˆ θx  represents the corrected time-
advanced predictive state vector. By comparing Eqs. 
(29a) with (29b), it follows that )~(~)( θ+=∗ tt xx  if 

the predictor is initialized as )~(~)0( θxx =∗ . This 
initialization can be achieved at steady state because 
in this case )0(~)~(~ xx =θ . As a result, in the absence 
of plant/model mismatch the prediction model yields 
the plant state vector one time delay ahead, i.e. 

)()|~(ˆ θθ +=+ ttt xx  if .~ θθ =  With the introduction 
of the nonlinear predictor, the transformed system 
(14) can be represented as 
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)ˆ,ˆ(ˆ)ˆ,ˆ(ˆˆ ηξφηξη += q&  (30c) 

1̂ˆ ξ=sy  (30d) 

where ξ̂ , η̂ , â , â∆ , b̂ , b̂∆ , q̂  and φ̂  are defined 
similarly as those in ξ , η , a , a∆ , b , b∆ , q  and 



     

φ , respectively. Besides, the current input )(tu  is 
modified from Eq. (23) to be computed by 
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of which the future input )|~(ˆ ttv θ+  is calculated as 
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where the adaptive gain k̂  is tuned by 
2))|~(ˆ(~ˆ ttk θδγ +=

&  ( 0~ >γ ); )|~(ˆ tt θδ + , maxf̂ , and 

minb̂  are given, similarly as )( θδ +t , maxf  and minb . 
With the incorporation of the nonlinear predictor and 
the insertion of the control law (31), the resultant 
closed-loop system can be formulated as follows: 
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)~()~()~(~ θ−+= tuxgxfx&  (33d) 

where 
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The robust stability and desired behaviour of the 
closed-loop system are described in the following 
theorem. 

 
Theorem 1. Suppose that the system (11) is subject 
to the control law (31) and the stable nonlinear 
predictor (29). If 0ˆ

min >b , then the closed-loop 
system (33) possesses the following properties. 
(P1) Uniform stability: For each dd ≥ , given any 

:)(⋅η nRt →∞),[ 0 , and 00 )( ηη =t  of the closed-loop 
system (33), there exists a constant 0)( >dϑ  such 

that )(0 dϑη ≤  implies that dt ≤)(η  for all 0tt ≥ . 

(P2) Uniform boundedness: Let TTT ]ˆ,ˆ[ ηξη =  and 
TTT ]ˆ,ˆ[ 000 ηξη = . Given any 0>r  and any :)(⋅η  
nRtt →),[ 10  and 00 )( ηη =t  of the closed-loop 

system (33) with r≤0η , there exists a constant 

0)( >rd  such that )()( rdt ≤η  for all ),[ 10 ttt ∈ . 

(P3) Uniform ultimate boundedness: For each dd ≥  
and 0>r , given any :)(⋅η nRt →∞),[ 0  and 

00 )( ηη =t  of the closed-loop system (33) with 

r≤0η , there exists a finite time 0),( ≥rdt  such 

that dt ≤)(η  for all ),(0 rdttt +≥ . 
 
Proof: Since the system (11) is of internal stability, 
the nominal system of system (11) possesses the 
property of hyperbolically minimum phase. Besides, 
for internal stability, the function )ˆ,ˆ(ˆ ηξq  is assumed 

to be Lipschitz in ξ̂  uniformly in η̂ , i.e. 

ξηηξ ˆ)ˆ,0(ˆ)ˆ,ˆ(ˆ L≤− qq  (38) 

where L  is called a Lipschitz constant of )ˆ,ˆ(ˆ ηξq . 
Under the condition of Eq. (38) and using a converse 
theorem of Lyapunov, there exists a Lyapunov 
function )ˆ(0 ηV  which satisfies the following 
inequalities: 

2

20

2

1
ˆ)ˆ(ˆ ησηησ ≤≤ V  (39) 
2

1
0 ˆ)ˆ,0(ˆ

ˆ
ηλη

η
−≤

∂
∂ qT

V  (40) 

ηλη ˆˆ
20 ≤∂∂V  (41) 

where 1σ , 2σ , 1λ  and 2λ  are positive constants. To 
include the effects of uncertainties on the dynamics 
of η̂ , we also make the supposition on )ˆ,ˆ(ˆ ηξφ  as 

21 )ˆˆ()ˆ,ˆ(ˆ ll ++≤ ηξηξφ  (42) 

for all )(ˆ)ˆ,ˆ( UT∈ηξ , where 1l  and 2l  are positive 
constants. Now, let’s consider the Lyapunov 
candidate as 
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where 22 ˆ~ˆ)ˆ(ˆ δγδγ == sbk&  with 0~ >γ  and a non-negative 

value of )0(k̂  has been applied in the above 



     

derivation. In Eq. (44), c
T AccQ −≡  is a positive 

definite matrix, )(min Qλ  denotes the minimum 
eigenvalue of Q , and )( 12101 le λλµ −=  and 

)( 1202 lLe += λµ  are set with the inequality of 
22

2

2

2
ˆˆ25.0ˆˆ ηξξη ee +≤ . Since 211 λλ<l , we can 

appropriately chose 0µ  and 1µ  such that all the 
square terms in Eq. (44) are negative. Finally, by 
letting TTT ]ˆ,ˆ[ ηξη = , one can rewrite the above 
inequality as 
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21min11 eec −−= Qλµ  and 2202 lc λµ= . 

The time derivative V&  is strictly negative for a 
sufficient large η . Noticing that from Eqs. (39)-
(41), and (43) and following a similar procedure of 
Li et al. (1995), the closed-loop system properties 
(P1), (P2) and (P3) then follow upon using standard 
arguments in the literature (Corless and Leitmann, 
1981; Li et al., 1995) by taking 
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where },),(min{ 10min11 σµλµ Q=r  },),(max{ 20max12 σµλµ Q=r  

12 ccR=  and )(max Qλ  denotes the maximum 
eigenvalue of Q . This completes the proof. 
 
 

3. REGULATION CONTROL OF A NON-
MINIMUM PHASE NONLINEAR UNCERTAIN 

INPUT-DELAY CHEMICAL PROCESS 
 

The mathematical model of a nonisothermal Van de 
Vusse reactor in its deviation form is given by  

)()))(())((()))(())((()( θ−∆++∆+= tuttttt xgxgxfxfx& (46a) 
))(()( thty x=  (46b) 
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of which 3.01.0 ≤≤ fe  and 4.02.0 ≤≤ ge . Besides, the 
rate coefficients )(Tki  are given by )exp()( 0 RTEkTk iii −= . 
The values for the model parameter constants and 
operation conditions are listed as follows: 

112
10 h10287.1 −⋅=k  

112
20 h10287.1 −⋅=k  

19
30 )hmol(L10043.9 −⋅⋅=k

K3.97581 =RE  
K3.97582 =RE  

K85603 =RE  
1

1 molkJ2.4 −⋅=∆H  

1
2 molkJ11 −⋅−=∆H

1
3 molkJ85.41 −⋅−=∆H

1Lkg9342.0 −⋅=sρ  
1)Kkg(kJ01.3 −⋅=PC  

hr01.0=θ
1

10 Lgmol5 −⋅=x
K15.40330 =x  

The control objective is to maintain the process 
output 2x  as close as possible to the set point 
(steady-state value) by adjusting the dilution rate, u . 
In this case, the given steady-state values are 

,25.11 =dx ,90.02 =dx  15.4073 =dx  and 5218.19=du . 
By linearizing this process model around the 
reference steady state, it exhibits locally 
asymptotically stable and locally non-minimum 
phase owing to no RHP pole (-96.518 and 

i8118.9141.33 ±− ) and the presence of a RHP zero 
(-11.1673 and +122.6824). To construct a SEOM for 
the proposed SMC scheme, an auxiliary output is 
synthesized as 

)ˆ()ˆ(ˆ)ˆ( 22112 xxx Ψ+Ψ+== εεxhy ee  (51) 
Let [ ]6824.1221673.110 −−=z  and [ ]22.0=∆z , and 
following the proposed searching algorithm, we have 

4
1 102415.6 −⋅−=ε  and .105991.2 3

2
−⋅−=ε  Based on the 

auxiliary output sy , it is easily verified 
1=== wκρ , which satisfy the condition of 

.κρ =≥w With the values of τ±= 0
ff ee  and 

τ±= 0
gg ee , where 1.0=τ ,  2.00 =fe  and 3.00 =ge , 

we use the estimated maximum bound values of 
7m̂ax =f  and 3.0ˆ

min =b  for the sliding mode 
controller. The other parameters are set as 3.0=sλ , 

0.11 =c , 0.1)0(ˆ =k , 0.1~ =γ  and .01.0=β  In order 
to verify the regulation ability, we suppose that the 
system states are perturbed to move away from their 
steady states to be ]12.07.0[)0( −−=x  initially.  
 
3.1 The presence of extra disturbances 
 
The extra disturbances introduce significantly 
additional modeling errors, which leads the 
uncertainty vector f∆  to be [ ]Tf ddxe 211)( −=∆ xf

where 5.01 =d  and 22 =d . For SMC design, maxf̂  
should be increased to 10 in order to accommodate 
this extra disturbances. The simulation result is 
depicted in Fig. 2.  



     

 
Fig. 2. Closed-loop system performance in face with 

the unmodeled side reaction, measuring error and 
extra disturbances. 

 
From this figure, it is clear to observe that the SMC 
control system simply using ey  results in a small 
offset on the steady state because the design of ey  
does not consider the influence of uncertainties. In 
contrast, the proposed SMC designed on the basis of 

sy  is capable of driving the process output gradually 
to achieve zero steady state offset performance.  
 
3.2 Parameter uncertainties 
 
In this case, we assume that the process’s kinetic 
parameters 10k , 20k  and 30k  have +25% as well as 

sρ  and PC  have -25% variation from their nominal 
values after time of 0.5 hr while these parameter 
values in the model remain unchanged. In designing 
SMC, the value of maxf̂  is set as 10. The closed-loop 
system performance is shown in Fig. 3, 
demonstrating that the proposed scheme is robust 
despite of the presence of the parameter variations. 

 
Fig. 3. Closed-loop system performance in face with 

parameter uncertainties. 
 

4. CONCLUSIONS 
 
This work has presented a systematic and robust 
SMC scheme for the regulation control of uncertain 
chemical processes in the presence of simultaneously 
the non-minimum phase behaviour and input-delay. 
A new algorithm has been proposed such that the 
designed auxiliary output is statically equivalent to 
the actual output and makes the resultant system 

minimum phase despite the influence of the process 
uncertainties. With the incorporation of the 
constructed SEOM as well as a time-advanced 
nonlinear predictor, a predictor-based SMC scheme 
can be easily established. The effectiveness of the 
proposed approach has been illustrated through the 
control of a Van de Vusse reactor. 
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