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Abstract: Stability analysis of nonlinear systems can be carried out by the Lyapunov’s
first method (linearization technique). However, by utilizing this approach most
insight about the physical system may be lost. Alternative approaches are available to
exploit system characteristics such as those associated to energy concepts for stability
and instability analysis. In this paper, with reference to a simple nonlinear system
–the pendulum–, we proposed first, a simple strict Lyapunov function motivated
by energy consideration to study asymptotic stability of some equilibria, and second
a Chetaev function to analyze instability of the remaining ones. A remarkable point
is that both functions have a common structure based on the system’s energy, and
differs only in a single scalar parameter. Copyright c°2005 IFAC
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1. INTRODUCTION

This paper considers autonomous systems de-
scribed by

ẋ = f(x) (1)

where x ∈ IRn is the state vector, and the vector
field f(x) is assumed sufficiently smooth.

The simplest and basic structure in dynamic sys-
tems is the equilibrium. Equilibria are related to
important meaning in many physical processes.
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They are those elements of the state space, say
x∗ ∈ IRn, where the vector field vanishes, i.e.

f (x∗) = 0.

The Lyapunov stability theory mainly focuses –
at least as presented in important stability analy-
sis textbooks– to study a number of attributes of
equilibria such as: stability, asymptotic stability,
instability, etc. The Lyapunov’s theory offers a set
of theorems to study these attributes of the equi-
libria (see e.g. Vidyasagar (1993), Khalil (1996)).
Most of them resort to the concept of Lyapunov
function below (Vidyasagar, 1993)



Definition 1. Assume that the origin of the
state space is an equilibrium of the system (1),
i.e. f (0) = 0. A continuous and differentiable
function V (x) is a Lyapunov function for the
equilibrium x∗ = 0 if it is a positive definite
function (at least locally) whose time derivative
along the system (1):

V̇ (x) =
∂f(x)

∂x

T

f(x)

is nonpositive (at least locally).
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The basic stability theorem of the Lyapunov’s
direct method states that if a Lyapunov function
exists then the equilibrium is stable (Khalil, 1996).
A powerful class of Lyapunov function is defined
in the following (Santibañez and Kelly, 1997)

Definition 2. A Lyapunov function for the equi-
librium x∗ = 0 of the system (1) is a strict
Lyapunov function if the time derivative along the
system (1):

V̇ (x) =
∂f(x)

∂x

T

f(x)

is negative definite (at least locally).
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In other words, strict Lyapunov functions are con-
tinuously differentiable positive definite functions
(at least locally) whose time derivative along the
system trajectories are negative definite (at least
locally).

For instability analysis, it is convenient to intro-
duce the Chetaev functions as follows

Definition 3. A Chetaev function for the equilib-
rium x∗ = 0 of the system (1) is a continuously
differentiable function V (x) such that

• V (0) = 0
• V (x) > 0 at least for some arbitrarily small
x 6= 0

such that the time derivative along the system (1)

V̇ (x) =
∂f(x)

∂x

T

f(x)

is positive definite (at least locally).

2

This definition obeys to conditions evoked by the
Chetaev’s instability theorem (Khalil, 1996). In-
deed, Definition 3 imposes stronger requirements
than those needed in the Chetaev’s theorem.

Based in above definitions, we can summarize
the following sufficient conditions for stability

and instability extracted from well—known theo-
rems of the Lyapunov’s stability theory (see e.g.
Vidyasagar (1993), Khalil (1996)).

Theorem 1. Consider system (1) where the ori-
gin x∗ = 0 is an equilibrium. If there exists
a continuously differentiable function V (x) such
that

• V (x) is a Lyapunov function, then the equi-
librium is stable

• V (x) is a strict Lyapunov function, then the
equilibrium is asymptotically stable

• V (x) is a Chetaev function, then the equilib-
rium is unstable
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The remaining of the paper is devoted to show
the application of this theorem for the stabil-
ity/instability analysis of a simple nonlinear sys-
tem where its energy function is exploited to in-
troduce a strict Lyapunov function and a Chetaev
function with the novelty of a common structure.

2. PENDULUM WITH DAMPING

A simple and intuitive nonlinear physical system
is the pendulum with damping. In normalized
form, the unforced process dynamics is given by

q̈ + q̇ + sin(q) = 0

where q stands for the pendulum angular position.
This system can be rewritten in state form as

d

dt

∙
q
q̇

¸
=

∙
q̇

− sin(q)− q̇
¸
.

This an autonomous system whose set of equilib-
ria E is given by

E =
½∙
q
q̇

¸
=

∙
nπ
0

¸¾
where n is an integer number.

The stability/instability attributes of these equi-
libria can be studied straightforward by the Lya-
punov’s first method, that is, by the linearization
approach. Notwithstanding, we pay attention to
exploit the physical structure of the system to
study its stability/instability without lineariza-
tion. We believe that doing this, a systematic
procedure may be derived for analysis of more
complex physical systems.

The energy function of the system is composed
by the sum of the kinetic energy 1

2 q̇
2 plus the

potential energy 1− cos(q).
The equilibria corresponding to n even (includ-
ing n = 0) have common topological stabil-
ity/instability attributes. This fact also applies to



those equilibria associated to n odd. In virtue of
these reasons, it is enough to analyze the equilibria
resulting for n = 0 and n = 1.

3. STRICT LYAPUNOV FUNCTION

The equilibrium associated to n = 0 is known to
be asymptotically stable. One way to prove this
fact is by finding a strict Lyapunov function and
invoking the Theorem 1.

However, first we prove that the equilibrium is sta-
ble. The natural and classical way is by utilizing
the pendulum total energy function

VL(q, q̇) =
1

2
q̇2 + [1− cos(q)]

which is locally positive definite. Its time deriva-
tive along the systems trajectories (1) yields

V̇L(q, q̇) = −q̇2 ≤ 0

In virtue of Definition 1, VL(q, q̇) qualifies as a
Lyapunov function, but it is not a strict Lyapunov
function because it fails to satisfy that V̇L(q, q̇)
is locally negative definite. Therefore, in view of
Theorem 1, we have the conclusion that the equi-
librium associated to n = 0 is stable. Typically,
the asymptotic stability attribute is shown by
application of the Krasovskii—LaSalle’s theorem
(Vidyasagar, 1993). Instead, in the remaining of
this Section we will utilize a strict Lyapunov func-
tion.

Now, in this paper we propose the following func-
tion inspired from the total energy function

VSL(q, q̇) = VL(q, q̇) +
1

2
sin(q)q̇, (2)

=
1

2
q̇2 + [1− cos(q)] + 1

2
sin(q)q̇

where the term 1
2 sin(q)q̇ has been added. We

have to check that it is a locally positive definite
function. To this end, it is sufficient to ensure:
first, the function vanishes at the equilibrium.
Second, its gradient is null at the equilibrium.
Third, its Hessian evaluated at the equilibrium is
positive definite.

Obviously VSL(0, 0) = 0 by direct substitution.
The gradient is given by∙

sin(q) + 1
2 cos(q)q̇

q̇ + 1
2 sin(q)

¸
which vanishes at the equilibrium. Finally the
Hessian reads as∙

cos(q)− 1
2 sin(q)q̇

1
2 cos(q)

1
2 cos(q) 1

¸
.

Straightforward substitution indicates that the
Hessian is positive definite at the equilibrium.
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Fig. 1. Function VSL(q, q̇)

These arguments imply that function VSL(q, q̇) is
locally positive definite. Figure 1 depicts function
VSL(q, q̇) which vanishes at∙

q
q̇

¸
=

∙
2nπ
0

¸
.

After easy simplifications, the time derivative of
VSL(q, q̇) along the system trajectories (1) leads
to

V̇SL(q, q̇) = −W (q, q̇)

where

W (q, q̇) =

∙∙
1− 1

2
cos(q)

¸
q̇2 +

1

2
sin(q)

2
+
1

2
sin(q)q̇

¸
.

It will be proven that W (q, q̇) is a locally positive
definite function. We proceed by the same stages
that those utilized to shown that VSL(q, q̇) is also
locally positive definite.

First observe that W (0, 0) = 0. Second, the
gradient can be written by∙

1
2 sin(q)q̇

2 + sin(q) cos(q) + 1
2 cos(q)q̇

2
£
1− 1

2 cos q
¤
q̇ + 1

2 sin(q)

¸
which vanishes at [q q̇]T = [0 0]T . On the other
hand, the Hessian matrix is∙

H11(q, q̇) H12(q, q̇)
H21(q, q̇) H22(q, q̇)

¸
where

H11(q, q̇) =
1

2
cos(q)q̇2 + cos(q)2 − sin(q)2 − 1

2
sin(q)q̇,

H12(q, q̇) = sin(q)q̇ +
1

2
cos(q),

H21(q, q̇) = sin(q)q̇ +
1

2
cos(q),

H22(q, q̇) = 2

∙
1− 1

2
cos(q)

¸
.
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Fig. 2. Function V̇SL(q, q̇)

The Hessian evaluated at the equilibrium pro-
duces ∙

1 1
2

1
2 1

¸
which corresponds to a positive definite matrix.
Therefore, these arguments ensure that W (q, q̇) is
a locally positive definite function, thus V̇SL(q, q̇)
is a locally negative definite function. The plot of
V̇SL(q, q̇) is shown in Figure 2; notice that it is
negative and it vanishes only at∙

q
q̇

¸
=

∙
nπ
0

¸
.

This means that VSL(q, q̇) qualifies as a strict
Lyapunov function, and therefore in agreement
with Theorem 1, the equilibrium associated to
n = 0 is asymptotically stable. As a matter of
fact, this strict Lyapunov function applies natu-
rally to prove asymptotic stability of all equilibria
corresponding to n even.

4. CHETAEV FUNCTION

The equilibrium corresponding to n = 1 (and in
general n odd) is known to be unstable. We shift
the equilibrium to the origin by the change of
variable z = q−π. The system (1) can be rewritten
as

d

dt

∙
z
q̇

¸
=

∙
q̇

− sin(z + π)− q̇
¸
. (3)

Thus, the origin [z q̇]T = [0 0]T corresponds
to equilibrium [q q̇]T = [π 0]T . According
to Theorem 1, it is sufficient to find a Chetaev
function to prove that the equilibrium is unstable.

Motivated by the strict Lyapunov function (2), in
this paper we propose

VC(z, q̇) = VL(z, q̇) + 2 sin(z)q̇, (4)

=
1

2
q̇2 + [1− cos(z)] + 2 sin(z)q̇.

It is worth noticing that above function and
the strict Lyapunov function (2) have the same
structure and differs only in a scalar of the third
right hand term sin(z)q̇.

Certainly VC(z, q̇) is not anymore a locally posi-
tive definite function, but it satisfies

• VC(0, 0) = 0
• VC(z, q̇) > 0 for [z q̇]T = [0 q̇]T with q̇ as
small as desired, and for [z q̇]T = [z 0]T

with z arbitrarily small.

According to Definition 3, this means that VC(z, q̇)
is a good candidate to be a Chetaev function. It
remains to prove that its time derivative is locally
positive definite.

After some tedious by straightforward manipula-
tions, the time derivative of VC(z, q̇) along the
trajectories of system (3) leads to

V̇C(z, q̇) = [2 cos(z)− 1] q̇2 + 2 sin(z)2. (5)

Obviously V̇C(0, 0) = 0 and V̇C(z, q̇) > 0 for z
and q̇ small enough. This implies that V̇C(z, q̇) in
(4) is a locally positive definite function, hence
in virtue of Definition 3 we have that VC(z, q̇)
qualifies as a Chetaev function. This can be seen
in Figure 3 where the domain in the state space
where both VC(z, q̇) and V̇C(z, q̇) are positive is
shown. Observe that inside the circle the time
derivative V̇C(z, q̇) is positive. Finally, the insta-
bility attribute of the equilibrium follows from
Theorem 1.

Fig. 3. Chetaev function



5. CONCLUSIONS

Although stability of physical systems can be
studied by utilizing the Lyapunov’s stability the-
ory resorting to energy like functions, some times
it is not sufficient to establish asymptotic stability.
Then, typically the Krasovskii—LaSalle’s theorem
is invoked to support the Lyapunov’s stability
theorem. On the other hand, few studies concern-
ing energy like function for study instability are
available.

By means of a simple mechanical system, this pa-
per have shown the analysis of asymptotic stabil-
ity by proposing a strict Lyapunov function, thus
obviating the Krasovskii—LaSalle’s theorem. On
the other hand, motivated by this strict Lyapunov
function, we have proposed a Chetaev function
having the same structure to show instability.
Indeed, this has been shown on a simple process,
notwithstanding, we believe that the ideas can be
extended to more general systems, in particular
for electromechanical systems.
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