
1.  INTRODUCTION 

Fault detection and isolation are important issues for 
discrete event systems (DES) (Cassandras, 1993). 
Some applications of the supervisory control in fault 
detection have been developed that consider faults as 
forbidden states (Ramadge and Wonham, 1989). The 
observation of the marking was further investigated 
in order to design controllers with forbidden marking 
specifications (Giua and Seatzy, 2002). Another 
approach to study DES with faulty behaviours 
concerns PN models with failure transitions (Ushio et 
al., 1998). In that case, the problem consists to detect 
and isolate the firing of failure transitions in a firing 
sequence. Both approaches are concerned with 
estimation algorithms: with the first approach, firing 
sequences are observed and marking is estimated 
and, in the second one, marking is measured and 
firing sequences are estimated. 

This article focus on the second approach. Our aim is 
to provide some contributions useful to decide which 

sets of places are necessary and sufficient to be 
observed to detect and isolate a fault in a given 
unobservable firing sequences. Faults are represented 
with failure transitions and faulty behaviours result 
from the occurrence of firing sequences that include 
some failure transitions (Alcaraz-Mejia et al., 2003; 
Chung et al., 2003; Sampath et al., 1995; Ushio et 
al., 1998). Admissible sets of observable places 
(AOSP) and minimal AOSP (MAOSP) are 
characterized. An algorithm is also proposed that 
provides the list of all transitions subsets, for which a 
set of place is a MAOSP. At last, another algorithm 
is detailed that works out all MAOSP to estimate a 
given list of transitions subsets.As a consequence, 
“immediate diagnosers” are introduced. An 
“immediate diagnoser” detects and isolates a faulty 
behaviour immediately after the occurrence of the 
faults and before the occurrence of any other event. 
On the contrary, a “delayed diagnoser” may require 
the occurrence of intermediate events: it detects and 
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isolates the firing of failure transitions according to 
the observable traces generated by the system. 
Another article is proposed by the author to IFAC 05 
that concerns “delayed” diagnosers based on the 
investigation of directed paths and causality 
relationships in PN models (Lefebvre et al., 2004). 

The paper is divided into 6 sections. The section 2 is 
about Petri nets. The section 3 gives an overview of 
the relevant literature. The section 4 concerns the 
characterization of AOSP and MAOSP for Petri nets 
models. In section 5, an example is discussed.  

2.  PETRI NETS 

A Petri net (PN) with n places and p transitions is 
defined as < P, T, Pre, Post, MI > where P={Pi}i=1,…,n 
is a not empty finite set of places, T={Tj}j=1,…,p is a 
not empty finite set of transitions, such that P ∩ T = 
∅. IN is defined as the set of integer numbers and IR+ 
as the set of non negative real numbers. Pre: P × T → 
IN is the pre-incidence application: Pre (Pi, Tj) is the 
weight of the arc from place Pi to transition Tj and 
WPR = ( wPR

ij ) i=1,…,n, j=1,…,p ∈ IN n × p with wPR
ij = Pre 

(Pi, Tj) is the pre-incidence matrix. Post: P × T → IN 
is the post-incidence application: Post (Pi, Tj) is the 
weight of the arc from transition Tj to place Pi and 
WPO = ( wPO

ij ) i=1,…,n, j=1,…,p ∈ IN n × p with wPO
ij = Post 

(Pi, Tj) is the post-incidence matrix (Askin and 
Standridge, 1993; Brams, 1983; David and Alla, 
1992; Diaz et al., 2001). The PN incidence matrix W 
is defined as W = WPO – WPR ∈ IN n × p. Let us also 
define M = (mi)i=1,…,n ∈ IN n as the marking vector 
and MI ∈ IN n as the initial marking vector. °Tj (resp. 
Tj° ) stands for the preset (resp. post-set) places of Tj. 
Similarly, °Pi (resp. Pi° ) stands for the preset (resp. 
post-set) transitions of Pi. A firing sequence is 
defined as an ordered series of transitions that are 
successively fired from marking M to marking M’. 
Such a sequence is represented by its characteristic 
vector X = (xj)j=1,…,p ∈ IN p where xj stands for the 
enabling degree of Tj. The marking M' resulting from 
the marking M after firing the sequence X is given by 
(1) (Murata, 1989; Vidal-Naquet and Choquet-
Geniet, 1992): 

∆M = M’ - M = W.X.  (1) 

A subnet PN’ of PN with n’ places and p’ transitions 
is defined as < P’, T’, Pre’, Post’, M’I > with P’ ⊂ P 
and T’ ⊂ T. Pre’: P’ × T’ → IN and Post’: P’ × T’ → 
IN are respectively the restrictions of the pre and 
post-incidence applications limited to the subsets P’ 
and T’. M’I ∈ IN n’ is the initial marking vector of 
PN’. In that sense, a subnet PN’ is defined for any 
subsets of places P’ = {P’i}i=1,…,n’ and transitions T’ 
= {T’j}j=1,…,p’. The marking vector M’ = (m’i)i=1,…,n’ ∈ 
IN n’ of PN’ is defined as the projection M’ = Q.M of 
the vector M over the set P’ with Q ∈ {0, 1} n’×n. The 
same holds for the firing sequences vector X’ = 

(x’j)j=1,…,p’ ∈ IN p’ of PN’ that is defined as the 
projection X’ = D.X of the vector X over the set T’ 
with D ∈ {0, 1} p’×p. The incidence matrix W’ of PN’ 
is defined in the same way as W. When two 
transitions Tj and Tj’ have one or several common 
places Pi in the preset (i.e. {Tj, Tj’} ∈ Pi°), the PN has 
a structural conflict. Such a conflict can be 
considered as a subnet PN’ with P’ = {Pi} and T’ = 
{Pi°}. The conflict becomes an effective one if there 
are not enough tokens in the common place(s) to fire 
both transitions.  

The PN considered in this paper are autonomous PN. 
But all the proposed results are also available for 
other extensions of PN as timed PN or continuous PN 
(David and Alla, 1992; Diaz et al., 2001), because 
they are based on the study of the underlying digraph 
structure. 

3.  RELEVANT LITERATURE 

Faults diagnosis in the context of DES was first 
formulated with automata (Sampath et al., 1995) and 
then extended to PN (Chung et al., 2003; Ushio et 
al., 1998) with unobservable places. The considered 
PN are live, safe and have no unobservable cycle. A 
label L ∈ ∆ = {N}∪∆F is associated to each 
transition. L = N is interpreted as a “normal” 
behaviour; L = Fk means that a failure of type k has 
occurred. ∆F = {Fk}, k = 1,…K is the set of failure labels. 
Normal transitions and failure transitions appear 
usually in structural conflicts. Starting from an initial 
normal state, the system may evolve according to a 
“normal” behaviour by firing a “normal” transition or 
according to a faulty behaviour by firing a “failure” 
transition. The state of a PN model-based diagnoser 
consists of pairs of marking and label. 

On the one hand, the diagnosability of the system is 
usually based on the study of undetermined cycles 
included in the marking tree of the associated 
diagnoser (Chung et al., 2003; Ushio et al., 1998). A 
cycle is called “determined” if it contains at least one 
state that results with no ambiguity from a normal 
firing sequence, or from a Fk - failure firing sequence 
(a firing sequence that contains a Fk - failure 
transition). Characterisation of the cycles is obtained 
according to label propagation and range functions. 
On the one hand, label propagation functions decide 
how to assign the failure labels from a diagnoser state 
to another over an observed sequence. On the other 
hand, range functions tell us how to estimate all the 
next possibly diagnoser states from an initial state 
and after an observable event. Starting from an 
observable initial marking, the diagnoser detects and 
isolates a failure transition in a given firing sequence 
from measurement of the successive observable 
markings generated by the system. The resulting 
diagnosers are “delayed” diagnosers in the sense that 
the occurrence of intermediate events may be 
necessary to detect and isolate the faults. On the 



other hand, the problem of sensor selection for 
discrete event systems was investigated as an 
optimisation problem (Debouk et al., 1999) It was 
also proved that deciding if a sensor selection 
satisfies diagnosability is an NP – problem (Yoo et 
al., 2002). 

Our contribution in the following section is to 
provide structural tools (i.e. not depending on the 
marking) to work out necessary and sufficient 
conditions to characterize admissible sets of 
observable places (AOSP) and minimal AOSP 
(MAOSP) for immediate diagnosis. A faulty 
behaviour is “immediately” detected if no 
intermediate event occurs between the occurrence of 
fault and the detection. Several differences between 
the undetermined cycles based approach and our 
approach must be noticed. The determination of 
undetermined cycles requires the construction of the 
observable marking tree. This approach is 
behavioural in the sense that it is based on the 
analysis of the state evolution. On the contrary, our 
approach takes into consideration the digraph 
structure of PN to provide structural information not 
depending on the state evolution. To work out the 
marking tree is not necessary. Another difference is 
that the undetermined cycles based approach 
provides delayed diagnosers whereas our approach 
provides immediate diagnosers. Thus, both results 
are complementary. Conditions for delayed diagnosis 
are less restrictive but the occurrence of intermediate 
events must be tolerated, whereas conditions for 
immediate diagnosis are stronger but no intermediate 
event occurs before the alarm. At last one can notice 
that the systematic determination of the set of AOSP 
and MAOSP is useful to decide the number and 
location of sensors that are required according to a 
given finite set of faults to be detected and isolated. 
The proposed algorithms provide immediate 
diagnosis whatever the initial marking is. No 
assumption are required concerning the safety and 
liveness of the PN models. 

4.  SETS OF OBSERVABLE PLACES FOR 
IMMEDIATE FIRING ESTIMATION  

In the context of faults diagnosis, the determination 
of admissible sets of observable places (AOSP) and 
minimal AOSP (MAOSP) is concerned with the 
estimation of firing sequences that may include some 
failure transitions.  

Let us divide the set P of PN places into the set PO of 
m observable places and the set PU of n-m 
unobservable ones: P = PO ∪ PU. Only the marking 
MO of the observable places is assumed to be 
measured. According to this partition, let us define 
the permutation matrix Q ∈ IN n x n such that Q.M = 
(MT

O, MT
U)T with MO ∈ IN + m, and MU ∈ IN + n-m. Let 

us also define a list θ ⊂ T p’ of p’ subsets θk ⊂ T  of 
transitions (eventually a list of p’ transitions) and 

consider X(θ) the firing vector to be estimated: X(θ) 
= D(θ).X, where D(θ) ∈ {0, 1} p’x p is a projector in 
the space of the firing sequences and X(θ) ∈ IN + p’. 
In other words, the kth row of the matrix D(θ) 
characterizes θk, and the number of firings in the kth 
subset of transitions (i.e. the kth entry of X(θ)) has to 
be estimated from the measurement of the observable 
marking MO. Equation (1) results in (2): 

1. . ( ) . ( ).

. ( )O O

U U

Q M QW D D X
M W

X
M W

θ θ

θ

−∆ =

∆   
=   ∆     (2) 

Linear algebra properties provide an exact estimation 
ˆ ( )X θ  of the vector X(θ) if the matrix D(θ) is square 

and regular and WO is of full column rank (Lefebvre 
and El Moudni, 2001). But, in many cases these 
conditions are not satisfied and the PN model must 
be completed with additive observable places 
(Lefebvre and El Moudni, 2001).  

Another solution is to use not only linear relations 
but also information about the sign of the marking 
variation. Let us define for this purpose AOSP and 
MAOSP to estimate X(θ) and consider the following 
assumptions: 

Hypothesis 1: The considered PN has no selfloop 
(i.e. {Pi, Tj} is a selfloop if Pre(Pi, Tj) = Post(Pi, Tj)). 

Hypothesis 2: There is no simultaneous firing and 
there exists always an observation between two 
consecutive firings in a given firing sequence. 

The reason for hypothesis 1 is that the firing of a 
transition in a selfloop is always undetectable 
because it does not have any influence on the 
marking variation (figure 1, {P4, T3} is a selfloop). 
The reason for hypothesis 2 is similar. For example 
the marking of a cycle with 2 places and 2 transitions 
is not modified if there is no observation between the 
firing of the first transition and the firing of the 
second one (figure 1, {P2, T3, P3, T4} is a cycle). 
Moreover the marking of a given place is not 
modified if a transition in the preset and another one 
in the post – set are simultaneously fired (figure 1, 
the marking of the place P1 is not changed if 
transitions T1, and T2 are simultaneously fired). 
According to hypothesis 2, X(θ) ∈ {0, 1} p’ and 
||X(θ)|| ≤ 1 (i.e. the p’ entries of X(θ) are either 0 or 1 
and X(θ) has at more one non zero entry). 

 

 

 

Figure 1: Example of PN with selfloops and cycles 
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Definition 1: The subset of places PO ⊂ P is called 
an admissible observation set of places (AOSP) to 
estimate the firings of θ if hypothesis 1 and 2 are 
satisfied and if X(θ) can be estimated from the 
measurement of the marking vector variation ∆MO  

PO is an AOSP to estimate the firings of θ means that 
one can detect a firing in θ before the occurrence of 
any other event, by observing each place Pi ∈ PO 
before and after the transitions firing. Moreover one 
can isolate which subset θk⊂ T  is concerned.  

Definition 2: The subset of places PO ⊂ P is called a 
minimal admissible observation set of places 
(MAOSP) to estimate X(θ) if PO is an AOSP to 
estimate X(θ) and if there is no subset of places P’ ⊂ 
PO, P’ ≠ PO that is an AOSP to estimate X(θ). 

PO is an MAOSP to estimate the firings of θ means 
that PO is a minimal AOSP for inclusion. 

The problem that is solved in this section is to give 
necessary and sufficient conditions in order to decide 
if the set PO of observable places is an AOSP or an 
MAOSP to estimate X(θ).The propositions 1 to 3 
take advantage of the sign of the marking variation to 
estimate X(θ). Constructive algorithms are also 
provided to answer the following questions. Given a 
subset PO of places, what is the list θ of transitions 
subsets, for which PO is a MAOSP ? Given a list θ ⊂ 
T p’ of transitions subsets, what are all MAOSP to 
estimate the vector X(θ) ? 

Proposition 1: Let us consider the case of a unique 
observable place PO = {Pi}. The following necessary 
and sufficient conditions hold: 

a) ∆Mi > 0 if and only if there exists a unique Tj ∈ 
°Pi such that X(Tj) = +1. 

b) ∆Mi < 0 if and only if there exists a unique Tj ∈ 
Pi° such that X(Tj) = +1. 

c) ∆Mi = 0 if and only if ∀ Tj ∈ °Pi∪Pi°, X(Tj) = 0. 

Proof: if ∆Mi > 0, then according to hypothesis 2, 
there exists a unique Tj ∈ °Pi such that X(Tj) = +1. 
Reciprocally, if there exists a unique Tj ∈ °Pi such 
that X(Tj) = +1, then hypothesis 1 and 2 lead to ∆Mi 
> 0. Thus condition a) holds. Condition b) is 
similarly obtained. Concerning condition c), one can 
state: if for all Tj ∈ °Pi ∪ Pi°, X(Tj) = 0, then ∆Mi = 
0. Reciprocally, if ∆Mi = 0, then the hypothesis 1 and 
2 lead to X(Tj) = 0, for all Tj ∈ °Pi ∪ Pi°. Thus 
condition c) holds.  

Proposition 2: Let us consider the case of a set of 
observable places PO ⊂ P. The following necessary 
and sufficient conditions hold: 

a) For all Pi ∈ PO, ∆Mi > 0 if and only if there exists 
a unique Tj ∈ 

i O

i
P P

P
∈

°∩  such that X(Tj) = +1. 

b) For all Pi ∈ PO, ∆Mi < 0 if and only if there exists 
a unique Tj ∈ 

i O

i
P P

P
∈

°∩  such that X(Tj) = +1. 

c) For all Pi ∈ PO, ∆Mi = 0 if and only if ∀ Tj ∈ 

i O

i i
P P

P P
∈

° °∪∪ , X(Tj) = 0. 

Proof: from proposition 1a, we can state that for all 
Pi ∈ PO, ∆Mi > 0 if and only if there exists a unique 
Tji ∈ °Pi such that X(Tji) = +1. According to 
hypothesis 2, Tj = Tji for all Pi ∈ PO. Thus condition 
a) holds. Condition b) is similarly obtained. From 
proposition 1c we can state that for all Pi ∈ PO, ∆Mi 
= 0 if and only if for all Tji ∈ °Pi ∪ Pi°, X(Tji) = 0. 
Thus for all Tj ∈ 

i O

i i
P P

P P
∈

° °∪∪ , X(Tj) = 0, and 

condition c) holds. 

Let us consider PO = P+
O ∪  P -

O ∪ P 0
O ⊂ P such 

that P+
O ∪  P -

O ≠ ∅ and ∆Mi > 0 for all Pi ∈ P+
O, 

∆Mi < 0 for all Pi ∈ P –
O, ∆Mi = 0 for all Pi ∈ P 0

O. 
Let us also consider the set of transitions E(P+

O, P –
O, 

P 0
O) ⊂ T defined as: 

0

0( , , )
i O i O i O

O O O i i i i
P P P P P P

E P P P P P P P
+ −

+ −

∈ ∈ ∈

     
     = ° ∩ ° ∩ ° ∪ °
     
     
∩ ∩ ∪

 (3) 

where (.) stands for the complementary part of (.) in 
the set of places P. If card(PO) = n’ then 3n’-1 
partitions exist for PO according to the subsets P+

O, P 

–
O and P0

O. 

Proposition 3: The subset PO ⊂ P of cardinality n’ is 
an AOSP to estimate X(θ) if and only if there exist p’ 
among 3n’-1, partitions (P+

O(k), P –
O(k), P 0

O(k)) of 
the set of places PO such that E(P+

O(k), P –
O(k), P 

0
O(k)) = θk, k = 1,…,p’. Moreover, PO is MAOSP to 

estimate X(θ) if there exists no subset of places P’ ⊂ 
PO, P’ ≠ PO that verifies the previous property. 

Proof: let us consider a subset of transitions θk, k = 
1,…,p’ such that X(θk) = +1 (i.e. a unique transition 
of θk is fired between two consecutive marking 
measurements). If there exists a partition (P+

O(k), P –

O(k), P 0
O(k)) of the set of places PO such that 

E(P+
O(k), P –

O(k), P 0
O(k)) = θk then according to 

proposition 2, we have: ∆Mi > 0 for all Pi ∈ P+
O(k), 

∆Mi < 0 for all Pi ∈ P-
O(k) and ∆Mi = 0 for all Pi ∈ 

P0
O(k). Thus PO ⊂ P is an AOSP to estimate the 

firing of θk. 



Given a subset PO of n’ places and let G(P0) defined 
by equation (4):  

0 0( ) { ( , , ), , }O O O O O O O O O OG P E P P P P P P P P P+ − + − + −= = ∪ ∪ ∪ ≠∅
  (4) 

The algorithm 1 provides the list θ of all transitions 
subsets, for which PO is a MAOSP. 

Algorithm 1: 
1. Let PO = {Pα(1), …,Pα(n’)}. 
2. Let k = 1. 
3. P+

O = P –
O = P 0

O = ∅. 
4. For every Pα(i) ∈ PO repeat 5 to 7: 
5. k = 3.q + r, q ∈ IN, r ∈ IN, r < 3.  
6.  If r = 2, then P+

O =P+
O ∪ Pα(i). 

If r = 1, then P-
O =P-

O ∪ Pα(i). 
If r = 0, then P0

O =P0
O ∪ Pα(i). 

7. θ = {θ | E(P+
O, P –

O, P 0
O)}. 

8. k = k + 1. 
9. Goto 3 until  k = 3n’ – 1. 

Given a list θ ⊂ T p’ of p’ transitions subsets θk ⊂ T 
and let G(θk) defined by equation (5): 

0 0

0

( ) {( ), , , ,

, ( , , ) }
k O O O O O O O O O

O O O O O k

G P P P P P P P P P

P P E P P P

θ

θ

+ − + −

+ − + −

= ∪ ∪ ⊂ ⊂ ⊂

∪ ≠ ∅ =
 (5) 

The recursive algorithm 2 based on a combinatory 
exploration of the PN subsets of places works out all 
MAOSP to estimate X(θk). 

Algorithm 2: 
1. If PO = {Pα(1), …,Pα(n’)} is an AOSP to estimate the 
firings of θk then r = 1 else r = 0. 
2. If r = 1 goto 3 else goto 9. 
3. Let rm = 0. 
4. For every Pα(i) ∈ PO repeat 5 to 7: 
5. Let P’O = {Pα(1), …, Pα(i-1), Pα(i+1),Pα(n’)}. 
6. Determine all MAOSP (G’, r’) in P’O to estimate 
the firing of θk. 
7. rm = rm + r’. 
8. If rm = 0 and P0 ∉ G(θk) then G(θk)  = { G(θk) | 
P0}, end if. 
9. End. 

Both algorithms are illustrated in section 5. 

5.  EXAMPLE 

Let us consider the PN in figure 2 as an example 
(Ushio et al.1998). All transitions are assumed to be 
unobservable. The transitions T4 and T5 represent two 
failure events F4 and F5. The set of observable places 
is PO = {P1, P2, P3} the set of unobservable places is 
given by PU = {P4, P5}.  
With the help of proposition 3 it is easy to state that 
the set of observable places PO = {P1, P2, P3} is an 
AOSP to estimate immediately the firing of θ1 = {T4} 

(detection and isolation of fault F4)  It is also an 
AOSP to estimate immediately the firing of θ2 = {T5} 
(detection and isolation of fault F5). At last it is an 
AOSP to estimate immediately the firing of the 
subset of transitions θ3 = { T4, T5 } (detection of 
faults F4 and F5).  

 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 2: Example of a PN model based diagnoser 

The same proposition is helpful to state that PO = 
{P1, P2, P3} is not a MAOSP to estimate immediately 
the firing of the failure transition T4 ({P1, P2} ⊂ {P1, 
P2, P3} is a AOSP for {T4}) neither a MAOSP to 
estimate immediately the firing of the failure 
transition T5 ({P2, P3} ⊂ {P1, P2, P3} is a AOSP for 
{T5}). But PO = {P1, P2, P3} is a MAOSP to estimate 
immediately the firing of the subset of transitions θ3 
= {T4, T5}. 

Table 1 : MAOSP for θ1, θ2, θ3 and θ 
 

Subsets of 
transitions to be 

estimated 
Corresponding MAOSP 

θ1 = {T4} {P4, P5}, {P2, P5}, {P1, P5}, 
{P1, P4}, {P1, P2} 

θ2 = {T5} {P4, P5}, {P2, P5}, {P1, P5},
{P3, P4}, {P2, P3} 

θ3 = {T4, T5} {P5}, {P1, P2, P3}, {P1, P3, P4}
θ = {{T4}, {T5}} {P4, P5}, {P2, P5}, {P1, P5},

{P1, P2, P3}, {P1, P3, P4} 
 
The use of algorithm 2 provides all MAOSP for the 
estimation of {T4}, {T5}, or {T4, T5} in a systematic 
way (the observable set of places are underlined, the 
common MAOSP for {T4} and {T5} are in bold). The 
MAOSP to estimate immediately the firings of θ = 
{θ1, θ2} = {{T4}, {T5}} are obtained as combination 
of the MAOSP to estimate the firings of θ1 and θ2. 
Let us mention that each MAOSP to estimate the 
firing of θ3 = {T4, T5} is included in one MAOSP, at 
least, required to estimate the firings of θ = {{T4}, 
{T5}}.  

The use of algorithm 1 provides the list of all subsets 
of transitions for which the considered subset of 
places is a MAOSP.  

P5 

T4 (F4) 

P4 

T2(N) P1 T1(N) P2 P3 

T5(F5) 

T3(N) 



As a conclusion one can state hat the sets of 
observable places PO = {P1, P2, P3} is sufficient to 
detect and isolate the faults F4 and F5. But the 
observation of the complete set is not necessary if 
only one fault is considered F4 or F5. Finally, if the 
location of the sensors can be modified, the analysis 
points out that the subsets {P4, P5}, {P2, P5}, or {P1, 
P5} are necessary and sufficient for detection and 
isolation of the faults F4 and F5. Moreover a single 
sensor in {P5} is also sufficient for detection (but not 
for isolation) of the faults F4 and F5. 
 

Table 2 : List of transitions subsets whose firing can 
be estimated thanks to the observation of the marking 

of the MAOSP of {T4} and {T5}. 
 
Subset of places to be 

observed List of transitions subsets 

{P4, P5} {{T1}, {T3}, {T4}, {T5}} 
{P2, P5} {{T1}, {T3}, {T4}, {T5}} 
{P1, P5} {{T1}, {T2}, {T4}, {T5}} 
{P1, P4} {{T1}, {T2}, {T4}, {T3, T5}} 
{P1, P2} {{T1}, {T2}, {T4}, {T3, T5}} 
{P3, P4} {{T2}, {T3}, {T5}} 
{P2, P3} {{T2}, {T3}, {T5}} 

 

Table 3 : List of transitions subsets whose firing can 
be estimated thanks to the observation of the marking 

of the MAOSP of {T4, T5}. 
 
Subset of places to 

be observed List of transitions subsets 

{P5} {T4, T5} 
{P1, P2, P3} {{T1}, {T2}, {T3}, {T4}, {T5}} 
{P1, P3, P4} {{T1}, {T2}, {T3}, {T4}, {T5}} 

 

6.  CONCLUSIONS 

Fault detection and isolation for discrete event 
systems modeled with PN has been investigated from 
a structural point of view. For this purpose necessary 
and sufficient conditions have been established to be 
satisfied by a given set of observable places for 
immediate detection and isolation of faulty 
behaviours resulting from the occurrence of firing 
sequences including some failure transitions. The 
proposed results are easy to apply in the sense that 
they result in two complementary algorithms. The 
first algorithm starts from a set of observable places 
and computes the list of transitions subsets whose 
firing is detected and isolated. The second algorithm 
starts from a list of transitions subsets and computes 
the list of places subsets to be observed. 

The perspectives of this work concern the design of 
delayed diagnosers. In this context, directed paths 
and causality relationships in PN will be further 
investigated (Lefebvre and Delherm, 2003; 2004) to 
analyse the observable traces generated by the system 
when a fault occurs.  
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