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Abstract: In this paper, a novel PID-like neural network controller (PIDNNC) is created. 
It is composed of a neural network with no more than 3 neural nodes in hidden layer, and 
there are an activation feedback and (or) an output feedback in hidden layer, respectively. 
This special structure makes the network be able to be a P, PI, PD, or PID controller as 
needed. The proposed controller weights can be updated on-line according to errors 
caused by non-linear and uncertain factors of system, based on some adaptation 
mechanism. The resilient back-propagation algorithm with sign instead of the gradient is 
used to derive the rule of updating network weights. The basic ideas, techniques and 
analysis are presented. Finally, we give the simulation experiment of a double 
inverted-pendulum system and the comparison of the effects between the proposed 
control strategy and the conventional one. Copyright © 2005 IFAC 
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1.  INTRODUCTION 
 

Proportional-integral-derivative (PID) control is a 
very popular control strategy in industry due to its 
simple architecture and easy tuning. Despite their 
wide spread use and considerable history, PID tuning 
is still an active area of research, both academic and 
industrial. During the past five decades, a 
comprehensive PID tuning literature has been 
developed. Roughly speaking, there are two different 
approaches to obtain PID and PID-like controller 
parameters. First, tune the parameters of the PID 
structure by following one of several available tuning 
techniques. Examples of these techniques include: 
Ziegler-Nichol (Z-N) method (Ziegler and Nichols,  
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1942), internal-model-control (IMC) based method 
(Morari and Zafiriou, 1989), optimization method 
(Zhuang and Atherton, 1993) and gain-phase margin 
method (Ho, et al.,1995). For single input/output 
(SISO) plants, satisfactory control can be achieved 
by using established tuning rules. These rules can be 
applied to multivariable plants with SISO 
characteristics as well. Many multivariable plants, 
however, show significant internal interaction. Since 
the tuning rules are developed for SISO system, their 
applications to such “true” multivariable plants are 
ineffective. Further, in the case of multivariable 
plants, the number of PID parameters becomes quite 
a lot. Trial and error techniques are thus inadequate 
to derive a good compromise between controller 
performance and robustness. The underlying theory 
for multi-loop plants is still immature. Secondly, 
assume that the controller has a PID structure, and 



find the PID parameters by using some well-known 
optimization methods, e.g., (Grimble, 1990), 
mixed / (

∞H

2H ∞H Chen, et al., 1995) and semi-definite 
programming approaches (Bao, et al., 1999). These 
methods can be used to obtain the PID controller 
parameters such that the controllers have good 
time-domain performance and frequency-domain 
robustness. The main problem with this approach is 
that the resulting controllers are state-space 
controllers of high-order rather than low-order 
controllers with a fixed structure. Although one can 
reduce it or approximate it to one with a PID-like 
structure, it is not so far the reduced-order controller. 
The main advantage of neural networks is that it is 
possible to train a neural network to perform a 
particular function by adjusting the values of 
connecting weights between elements. Due to the 
learning ability of the artificial neural networks, a 
number of studies for PID controller design have 
successively been proposed by using neural networks 
(Omatu, et al., 1990; Chen and Chang, 1996).  
The usual idea using neural networks within PID 
controller is to tune the PID parameters. The 
structure of controller itself is still a PID controller’s. 
Some other ideas of PID-like neural networks are 
also proposed (Hemerly and Nascimento, 1999), but 
the design and analysis procedures are complex and 
difficult. From these factors, the specifications 
required for real applications of control theories are 
that the control structures and algorithms should be 
simple enough to be implemented and understood. 
The control algorithm should have following features 
such as learning ability, flexibility, robustness and 
nonlinearity. The need to deal with systems that 
include uncertainties and unknown nonlinearities, 
operating in highly uncertain environments, has 
attracted a lot of research activities mainly through a 
neuro-control approach. 
In this paper we develop a PID-like Neural Network 
Controller (PIDNNC). The use of a PID structure in 
the way eliminates networks design problems such as 
the choice of network topology, (i.e., the number of 
hidden units) and reduces the sensitivity of the 
network to the initial values of the weights. It is 
hoped that the combination will take the advantage of 
simplicity of PID control and the neural networks’ 
powerful capability of self-learning and tackling 
non-linearity. The paper is organized as follows. In 
Section 2 the proposed PIDNNC structure is 
described. Then, we derive in Section 3 updating 
weights rules of neural network controller according 
to the improved resilient back-propagation algorithm. 
The stability analysis of closed-loop system is 

discussed in Section 4. In Section 5 we give a 
numerical application to a double inverted-pendulum 
system by using of the proposed controller. The 
comparison of control results without and with 
disturbance between PIDNNC and conventional 
controller are also given. Conclusions are given in 
Section 6. 

 
 

2. STRUCTURE DESIGN OF THE PIDNNC 
 

The PIDNNC is composed of input layer, hidden 
layer and output layer as shown in Fig. 1. In input 
layer there are s  input neural nodes, where s  is 
the number of measurable output variables of 
controlled system. In hidden layer there are no more 
than 3 neural nodes: we call them integral node , 
proportional node  and derivative node , 
respectively. In output layer there is only one neural 
node which outputs the control value. The activation 
functions in hidden layer and output layer are all 
linear functions. Nodes in input layer and hidden 
layer are full connected. The integral node  in 
hidden layer has characteristic of output feedback, 
which is realized by delaying the output of  with 
a unit sampling period and then feeding it back to the 
weighted sum node of . The derivative node  
in hidden layer has characteristic of activation 
feedback, which is realized by negatively feeding 
back the output of weighted sum node of  with a 
unit sampling period delay to the place of the input of 
the node . The proportional node  in hidden 
layer is a general node without any feedback. 
According to the structure described above and as 
shown in Fig.1, the output of nodes in hidden layer 
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Fig. 1. The structure of the PIDNNC proposed.  
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The final output of neural controller is 
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Taking 1−z  as an unit delay factor, we get 
, . From 

equations (1)-(4) of network, we may see that due to 
the output feedback, the equation (1) of the first 
neural node in hidden layer can be written as 
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Equation (5) has the relationship of integral, so we 
call  is an integral node. On the other hand, 

due to the activation feedback, the equation (3) of the 
third neural node in hidden layer can be rewritten as 
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Equation (6) has the relationship of differential, so 
we call  is a differential node. )(3 ka
The basic idea of PID is that the control action u 
should be proportional to the error, the integral of the 
error over time, and the temporal derivative of the 
error. From equations (4)-(6) we can see that when 
the neural controller adjusts input/output relation of 
the system, it shows the characteristic of proportional 
(the second node ) + differential (the third node 

) + integral (the first node ), and it becomes 
actually a PID-like neural network controller. The 
conventional PID controller is usually only suitable 
for the system with single-input/single-output (SISO) 
system and without consideration of environmental 
and disturbing factors. The PIDNNC proposed here 
is hoped to be suitable for multi-input/multi-output 
(MIMO) system and can regulate system parameters 
adaptively and on-line under the effect of uncertain 
and un-modeled factors. 

2a
3a 1a

Conventional neural networks can have several 
layers. There are usually 2 main types of multi-layer 
networks – feed forward and recurrent, in which, 
recurrent networks have at least on feedback loop. 
This means an output of a layer feeds back to any 
proceeding layer. This gives the network partial 
memory. This makes recurrent networks powerful in 
approximating function depending on time. The 
PIDNNC proposed has two layers, in which the 
hidden layer plays a multi-input PID function so it 
has the explicit signification of PID, while the output 
layer plays the rule of sum. Although two layers of 
the network use the linear activation function, using 

of the non-normal mix local recurrent network, an 
activation feedback on the integral node and an 
output feedback on the derivative node in hidden 
layer, makes the PIDNNC have the features which 
are exist neither in the normal linear networks nor in 
conventional local recurrent networks and their 
PID-like controller. On the other hand, because of 
being a network, PIDNNC is also different from the 
PID controller by using neural networks tuning. 

 
 

3. UPDATING WEIGHTS RULES OF THE 
PIDNNC 

 
Like general controllers design procedure, the 
objective of the PIDNNC is to minimize the error 
between the closed-loop output of controlled system 
and the given command input. The structure of 
closed-loop control system using neural network 
controller is given in Fig. 2. The output error of 
closed-loop system is defined as 

)()()( kykrke jjj −= ，j = 1, 2, …,s     (7) 
It is assumed that   are output 
variables of system that are measurable directly by 
sensor, where 
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j  is the number of measurable output 
variables, and ,  are given 
command inputs. Then cost function to output  
at  is defined as 
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Equation (9) is the final cost function used in every 
sampling period. 
Without loss of generality, we use  to derive the 
rules of updating weights of neural network 
controller. The rules of updating weights are obtained 
by means of minimizing cost function . Here we 
adopt the concept of gradient descent. 
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Fig. 2. The structure of close-loop control system. 
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The weights of output layer are 
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4. STABILITY ANALYSIS OF CLOSED-LOOP 
SYSTEM 

 
In order to analyze the stability of closed-loop system, 
we define a Lyapunov function as 
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in which  represents the change of weights, 
then  
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On the one hand, we have 
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from (18) we can see that because 

, under the action of control 

, the sufficient condition of closed-loop system 
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The value range of leaning rate that can guarantee the 
control system stability is 
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5. NUMERICAL APPLICATION TO DOUBLE 
INVERTED-PENDULUM 

 
The controller proposed is applied into a typical 
self-unstable inverted pendulum system in order to 
verify its effectiveness and advantage. As we know, 
the inverted pendulum system is typically used to 
benchmark new control techniques, as it’s a high 
non-linear unstable system. The system model used 
in the simulation is based on the double 
inverted-pendulum GIP-200-L, which is produced by 
Googol Technology (Shenzhen) Ltd, is composed of 
three parts. The first part is an equipment including a 
cart, a drive and links. The second one is an electrical 
control box with motor drive and interface circuit. 

  



The third one is a general 4-axis movement control 
board fixed in a PC.  
As it is well known, variables in a double 
inverted-pendulum system are: x , position of cart; 

1θ , offset angle of link 1(short link); 2θ , offset 
angle of link 2(long link). The inverted pendulum has 
3 outputs, in order to have full state feedback control 
3 PID controllers would have to be used. Neural 
networks have a big advantage here due to their 
parallel nature. One PIDNNC could be used instead 
of 3 PID’s. The initial weight values of neural 
network are obtained by Linear Quadratic Regulation 
(LQR) algorithm whose control law is 

)( 2625141321 θθθθ &&& kkkkxkxkKXU +++++−=−=  
which is derived by LQR, and 
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Here we use such K as the initial weight values of the 
neural network controller. The structure of neural 
network controller is shown in Fig.3 in which there 
are 3 nodes in input layer, 2 nodes in hidden layer 
and 1 node in output layer. Notice that there are only 
2 nodes in hidden layer, which are proportional node 
and derivative node, and integral node  (as be 
shown with dashed line in the Fig. 3 needs not be 
used in the given application. The inputs to neural 
network are  
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xe −=1  ， 12 θ−=e ， 23 θ−=e . 
According to the variables physical meanings of 
LQR, initial corresponding weight values of PIDNN 
are  
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Fig. 3. Structure of PIDNNC used in a double 
inverted-pendulum.  

Fig. 4. Control system of double linear 
inverted-pendulum devices. 
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Fig. 5(a)  Comparison of cart displacement x . 
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Fig. 5(b)  Comparison of angle 1θ  response. 
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Fig. 5(c)  Comparison of angle 2θ  response. 
 

The whole control system is shown in Fig.4.   
Two kinds of experiments were done: 1) Comparable 
experiment of LQR and PIDNNC under no external 
disturbance. 2) Comparable experiment of 
anti-disturbance ability of two kinds of controllers 
under external disturbance. Disturbance given in 
system experiment is a pulse signal with amplitude of 
0.0001 in every four sampling periods. Fig. 5 shows 
comparable results of displacement x , angle 1θ  
and angle 2θ respectively controlled by LQR and 
PIDNNC under no external disturbance. 
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controllers is that PIDNNC has an extra ability of 
adjusting controller parameters (network weights) 
on-line according to measured system errors in each 
sample period. It can be seen from Fig.5 that under 
the situation without disturbance, the PIDNNC 
results are slightly better than that of LQR controller 
but the difference between them is small. All 
experiments must be done under the condition of the 
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system stability, which can be satisfied by properly 
adjusting learning rate. 

 
6. CONCLUSIONS 

 Comparable results of displacement x , angle 1θ  
and angle 2θ  respectively controlled separately by 
LQR and PIDNNC under disturbance are given in 
Fig. 6, from which it can be seen obviously that when 
giving external disturbance to system, two 
controllers’ results demonstrate distinct different, 
especially on the displacement variable. The 
displacement response controlled by LQR changes a 
lot. This means that links move greatly in horizontal 
direction compared with the situation without 
disturbance. While the same variable controlled by  

An adaptive PID-like neural network controller 
suitable for multivariable nonlinear system is 
proposed in this paper. Rules of updating weights for 
the controller are derived. The effect of learning rates 
to stability of closed-loop system is analyzed. The 
actual numerical experimental implementation on a 
double linear inverted-pendulum based on the control 
strategy proposed and compared with the effect of 
the LQR control strategy demonstrates that the 
controller proposed has the advantages of simple 
structure, easy-design and higher response 
performance. 
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