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Abstract: A method is proposed to detect and identify two common classes of actuator
faults in nonlinear systems. The two fault classes are total and partial actuator faults.
This is accomplished by representing the nonlinear system by a Linear Parameter Varying
(LPV) model, which is derived from experimental input-output data. The LPV model is
used in a Kalman filter to estimate augmented states, which are directly related to the
faults. Decision logic has been developed to determine the fault class from the estimated
augmented states. The proposed method has been validated on a nonlinear simulation
model of a small commercial aircraft.Copyright c© 2005 IFAC
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1. INTRODUCTION

Due to the increased demand of reliability of systems,
the field of Fault Detection and Identification (FDI)
using analytical redundancy has attracted the interest
of many researchers. Different views originated which
have resulted in different FDI methods such as the par-
ity space approach, parameter estimation methods and
principal component analysis. A thorough discussion
of these methods can be found in Chen and Patton
(1999) and Blankeet al. (2003).

However, the majority of classic FDI research is fo-
cused on linear systems, whereas many practical sys-
tems show a strongly nonlinear behavior. Hence, more
recently nonlinear FDI has become a topic of interest.
Some results have been obtained using nonlinear sys-
tem theory, see e.g. Persis and Isidori (2001). These
results however require that the nonlinear model is
simulated in realtime with the system to be monitored.
For complex systems this can be impossible due to
the limited computation power in practical applica-
tions. Furthermore, theoretical derivations of stability

and performance can become very involved for these
complex systems. Therefore, another approach is to
use LPV systems to model the nonlinear systems.
The main advantage of LPV models is that powerful
linear design tools can be applied to complex non-
linear models. LPV models have already been used
frequently for control purpose, e.g. in aircraft (Balas,
2002). However, the application of LPV methods to
FDI has not been fully exploited yet. One of the very
few research efforts on the application of LPV models
to FDI can be found in Bokor and Balas (2004). Here,
the geometric approach for linear FDI is extended to
LPV systems. In this paper we will also pursue the
LPV FDI philosophy, but with another approach for
FDI.

In most current aircraft, FDI is based on redundant
hardware. However, this form of redundancy has some
disadvantages such as the costs for the extra hardware,
the increased weight and maintenance. Therefore, this
research, which was performed in the scope of the Eu-
ropean ADFCS-II project focuses on using analytical



redundancy methods for actuator faults in aircraft. The
FDI approach used here, is the parameter estimation
approach. In this approach, parameters which are di-
rectly related to actuator faults such as multiplication
factors on inputs and measurements, will be estimated
together with the system state. The resulting filter is
referred to as an augmented filter. This FDI approach
has proven its usefulness in Gobboet al. (2001) in
which an extended Kalman filter, which linearizes the
nonlinear model each time step, is applied to FDI.
This linearization at each time step can be very time
inefficient for large systems. Furthermore, the same
method has been used in Mešić et al. (2003) in which
a linear model is used. The main contribution of this
paper is the use of the augmented filter approach for
FDI in combination with LPV models, instead of lin-
ear models or models linearized at each step of the
filter.

This paper is organized as follows. In section 2 the
augmented filter will be described together with the
decision logic. Section 3 will deal with the LPV model
that is used for FDI. In section 4 an evaluation of the
proposed method will be given. Section 5 is devoted
to the conclusions.

2. ACTUATOR FDI WITH AUGMENTED
FILTERS

In Figure 1 an overview is given of a control system
that is equipped with FDI. In such a system, faults can
occur in the actuators, sensors and in the components
of the system itself (e.g. wing damage of an aircraft).
In this paper we will focus only on actuator faults.
These actuator faults will be identified by analyzing
the difference between the two signalsuc andus in
the figure. The signalus is not measurable. Instead,
it is estimated by using an analytical model of the
system. In case of a fault, the command signal from
the controlleruc, is not equal to the input signal that
really excites the systemus. In the nominal (fault
free) case it holds thatuc=us. In order to detect and

Fig. 1. An overview of a monitored system.

identify a fault, the following parametrization of the
state-space model is used

x(k + 1) = Ax(k) + B
(
β(k) ∗ uc(k)

)
+ w(k)(1)

y(k) = Cx(k) + D
(
β(k) ∗ uc(k)

)
+ v(k) (2)

where∗ is a point-wise multiplication,x(k) ∈ Rn is
the state,uc(k) ∈ Rm is the input,y(k) ∈ Rl is the
output andw(k) andv(k) are respectively the process
noise and the measurement noise. These noises are
assumed to be zero mean white noise sequences with
covariance matricesQ andR, defined by

E

[
v(k)
w(k)

] [
v(j)T w(j)T

]
=

[
R(k) S(k)T

S(k) Q(k)

]
δ(k − j),

(3)
whereδ(j) is the unit pulse,E is the expectation op-
erator, andR(k) andQ(k) are both positive definite.
The multiplication factorβ(k) ∈ Rm is the parameter
that will reflect the fault. So, in order to know whether
a fault has occurred, this parameter is estimated from
the following augmented system

x̂a(k + 1) =

[
A Bu(k)

0 I

]
x̂a(k) + wa(k) (4)

ŷ(k) =
[
C 0

]
x̂a(k) + D

(
uc(k) ∗ β̂(k)

)
+ v(k) (5)

wherex̂a(k) =
[
x̂(k) β̂(k)

]T

is the total state esti-

mated by the augmented filter. The termBu is a short
notation for[B1uc1(k) . . . Bmucm(k)], whereBi

represents the i-th column ofB anduci(k) represents
the i-th component ofuc(k). The process noise now
becomeswa(k) = [w(k) wβ(k)]T . In this formula-
tion the fault parameterβ(k) is assumed to evolve as
a random walk (Brownian motion). Random walk is
the integration of white noise. Although it is unknown
how the fault parameterβ(k) will exactly evolve, the
random walk assumption has proven to model such
signals sufficiently well (Měsić et al., 2003). By using
the random walk model variation of the uncertainty
and the rate at which it changes can be reflected. Tun-
ing of wβ(k) determines the behavior of̂β(k). The
relation betweenuc(k) andus(k) is

us(k) = uc(k) ∗ β̂(k) (6)

The observer used to estimate the augmented state
is the Kalman filter. Tuning of the Kalman filter is
done by changing the parameters of the the covariance
matricesQa of the augmented statexa(k) and R.
Section 4 will elaborate further on the tuning process.

2.1 Types of actuator faults

Common actuator faults in aircraft can be subdivided
into two types (Bǒskovíc and Mehra, 1999): total
faults and partial faults. When a total fault takes place
in an actuator, the actuator does not react on the
control signals anymore. When a partial fault occurs,
the actuator still reacts on the control signal, but with
decreased efficiency. In Figure 2(a) two types of total
actuator faults are depicted. A fault is called “lock-in-
place” if the actuator remains at the position it was
at the beginning of the fault. A fault is called “hard-
over” if the actuator goes to its maximum or minimum
limit after the fault. Furthermore it can be seen in this
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Fig. 2. Types of actuator faults.

figure that although the control signaluc(t) (dotted
line) still varies after the fault occurs atT=300, the
control signal by which the aircraft is excitedus(t)
remains constant (solid line). In Figure 2(b) a partial
fault of 50% is depicted. It can be seen that the control
signaluc(t) is multiplied by a factor of 0.5 before it
excites the system asus(t).

2.2 Decision logic

In order to determine what type of fault occurred
and at what time, the output of the augmented filter
β̂(k) is processed by decision logic. First, a fault has
to be detected. This is done by detecting changes in
the fault parameter̂β(k), which will deviate from its
nominal value of 1 when a fault occurs. The imple-
mented change detection algorithm is the two-sided
cumulative sum (CUSUM) algorithm (Basseville and
Nikiforov, 1993).

After a change has been detected the fault type must
be determined. Is it a total or a partial fault? In order
to answer this question, an analysis of the numeri-
cal derivative of the reconstructed signal∆us(k) =
us(k) − us(k − 1) is made. If∆us(k) is not close
to zero after the fault has been detected, we may con-
clude that a partial fault has occurred. Otherwise, it
is concluded that the fault is total because for total
faultsus(k) remains constant. However, in practice it
is difficult to make the right decision about the fault
type by passively analyzing∆us(k). The reason for
this is the fact that an aircraft may not be excited
enough just after the fault has occurred. Therefore, the
choice has been made to use an extra excitation signal
directly after the detection of the fault. This excitation
signal should be designed such that it gives enough
excitation and that the extra dynamics are within the
comfort and safety requirements of the system. An
extensive description of the design of such signals is
given by Campbell and Nikoukhah (2004).

In Table 1, the fault status resulting from the chosen
decision logic is given. The fault status can remain
1 during the whole period of extra excitation, if no
significant change in∆us(k) is detected. At the end
of the excitation signal, the fault status then becomes
3. In case of a total fault, the fault type can either be
a hard-over or lock-in-place type of fault. The only

difference is that a hard-over has a constantus(k) at
the upper or lower saturation limit.

Table 1. Description of the fault status.

Fault status Description
0 No fault detected
1 Fault detected, but not yet identified
2 Fault is partial
3 Fault is total

3. AN LPV MODEL FOR FDI

If a model of a nonlinear system is linearized at
a certain operating point, the obtained linear model
looses its validity when the system goes to other
operating points. Because this model mismatch can
easily be mistaken for a fault by the FDI system, using
only one linear model is not suitable for performing
FDI of the system in its whole operating regime. For
this reason, LPV models are used to model the system.
The most general form of an LPV model is given by

x(k + 1) = A(ρ(k))x(k) + B(ρ(k))u(k) (7)

y(k) = C(ρ(k))x(k) + D(ρ(k))u(k) (8)

Note that although the LPV model has a structure
resembling that of a linear model, the system matrices
are now dependent on a parameter vectorρ(k). This
“linear” structure allows the use of “linear” design
methods, and at the same time, the LPV model is able
to represent the nonlinear model in a larger part of the
operating region than a linear model. Thanks to these
advantages, LPV systems have attracted an increasing
interest from the academic research community the
last ten years (Rugh and Shamma, 2000).

3.1 Identification of LPV models

There are different ways to obtain LPV models. There
are methods which use the nonlinear equations of the
system to derive an LPV model such as state transfor-
mation, function substitution and methods using Jaco-
bian linearization (Marcos and Balas, 2004). There are
also methods using only input/output data to obtain an
LPV model. In this paper, one of the latter methods
is chosen. The assumption has been made that the
exact nonlinear model is not known and that only
input/output data are present. For real systems this
is often the case, although the model structure might
be known, the exact values of the model parameters
still have to be estimated. From the input/output data
an LPV state-space model is identified using LPV
subspace identification techniques. In order to further
improve the performance of the identified LPV model,
this model is used in Verdultet al. (2003) as an initial
estimate for the minimization of the output-error cost
function

VN (θ, ρ) =
N∑

k=1

‖y(k)− ŷ(k; θ, ρ)‖22 (9)



wherey(k) is the output of the real system,ŷ(k; θ, ρ)
is the output of the model as a function of the full
parametrization of the system matricesθ and the
scheduling parametersρ. The total number of mea-
surements is indicated byN . Because this optimiza-
tion process is both nonlinear and nonconvex, a pro-
jected gradient search method has been used to solve
it. The LPV models that can be identified with the
described procedure have the form

x(k + 1) =
(
A0 +

s∑
i=1

Aiρi(k)
)
x(k)

+
(
B0 +

s∑
i=1

Biρi(k)
)
u(k) (10)

y(k) =
(
C0 +

s∑
i=1

Ciρi(k)
)
x(k)

+
(
D0 +

s∑
i=1

Diρi(k)
)
u(k) (11)

where s is the number of scheduling parameters
ρ(k) ∈ R. This particular type of LPV model has been
referred to as parameter dependent system (PDS) in
Gahinetet al. (1995).

3.2 Identification of an LPV aircraft model

In this paper, an LPV model of a small commercial
aircraft has been identified using input/output data of
a nonlinear simulation model of this aircraft. Only the
longitudinal dynamics of the aircraft are considered.
The identified LPV model of the aircraft is of second
order and it uses three scheduling parameters. In Table
2, the structure of this model is given.

Table 2. Structure of the identified LPV
model.

Inputs (u(k)) Outputs (y(k)) Scheduling
Parameters(ρ(k))

Elevator Pitch rate True Airspeed
Throttle Angle of attack Dynamic Pressure

Downward speed Flight-path Angle
Hor. acceleration

The aircraft is excited in open-loop by input signals
taken from a maneuver of the aircraft performed by
the autopilot without faults. In this way, the open loop
simulation of the aircraft approaches the trajectory
flown in closed loop. Choosing the scheduling pa-
rametersρ(k) properly is very important to obtain a
good LPV model for FDI. These parameters determine
how an LPV model behaves throughout its operating
region. The scheduling parameters are chosen on the
basis of experimentation with different combinations
of common scheduling parameters in the literature,
see e.g. Marcos and Balas (2004) and Szászi et al.
(2002). The identified LPV model identified is valid
for a limited part of the operating region.

It is made sure that the quality of the model is high for
the maneuver without faults. The quality of the model
is measured using the Variance Accounted For (VAF)

for a data set that is different from the one used for
identification. The VAF is defined as

VAF = max
{

1− var(y(k)− ŷ(k))
var(y(k))

, 0
}
× 100%

(12)
where ŷ(k) denotes the output signal from the sim-
ulation of the LPV model andy(k) is the output of
the nonlinear simulation and var(·) denotes the vari-
ance of the signal. The VAF for the model used in
the simulation in the fault-free case in section 4 is
[83.87 90.89 93.86 97.28]T .

4. EVALUATION OF THE PROPOSED METHOD

The proposed LPV FDI method has been tested on a
nonlinear closed loop simulation of a small commer-
cial aircraft. Only the primary controls of the longitu-
dinal model were considered. These controls are the
elevator and the throttle. The faults were simulated
by manipulating the control outputs of the autopilot
of the aircraft. There is no reconfiguration strategy
implemented yet. This means that when a fault occurs,
the controller will change the control command to still
reach its objective. Two faults have been simulated on
the elevator; one partial and one total fault.

In the simulations, not only the results of LPV FDI are
considered, but also the results obtained with a Linear
Time Invariant (LTI) model. This has been done to dis-
play that an LTI model is not sufficient for FDI in the
performed experiments. The LTI model used for this
purpose, which is of fourth order, is obtained by trim-
ming and linearization of the nonlinear aircraft model
at the initial conditions of the experiments (Pull-up
trim with MACH =0.4, Altitude=17Kft, Flight-path
Angle=7◦). It may therefore be considered as a very
accurate representation of the nonlinear aircraft at the
initial conditions.

Tuning of the proposed FDI system as a whole can
be done in both the augmented filter and the deci-
sion logic. The tuning process of the decision logic
involves choosing the sensitivity parameters of the
CUSUM detector. The tuning process of the aug-
mented filter involves choosing covariances for the
process (states) and the measurements in theQa and
R matrix, respectively. For example, if a certain mea-
surement is more important than another one then its
covariance should be chosen smaller. In this way the
important measurement has a greater impact on the
estimation. The assumption has been made that the
measurements and the states are not correlated with
themselves and each other. This assumption allows
the matricesQa and R to be diagonal matrices and
the matrixS (from equation 3) to be zero. The LPV
filter has been implemented in the same way as the
LTI filter, with the difference that the LPV filter has
varying system matrices. Furthermore, the two filters
are tuned differently because of the different model
structure.



4.1 Partial fault on the elevator

In this experiment a partial fault is inserted in the
elevator during a pull-up maneuver of the aircraft. In
order to to clarify the flight condition during the ex-
periment the scheduling parameters during the experi-
ment are depicted in Figure 3. The simulated fault is an
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Fig. 3. Evolution of the scheduling parameters
throughout the experiment

incipient loss of effectiveness from 1 to 0.5, it starts at
T=20s and ends atT=30s with an effectiveness of 0.5.
The results of this experiment are depicted in Figures 4
and 5. Figure 4 shows the estimated fault parameters
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Fig. 4. Fault parameters and fault status with the LTI
and LPV FDI approach for a partial fault.

(β̂(k)) and the fault status of the two controls of the
aircraft. The left column corresponds with the elevator
and the right column corresponds with the throttle.
In the upper left part of Figure 4 the simulated fault
on the elevator is also depicted. It can be seen that
the fault parameter estimated by the LPV FDI filter
follows the simulated fault much more closely than the
LTI filter. Furthermore, it can be seen that the LTI FDI
filter also shows a significant variation in the fault pa-
rameter of the throttle. This highly undesirable result
is caused by the model mismatch. In the fault status
plots of the two controls it can be seen that in the LTI
case two wrong decisions are made: one is the fault in
in the throttle and one is the fault in the elevator which
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Fig. 5. Reconstructed inputs for the LTI and LPV FDI
approach for a partial fault.

is issued too early. Both these fault notifications are
thus false alarms. The partial fault which was issued at
T=20s is correctly identified by the LPV FDI filter at
T=21.12s. In Figure 5 the reconstructed inputs of the
two filters (computed with equation 6) together with
the control commanduc and the real system inputus

for the elevator and the throttle are given.us anduc

are of course equal until the fault occurs. In this figure
it can be seen more clearly that the reconstructed in-
put from the LPV FDI filter follows the simulatedus

much better. Furthermore, the excitation signal can be
clearly seen immediately afterT=21.12s.

4.2 Total fault on the elevator

In this experiment a total fault on the elevator is
simulated also during pull up of the aircraft. The initial
conditions are the same as for the first experiment.
In this case a “lock-in-place” fault is simulated at an
elevator deflection of -1.5◦ at T=43.1s. This can be
clearly seen in Figure 7. This time, the simulated fault
is not a multiplication of the control commanduc and
therefore it is not depicted in the upper left part of
Figure 6 as it was the case with the first fault. The
rest of the results, however, are presented exactly on
the same manner as for the first fault. In Figure 6
it can be seen that the LTI FDI filter again makes
two wrong decisions. In Figure 7 it can be seen that
the LPV FDI filter follows the system input more
closely than the other filter. In this figure it can also
be seen thatuc gets out of the range of the figure
because the controller attempts to control the aircraft
anyway. Furthermore, it can be seen that the LPV
FDI input follows the control command just after the
fault between 43s and 46s. This is the result of the
tuning process. If the filter is tuned to react on very
fast changes of the control command when a fault
occurs, the filter would be unsuitable for the normal
case because of its jumpy nature (which would cause
many false alarms). Therefore this trade-off has been
made. Now, the total fault is correctly detected by the
LPV FDI filter atT=44s.
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Fig. 6. Fault parameters and fault status with the LTI
and LPV FDI approach for a total fault.

0 10 20 30 40 50 60 70
−3.5

−3

−2.5

−2

−1.5

−1

−0.5

0

E
le

va
to

r 
in

pu
t

System input (u
s
)

Control command (u
c
)

LPV rec. input
LTI rec. input

0 10 20 30 40 50 60 70
20

40

60

80

100

120

Time [s]

T
hr

ot
tle

 in
pu

t

Fig. 7. Reconstructed inputs for the LTI and LPV FDI
approach for a total fault.

5. CONCLUSIONS

A fault detection and identification (FDI) method was
presented to identify both total and partial actuator
faults in nonlinear systems. The FDI method uses
an augmented Kalman filter to estimate fault related
parameters. In order to deal with the nonlinearity of
the model an LPV model of the system has been used.
This LPV model has been identified from input/output
data of the system. The proposed method has proven
its effectiveness in two simulations of a nonlinear
aircraft model. A partial fault and a total fault were
simulated. The LPV FDI filter was able to quickly
and correctly identify the two faults. Also an LTI FDI
augmented filter was implemented to display that it is
not sufficient to achieve the desired goal. Currently,
the LPV model is only valid in a limited part of
the operating region of the aircraft. Future research
will focus on expanding the operating region of the
augmented filter. Furthermore, also sensor faults and
component faults will be taken into account.
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