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Abstract:  The flow schemes of processing plants generally have well-defined nodes, such as 
reactors or separators, interconnected with pipes. Bearing in mind that the unit representing 
each node has a certain hold-up inventory, the dynamic description of the combined network 
can be expected to comprise differential and algebraic equations, the latter representing 
stream additions or characteristic relations within the units. In this paper, a method is 
demonstrated for a node-based description of networks of arbitrarily interconnected units, 
and the combined system is solved in real-time using a Kalman filter, allowing any 
combination of variables to be switched between “observed” and “unobserved” at any time, 
with appropriate reconciliation. The target application is the flotation network of a  Platinum-
concentrating plant. Copyright 2005 IFAC 
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1.  INTRODUCTION 
 
The observer model was developed to gain insight 
into the phenomena occurring in mineral-processing 
circuits, which usually have too few measurements to 
illucidate conditions in the complex flow networks 
used. The model was tested using data from a South 
African platinum flotation plant, processing the UG2 
chromite seam of the Bushveld Complex (Fig.1). 
This plant uses 10 flotation stages to concentrate 
platinum-containing copper/nickel sulphide minerals 
from about 0.2%m/m to 18%m/m. The concentrations 
of chromite, gangue and water must also be tracked 
through this system. 
 
As will be seen, a method has been developed which 
continuously estimates not only the system states, but 
associated variables such as flows and key 
parameters determining the operation. Amongst the 
latter are the first-order flotation rate constants for 
the main classes of mineral, namely platinum-
containing sulphides, chromite and gangue, for each 
flotation stage. An extended Kalman filter is able to 
reconcile dynamically such measurements as are 
presented to it at any time, even allowing the 

measurement selection to vary in real time. The 
model has been integrated into the PlantStar web-
based monitoring and control system developed by 
MINTEK in Randburg, South Africa. 
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Fig. 1. Platinum flotation plant  



The definition of variables, equations (differential 
and algebraic), processing units and interconnections 
defining the processing plant, is done in a modular 
fashion, allowing easy reconfiguration for other 
plants, or even other systems like multi-stage 
distillation.  
 
Yang and Lee (1997) apply an extended Kalman 
filter to the identification of  a distillation column. In 
order to reduce the dimensionality of the problem, 
the column was divided into four sections. Bagui et 
al. 2004) were able to use a Kalman filter to 
accurately estimate interior temperatures in a heat 
exchanger, by first invoking theoretical profiles 
based on a steady-sate solution.  
 
Chiari et al. (1997) outline a typical refinery steady-
state data reconciliation and optimisation problem. 
Before an economic optimiser can be applied, a 
consistent plant data set is required. McBrayer et al. 
(1998) describe the application of a nonlinear 
dynamic data reconciliation procedure, capable also 
of detecting gross error (bias).  
 
Albuquerque and Biegler (1997) propose a method 
for resolution of the estimation problem for systems 
described by a large set of DAEs. In their method 
they discretise the DAE model with an implicit 
Runge-Kutta scheme, to avoid problems arising from 
stiffness, then use SQP to solve the resulting NLP.   
 
Although the Kalman filter is used in the present 
study under the assumption that errors are randomly 
distributed with zero mean, a number of workers 
have recognised the importance of first detecting 
gross error (eg. offset). Thus Bagajewicz and Jiang 
(1998), and McBrayer et al. (1998), propose methods 
for identification of gross error (eg. offset) in 
dynamic data reconciliation for plants. 
 
In the present paper, the extendend Kalman filter will 
be used to both reconcile measurements, and 
integrate the set of DAE. Thus it is interesting to note 
an important problem in DAE solutions – consistent 
initialisation. If the integration does not start at a 
feasible point,  the likelihood of a useful result is 
much diminished. The search for a consistent initial 
condition for a set of  DAE is an optimisation 
problem in which one attempts to get as close as 
possible to consistency (Biscaia and Vieira, 2000, 
and Vieira and Biscaia, 2001) Fortunately, the 
method of initialisation and solution in the present 
work adequately avoided initialisation problems. 
 
Mjaavatten and Foss (1997) develop a modular 
dynamic flowsheeting technique for diagnosis and 
estimation of a fertilizer plant. Their approach is 
similar to that used in the present paper, except that 
they decomposed the estimation problem into the 
modules (ie. distinct plant units like reactors and 
strippers), or subsystems of modules. As will be seen 
later, the large dimensionality of the estimation 

problem, if this is not done, demands considerable 
computation. On the other hand, there is a problem of 
devising sensible decomposition rules, and dealing 
with interactions, in their method. 
 
The simulation of processing plants has reached an 
advanced state with current commercial flowsheet 
modelling products such as those of Aspen, Hysys, 
and SimSci. One such package developed specifically 
for the minerals environment is MODSIM.  The 
vendors usually also provide modelling formats that 
may be used for plant data reconciliation, eg. 
SimSci’s DATACON. The flowsheeting packages 
often include a dynamic simulation option, which 
allows the modeller to simulate some of the dynamic 
phenomena in an unsteady process. At this point 
there does not appear to be a commercial dynamic 
data reconciliation version available - that is the job 
of a Kalman filter!   
 
A useful feature of the vendor-supplied packages is 
obviously that a process flowsheet can be built up by 
inter-linking standard modelling elements. A 
modular modelling format was likewise aimed for in 
the present work. The development  of  the extended 
Kalman filter (EKF) framework, the dynamic model  
representing Lonmin’s Eastern Platinum B-Stream, 
and the implementation within MINTEK’s PlantStar 
software, is more fully described in a thesis by  
Vosloo (2004). It is noteworthy that the present 
observer was developed as part of a larger on –line 
system of MINTEK which illucidates plant 
operation, including verbal messages. In the same 
organisation, Singh et al. (2003) provide the 
FloatStar algorithm for stabilisation of the level and 
flow oscillations which can occur in flotation 
networks, whilst Smith et al. (2004) provide the 
MillStar algorithm for stabilisation of the associated 
mill. 
 

2.  THEORY 
 
2.1 Definition of modelling elements and circuit 

topology 
 
The dynamics of the system arise from the points of 
hold-up - ie. the volumes of pulp in the 
interconnected vessels. The most complicated such 
vessel is the flotation cell shown in Fig. 2, which has 
one feed stream and two product streams.  There are 
C such flotation cells in the circuit. We consider M 
different species moving through the system, and we 
always take the Mth component as the water which 
carries the solids. Then M-1 mineral components are 
allowed for (eg. 1:Platinum-containing sulphides, 
2:Chromite, 3:Gangue, 4:water). In Fig.2, ‘j’ refers to 
any one of these species. Lower-case characters refer 
to the froth phase leaving the top of the vessel, and 
capitals refer to the pulp phase. The double character 
names SS and ss refer to inventories, whilst the single 
characters S*, S, s and sp  refer to stream flow rates. A 
is the air flow rate to the cell.  
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Fig. 2. Flotation cell representation 
 

It is already apparent that the definition of this 
flotation cell requires 2M differential equations, and 
quite a number of algebraic equations.  The network 
topology, that is the interconnection of the vessels, 
will be described by writing the feed streams S* as 
the sum of streams S and s from other vessels, so this 
will of course add even more algebraic equations. 
These equations can possibly be combined to 
produce a set of differential equations only, but in the 
process a lot of algebra will be required, and the set 
of equations will lose readability. So the trend 
nowadays is to solve the system as it stands - a set of 
Differential and Algebraic Equations (DAE). In the 
next section a method will be introduced to deal with 
this in the context of the Kalman filter, which deals 
only with a set of differential equations. 
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Fig. 3. The three different types of elements 
 
The other vessels which introduce dynamics in our 
mineral-processing circuits are surge tanks and mills, 
on account of their hold-up inventories. From a 
dynamic viewpoint, both of these may be represented 
as a stirred vessel with one feed and one product 
stream. The equations are just a sub-set of those for 

the flotation cell, so the same “module” may be used. 
There are MT such elements in our circuit. 
 
So far, our only means of combining streams is by 
our definition of the “collection node” S* which feeds 
to a flotation cell, mill or tank. To provide this 
service without, eg., having to use a zero-volume 
tank, a third conceptual member of this family is 
defined as a ‘Product Stream’. There are PS such 
elements in our circuit. Again, this is a subset of the 
same module above.  
 
Figure 3 illustrates how the complete plant can be 
constructed from C+MT+PS nodal elements, each of 
which can sum as many streams as desired on its 
input. 
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Fig. 4. Use of receiving node selection matrix to 

represent stream splitters 
 
So far we have not considered how to deal with a 
stream split, either a total division, or selectively by 
component as in a thickener or spiral separator. This 
is quite simply dealt with by means of a selection 
matrix operating at the summation node of each 
element. Any number of downstream elements can 
reference fractions of the components of a single 
upstream exit flow. It turns out, in the circuits 
considered, a maximum of 4 streams arrive at any 
one receiving node. So our selection matrix needs 4 
columns, and C rows, each with a fraction to be 
selected from that component flow in the relevant 
stream. Another vector keeps the name (number) of 
the four possible elements of which the exit stream is 
being selected. If this number is shown as negative, it 
is referring to the froth exit stream instead of the 
tailings exit stream (Fig. 4). Thus the final set of 
algebraic equations required to define the system 
topology has the form       
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It has been mentioned that the entire definition of the 
circuit is node-based. The node indicates which of 



the three types of processing units it is, with the 
associated equipment parameters, and it gives its 
receiving node selection matrix. However, for a 
“cold” or “raw” start of the model, it is necessary to 
give further information (initial values of the states) 
to provide a realistic starting-point for the solution. In 
Fig. 5, an extract from the original initialisation 
program shows the definition of two elements. Initial 
values for the compositions and  flows of the exit 
streams of the element are based on plant assays 
where available, or are otherwise roughly estimated.  
 

%-------------------------------------------------------------------------------------
% (13) Primary Surge Tanks         % (1)Primary Rougher No.1         % 
%                                                    %    4xWemco 144D                     % 
; j=13                                              ;  q=1                                             ; 
; Sorc(j,:)  =[ 11  0  0  0    ]            ;  Sorc(q,:)  =[ 13  0  0  0     ]         ; 
; Splt(j,:,1)=[  1  1  1  1     ]            ;  Splt(q,:,1)=[  1  1  1  1     ]           ;  
; Splt(j,:,2)=[  1  1  1  1     ]            ;  Splt(q,:,2)=[  1  1  1  1     ]           ; 
; Splt(j,:,3)=[  1  1  1  1     ]            ;  Splt(q,:,3)=[  1  1  1  1     ]           ; 
; Splt(j,:,4)=[  1  1  1  1     ]            ;  Splt(q,:,4)=[  1  1  1  1     ]           ; 
; WtSiBal(j) =1                              ;  WtSiBal(q) =1                              ; 
; FMio (j) =60                                ;  FMio (q) =140                            ; 
; SMFio(j) =0.4                              ;  SMFio(q) =.4                              ;  
; Xio(j,:) =[4.6e-6 .243 .757]         ;  Xio(q,:) =[4.6e-6 .243 .757]        ; 
; AF(j)    =4                                    ;  AF(q)    = 4*2.74*3.66               ;  
; Hw(j)    =4                                   ;  Hw(q)    = 1.41                           ;  
; Ho(j)    =0.8*Hw(j)                     ;  Ho(q)    = 0.92*Hw(q)               ; 
; FMo (j)  =60                                ;  FMo (q)  =138                            ; 
; SMFo(j)  =0.4                             ;  SMFo(q)  =.441                          ; 
; XoXo(j,:)  =[4.6e-6 .243 .757]    ;  Xo(q,:)  =[1.8e-6 .25 .75     ]      ; 
;                                                      ;                                                     ;
;                                                      ;  Ao(q)    =4*9.7                          ; 
;                                                      ;  fmo(q)   =5                                 ;
;                                                      ;  smfo(q)  =.182                            ; 
;                                                      ;  xo(q,:)  =[82.5e-6 .044 .9559 ]   ;
;                                                      ;                                                     ;
%---------------------------------------------------------------------------------------

 

Fig. 5. Node-based definition of topology, parameters 
& initial state 

 
Reviewing the above, we note that there are two 
types of variables: Those that appear in the derivative 
terms (states) and those that do not, but are otherwise 
necessary in the algebraic equations which 
interconnect the system (“incidental”). Actually, 
there is a third class of variable - actual physical 
parameters describing the equipment. It will be seen 
that it is going to suit us to allow some of these (eg. 
flotation rate constants) to apparently vary in time, 
like a flow, level or composition - we can lose this 
distinction within the EKF. So we have the two broad 
types of time-varying parameters, and two types of 
equation: differential and algebraic. 
 
 
2.2 Solution of the system of Differential and 

Algebraic Equations (DAE) 
 
Consider the system of first order differential and 
algebraic equations 
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Here the values in the y vector are clearly the states, 
and those in the z vector are the “incidental 
variables” such as flows. The set of algebraic 
equations has been rearranged to give zero on the 
left. Defining the Jacobians 
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linearise the right hand sides of (2) and (3) about (yt 
,zt) to obtain the augmented system 
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Some of the elements in the z vector may be 
independent (eg. plant feed rate), whilst others may 
be determined by the solution of (8). In either case, 
we gain access to them by conferring additional 
dynamic behaviour  in which z will move towards 
some given value zt. 

( )tτ= −1z z z  

Here we have chosen a single time-constant τ that 
applies to all such variables. It is chosen to be short – 
of similar size to the integration interval used in the 
solution, implying that the incidental variables will 
steadily track the given values. Then 
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ˆwhere  is clearly a current set of measurements.
Thus configure a Kalman filter as follows:
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What has not been mentioned so far is the meaning 
and use of the ‘given’ values zt of the incidental 
variables. Only a selection of these will be available 
as observations. For that selection, the tuning of the 
Kalman filter will be used to determine how closely 
the model follows the first-order approach to the 
given values. For the remaining ‘free’ incidental 
variables, they have to find values which will allow 
the best overall fit of model and observations. The 
mechanism used to achieve this is simply to reset the 
‘observed value’ zt for the next time-step to the final 
value of z at the end of the preceding time-step. Thus 
the tuning of the filter can be used to determine how 

fast these variables move, but there is no absolute 
resistance to their overall range of movement. 
 
Using as the initial condition a measured data set of 
the plant (assays, and some stream flow rates), no 
problem was encountered due to inconsistency, a 
common problem noted by others in section 1. The 
equations above show that the covariance matrix Mt 
is the only entity carrying the filter information from 
time-step to time-step. It is square with a side length 
equal to the total number of variables (y & z) in the 
system. It does not change size as variables enter or 
leave the measurement set, though there is some 
impact on it as the observation selection matrix Ct 
varies. The effect of a complete switch from normal 
‘forward modelling’ (feed → products), to inverse 
modelling where flotation rate constants are being 
determined from given internal stream properties, is 
only a little disruptive in the evolution of Mt, and 
quite tolerable, though the coding does provide for 
the automatic swopping of Mt with previously-
converged copies appropriate for different 
observation set configurations. 
 
An automatic technique sets the  Q and R matrices, 
based on a nominal range for each variable. The user 
specifies only a percentage error of the range to be 
expected in the tracking of each variable. The 
nominal ranges are generally updated (as twice the 
present value) on each time-step using a slow filter. 
 
 

3. CASE STUDY RESULTS 
 
Although the model has been installed on the plant 
under MINTEK’s PlantStar open SCADA system, 
and undergone preliminary testing, with acceptable 
results, the identification study reported is based on 
an off-line simulation. It is a typical identification 
scenario, where an observation of the total mass-flow 
of water and mineral in the froth of selected cells is 
available. From this information, the “Cell Factor”, 
which multiplies all individual flotation kinetic 
constants for that cell, can be inferred. In the test 
sequence depicted in figures 5 and 6, the froth mass 
flow rates of cells 1,2 and 4 were set to “observed”, 
and the corresponding cell factors were freed as 
“unobserved” (The cell numbering is according to 
Fig. 1). Firstly the froth flow for cell 1 was 
“observed” to drop to 50%, then that for cell 2 was 
observed to drop to 50%, then rise to 150%. Finally, 
that for cell 4 dropped to 50%. Actually, by the time 
cell 4 is dropped, the impact of  changes upstream 
has asserted on the secondary roughers, and the froth 
flow on cell 4 cannot be held up to 50% of its 
original. Indeed, with the simultaneous changes in 
cell inventories that result, there is no guarantee that 
a froth flow change will proportionally change the 
cell factor, though this is indeed seen to be the case 
in cells 1 and 2  in Fig. 6. 



Cell 1: measured froth 
flow drops to 50%

Cell 2: measured froth 
flow drops to 50%

Cell 2: measured froth 
flow rises to 150%

Cell 4: drop in 
measured froth flow

All Cells: all froth
flows return to 100%

 
Fig. 5.  Manually set changes in measured froth flows 

on cells 1,2 and 4 with resultant secondary 
changes in other froth flows downstream 

Cell 1

Cell 2

Cell 4

 
Fig. 6. Cell-factor identification following manually 

set changes in froth flows for cells 1, 2 and 4 in 
Fig. 5. 

 
4. CONCLUSION  

 
Problems arising from inconsistent initialisation of 
the system of DAEs appeared insignificant – possibly 
because a balanced initial condition was set using a 
measured plant assay and a number of measured 
internal flow-rates. No attempt was made to 
decompose the system, so the most problematic and 
time-consuming aspect of the solution was equation 
(17), which was rearranged as the linear system 

x  =  A\ y 
Some problems of accuracy were experienced using a 
sparse matrix (conjugate gradient) solution. A faster, 
more accurate solution was obtained using the 
“MATLAB Engine”. In the case of the Lonmin B 
Stream model, the side of A varies from about 70 up 
to 150 in full identification mode (full assay 
available). The other dimension of x and y 
corresponds to the 300 or so fitted variables. 
 
Variable values produced by the Kalman filter are 
clipped back to their constraints on each time-step, 
Lower constraints are usually zero, but upper 
constraints (also used for normalisation) slowly 
expand to eventually free high values again. The 

clipping can be a source of instability until variables 
are again freed. 
 
This work has demonstrated that a fairly 
straightforward solution of a large set of DAEs using 
a Kalman filter is feasible, with the advantage that 
observations may be arbitrarily set. Though the 
computation proved somewhat faster than real-time, 
systems larger than that considered will need 
dedicated computers using present-day technology.  
 
 

REFERENCES 
 
Albuquerque, J.S. and L.T. Biegler (1997)  

Decomposition algorithms for on-line estimation 
with nonlinear DAE models. Computers chem. 
Engng, 21, 283-299. 

Bagajewicz, M.J. and Q. Jiang (1998). Gross error 
modeling and detection in plant linear dynamic 
reconciliation. Computers chem. Engng, 22, 
1789-1809. 

Bagui, F., M.A. Abdelghani-Idrissi and H. Chafouk 
(2004). Heat exchanger Kalman filtering with 
process dynamic acknowledgement. Computers 
chem. Engng, 28, 1465-1473. 

Biscaia Jr., E.C. and R.C. Vieira (2000). Heuristic 
optimization for consistent initialization of 
DAEs. Computers chem. Engng, 24, 2183-2191. 

Chiari, M., G. Bussani, M.G. Grottoli and S. Pierucci 
(1997). On-line data reconciliation and 
optimisation: refinery applications. Computers 
chem. Engng, 21(Suppl.), S1185-S1190. 

McBrayer, K.F., T.A. Soderstrom, T.F. Edgar and 
R.E. Young (1998). The application of nonlinear 
dynamic data reconciliation to plant data. 
Computers chem. Engng, 22, 1907-1911. 

Mjaavatten, A. and B.A. Foss (1997). A modular 
system for estimation and diagnosis. Computers 
chem. Engng, 21, 1203-1218. 

Singh, A., J.J. Louw and D.G. Hulbert (2003). 
Flotation stabilization and optimization. J. 
S.A.Inst. Mining & Metallurgy, November 2003, 
581-588. 

Smith, G.C., L. Jordaan, A. Singh, V. Vandayar, 
V.C. Smith, B. Muller and D.G. Hulbert (2004). 
Innovative process control technology for 
milling and flotation circuit operations. J. 
S.A.Inst. Mining & Metallurgy, May 2004, 353-
365. 

Vieira, R.C. and E.C. Biscaia Jr. (2001). Direct 
methods for consistent initialization of DAE 
systems. Computers chem. Engng, 25, 1299-
1311. 

Vosloo, J-R. (2004). Development and 
implementation of a real-time observer model 
for mineral-processing circuits. MScEng Thesis, 
University of KwaZulu-Natal, January, 2004. 

Yang, D.R. and K.S. Lee (1997) Monitoring of a 
distillation column using modified extended 
Kalman filter and a reduced order model. 
Computers chem. Engng, 21(Suppl.), S565-
S570.  


