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Abstract: This paper proposes a control system for lifting a ping-pong ball without the use 
of a camera. The system measures the time of collision between a plate and a ball with a 
microphone. The control system must then be able to direct both the position and the 
velocity of a motor for each subsequent collision, even if the model contains uncertainty 
or modeling errors. To achieve this objective, an optimal control is modified using 
receding horizon control. The effectiveness of the proposed control method is verified by 
performing simulations on the lifting system.  Copyright © 2005 IFAC 
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1. INTRODUCTION 

 
Various visual servo systems have been developed 
for controlling flying objects. For instance, 
Andersson (1989) built a system to play ping-pong, 
which employed multiple cameras to track the ball in 
three dimensions. Corke (1996) developed a visual 
feedforward controller for an eye-in-hand 
manipulator to track a ping-pong ball thrown across 
the system’s field of view. Both of these systems 
perform well, but they are complex and expensive. A 
cheaper system without cameras can be designed if 
the goal is restricted to simply lifting ping-pong balls 
in one dimension. This paper proposes a system for 
lifting a ball that uses a microphone to measure the 
collision time.   
 
In the system, the position and the speed of the motor 
at each collision should be controlled to satisfy the 
desired values. The initial time is the time at which a 
collision occurs and the final time is the time at 
which the next collision will occur. The final time is 
estimated by predicting the motion of the flying ball. 
This information is then used to direct the angular 
position and velocity of the motor to prepare for the 
next collision. This problem can be solved using an 
optimal control. A classical optimal control, though, 
demands an exact description of the model. But in 
most cases, the model includes an uncertainty or 
modeling error; these types of errors will cause the 

actual trajectory to deviate from the desired trajectory 
estimated by nominal model. Therefore, the control system 
must provide satisfactory performance in the face of 
modeling errors. A version of feedback control should be 
introduced to improve the robustness of the controller. 
Receding horizon control is a feedback method in which 
the control inputs are obtained by solving the finite 
horizon optimal control problem based on measured data 
at each sampling interval. (Kwon et. al, 1983, Ohtsuka, 
1999). By modifying the receding horizon control, this 
paper proposes a control system for leading state variables 
to desired values at each interval even if the controlled 
model contains uncertainty or modeling errors. The 
proposed system is then applied to a system designed to 
lift a ping-pong ball without a camera.   
 
This paper is organized as follows. Section 2 describes the 
equipment developed for lifting a ping-pong ball and 
presents the basic experimental results. Section 3 
introduces the optimal control system that has been 
modified to perform well even if the motor model contains 
uncertainty or modeling errors. The proposed receding 
horizon control system is then applied to a control system 
for lifting a ping-pong ball in Section 4. In order to lift the 
ball at the desired height despite errors in the collision 
coefficient, another control method is inserted in the 
system. Section 5 shows simulation results and a 
conclusion is provided in Section 6. 
 
 



     

2. PING-PONG BALL LIFTING CONTROL 
 
2.1 Equipment  
 
A lifting machine was designed that consists of three 
links, a DC motor, and a plate. A microphone is 
attached to the plate to determine the collision times. 
The length of Link 1 is L1 and the length of Link 2 is 
L2. The third link is supported by a guide and the 
plate moves vertically. 
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Fig. 1 Schematic of the ping-pong-ball lifting 

machine  
 
 
The perpendicular distance between the center of the 
motor and the center of the plate is L. A linear 
potentiometer is used to measure the distance that 
plate y moves. This distance y, which is equivalent to 
the displacement of P shown in Fig. 1, is calculated 
using a function of the motor’s angular position 1θ :          
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The dimensions of the equipment shown in Fig. 1 is: 
L=0.1 m, L2=0.2 m and L1 =0.025 m. The plate 
moves between 0 and 0.0579 m. 
 
Fig. 2 shows a voltage time response for the 
microphone amplifier when a ball is dropped on the 
plate. The ball continued to bounce. The voltage 
peaks indicate each time that the ball collided with 
the plate. With time, the height of the ball decreased 
due to energy losses, i.e., the collision coefficient is 
less than 1. In addition, the interval between 
subsequent collisions decreased, as well. Fig. 2 
confirms this characteristic. In the figure, the time-
intervals between peak voltages gradually decreased. 

A collision coefficient e of 0.65 was estimated from these 
measured intervals. 
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Fig. 2 Microphone time response for the bouncing ball 
 
 
2.2 Open Control 
 
After a ball is initially dropped on a plate, the ball 
continues to bounce on the plate again and again, and its 
peak height decreases gradually. The peak height, however, 
can become constant if the plate hits the ball at a certain 
speed every time the ball collides with the plate. This 
action is equivalent to lifting the ping-pong ball. An easy 
method for lifting the ball is to drive the motor at a 
constant speed specifically adjusted for the bouncing ball. 
This constant speed was determined by trial and error.  
Experiments were then carried out at this speed. 
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Fig. 3 Voltage time responses during ball lifting 
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Fig. 4 Peak height after each lifting 
 
 
Fig. 3 shows the voltage time responses for the 
potentiometer and the microphone during ball lifting. Fig. 
4 displays the peak height for every bounce. These results 
indicate that the ball bounced at a constant interval and its 
peak height remained fairly constant. Therefore, the ping-



     

pong ball can be bounced at a constant peak height. 
However, this experiment can only be performed at 
fixed motor speed, and its peak height is determined 
by the speed. Overall, it is difficult to lift a ping-pong 
ball at any constant height using this method. In 
order to lift a ball at any height, the control system 
described in Section 3 will be developed. 
 
 

3. RECENDING HORIZON CONTROL 
 
In order to lift a ball at various heights, the speed at 
which the plate contacts the ball must be varied. 
Furthermore, the plate should hit the ball at the same 
location for each collision. Optimal control is used to 
achieve these objectives. The initial time is the time 
at which a collision occurs and the final time is the 
time at which the next collision will occur. The final 
time is calculated from the model of lifting the ball. 
The final position and the desired final speed of the 
motor are given; the initial position and velocity of 
the motor are measured and known. Then, the 
problem is solved by an optimal control problem 
with fixed terminal state. 
 
 
3.1 Optimal Control with Fixed Terminal State 
 
The dynamics of the motor are approximated by the 
following transfer function. Input u is the voltage 
across the motor and output y is the motor’s angular 
position. 

2/)( sasG =                              (2) 
The initial constraints are: 

0,0 )0()0( vyyy == &                (3) 
and the final constraints are: 

TT vTyyTy == )(,)( &                (4) 
The control input at each time t is the value that 
minimizes the performance index: 
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The input for the minimum performance index can 
be written as: 

⎪⎩

⎪
⎨
⎧

−++−=
−++−=

+−=

)/()6624(
)/()121266(

)(

22
002

32
001

21

TayyTvTvC
TayyTvTvC

CtCu

TT

TT
       (6)                                  

 
The angular position y(t) and the velocity )(ty&  can 
be expressed by:  
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The inputs described in Equation (6) accelerate the 
motor from its initial constraint 00 )0(,)0( vyyy == &  
to its final constraint TT vTyyTy == )(,)( & . In most 
cases, however, the plant model used to solve the 
problem contains uncertainty or modeling errors. 
These types of errors will cause the actual trajectory 
to deviate from the desired trajectory represented in 
Equations (7) and (8), and will prevent the motor 

from successfully meeting the desired final constraint. A 
version of feedback control should be introduced to 
improve the robustness of the controller. Receding horizon 
control is a feedback method in which the control inputs 
are obtained by solving the finite horizon optimal control 
problem based on measured data at each sampling interval. 
New inputs are calculated based upon the measured data 
and are set as the current control input. This calculation 
procedure is performed continuously, yielding a feedback 
control. The prediction horizon T, which is equivalent to 
the final time T in Equation (5), is constant. The horizon 
moves with time as shown in Fig. 5(a). This method, 
though, is not very effective for making variables 
converge to their desired values at a designated time. In 
this paper, the horizon value decreases with time t and is 
updated after every interval dh, as shown in Fig. 5(b). 
Using this method, the performance index at the final 
interval can be calculated as: 

∫
dh dtu0

2                                     (9) 
If the update interval dh is equal to the sampling time ts, 
dh is very small and the calculated parameters C1 and C2 
in Equation (6) tend to be exceptionally large at the final 
intervals. To avoid these large values, dh is restricted to be 
larger than ts. The final time T is divided into N parts and 
T/N=dh is called the update interval.  
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Fig. 5 Method for Changing Horizon 
 
 
3.2 Algorithm of Proposed Receding Horizon Control 
 
The procedure employed for obtaining inputs is as follows. 
1. Set the initial time as 0. The inputs are calculated 

using Equation (6) with a horizon = T and initial 
constraints 0)0( yy = 0)0( vy =& . The calculated control 
inputs are sent to the motor at each sampling time ts to 
drive the motor.  

2. At time dh, the initial constraints are changed to 
01)( ydhy = and 01)( vdhy =& . Data y01 and v01 are then 

measured. Horizon T is replaced by T-dh. The inputs 



     

are again calculated from Equation (6) using 
these updated values. 

3. Using the same method, the horizon and initial 
constraints are updated at each update interval 
dh. The inputs are then calculated from these 
new values.  

 Repeating the input calculations with the measured 
data and the new horizon at each update interval will 
reduce the effects of the modeling error. 
 
 
3.3 Performance of the Proposed RH Control 
 
In this section, the performance of the proposed 
receding horizon control system is compared with a 
classical optimal control system. The motor is 
represented by the following transfer function: 
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where .3.0=α  The inputs for the classical optimal 
control system are determined from Equation (6), 
which is derived from the transfer function in 
Equation (2). The parameter α is not considered 
when the optimal control problem is solved. 
 
Fig. 6 shows time response of a position y and a 
velocity y&  that satisfy the conditions: 

3.5*14.3)0(,28.6)0( == yy &      
3.5*14.3)5.0(,4*14.3)5.0( ==== TyTy &         

,where the update interval dh is 50 ms, the division 
number N is 10 and the sampling time ts is 5 ms. In 
the figure, the proposed control system is labeled 
“RH control.” The velocity of the proposed system 
reaches the final desired values, while the ordinal 
optimal control system deviates.   
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Fig. 6 Compare RH control with classical optimal  

control 
 
Next, the performance of the proposed receding 
horizon control is investigated in terms of the 
division number N.  For this experiment, the 
constraints are set to 

0)0(,0)0( == yy &                                
3.5*14.3)5.0(,4*14.3)5.0( ==== TyTy &   

Fig. 7 shows time responses of the motor velocity 
and the motor inputs. The figure demonstrates that 

the division number N affects the performance of the 
control, but the difference in the final error between N=4 
and N=10 is slight. The slope of inputs, i.e., the parameter 
C1 in Equation (6) depends on the division number N.  The 
slope at the final interval is very great when N=10. Then, 
we set N=4 on simulations in Section 4 and Section 5. 
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Fig. 7 Comparison of the quasi-RH performance for 

different division numbers N 
 
 
 

4. CONTROL SYSTEM FOR LIFTING A BALL 
 
A control system for lifting the ball consists of two 
controllers as shown in Fig. 8. The one controller 
(Controller 1) determines three desired values for lifting a 
ball at the desired height Hr : the time Tref at which the next 
collision will occur, the height of the plate Yref at which the 
plate contacts the ball, and the velocity of the plate Vref at 
which the plate hits the ball. Then the motor should be 
driven to achieve these three desired values using the other 
controller (Controller 2). The receding horizon controller 
described in Section 3 can be used for the Controller 2. In 
this section, a method for Controller 1 is proposed. 
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At the k-th collision, the Controller 1 determines the 
next subsequent collision time Tref(k+1), the next 
desired hitting velocity Vref(k+1), and the next 
desired hitting height Yref(k+1) with the following 
method.  
First, the next desired hitting height Yref(k+1) of the 
plate is determined. When the plate passes through 
the center of the range of its up-and-down movement, 
it has the maximum velocity; this center height Ypref 
is the most efficient hitting height to lift the ball. 
Hence, we set Yref(k+1)  to Ypref. 
   prefref YkY =+ )1(                                            (10) 
Second, the next subsequent collision time Tref(k+1) 
is estimated. At the k-th collision, the plate hits the 
ball at a height Yp(k) and after that the ball moves up 
with a velocity Vba(k). And then, the ball falls down 
and collides with the plate at the desired height Ypref. 
The interval between two succeeding collision, i.e., 
the next subsequent collision time Tref(k+1) is 
estimated by the following equation 

  gkYYgkVkVkT pprefbabaref /)((2)()()1( 2
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(11)                                     
Last, the next desired hitting velocity Vref(k+1) is 
determined using the law of conservation of 
momentum. The ball velocity Vba(k) immediately 
after the collision is estimated as 
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 where 
      e:  collision coefficient 
     m:  mass of the ball 

 M:  mass of the plate 
VLf(k): velocity of the plate immediately before the 

k-th collision 
Vbf(k): estimated velocity of the ball immediately 

before the k-th collision. 
Because the plate is connected to the link and the 
motor, the motion of the plate may not be affected by 
the collision. Hence, we assume that M << m and use 
the following equation instead of equation (12).  

)()()1()( keVkVekV bfLfba −+=                  (13)  

In the case that the maximum height of the ball is the 
desired height Hr, the ball velocity Vba(k+1) 
immediately after the (k+1)-th collision should be 
      )(2)1( prefrba YHgkV −=+                          (14) 
Then the next desired hitting velocity Vref(k+1) of the 
plate to achieve this desired ball velocity is obtained 
from equations (13) and (14).  

)1/()}1()(2{)1( ekeVYHgkV bfprefrref +++−=+

                                                                             (15) 
The law of conservation of momentum is true only 
when no driving force is applied during the collision. 
In the equipment for lifting the ball, the plate hits the 
ball and the driving force is applied at each collision; 
hence equation (12) is not accurate to represent the 

real collision phenomena in this case. We assume that this 
inaccuracy can be expressed through errors in the 
estimated collision coefficient e. The errors degrade the 
performance of the controller and will inhibit lifting the 
ball at the desired height. Hence, we insert a feedback 
controller in the Controller 1.  
The real subsequent collision time T(k) depends on the real 
lifting height and the time T(k) can be measured using the 
microphone. On the other hand, the desired subsequent 
collision time Tdes for lifting the ball at the desired height 
Hr is  

   gYHgT refrdes /)(22 −=                             (16) 
The desired hitting velocity Vref(k+1) is modified using the 
following PI controller for decreasing the deviation 
between Tdes and  T(k):  
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The modeling errors also shift the hitting height from the 
desired height Ypref ,  hence the desired hitting height  
Yref(k+1) is also modified using the following PI 
controller: 

)()(

)()()1(

kYYkewhere

jeKkeKkY

pprefy

j yiyypyref

−=

+=+ ∑
                  (18) 

 
The algorithm of Controller 1 is summarized as follows: 
1) The next subsequent collision time Tref(k+1) is 
estimated from equation (11): 
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2) The next desired hitting velocity Vref(k+1) is obtained 
from both the feedforward input described in equation (15) 
and the collision time feedback input described in equation 
(17): 
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3) The next desired hitting height Yref(k+1) is obtained 
from both the feedforward input described in equation (10) 
and the hitting height feedback input described in equation 
(18): 

∑++=+ j yiyypyprefref jeKkeKYkY )()()1(        (21) 
 
The determined height Yref(k+1) and the velocity Vref(k+1) 
of the plate are transferred into the hitting position 
Mref(k+1) and the velocity Vmref(k+1) of the motor using 
equation(1).  The motor is driven to achieve the 
determined velocity Vmref(k+1)  and the position Mref(k+1) 
at the estimated time Tref(k+1) using Controller 2, which is 
proposed in Section 3. 
 
 

5. SIMULATION OF LIFTING A BALL 
 
The lifting of a ping-pong ball controlled using the 
proposed control system was simulated under the 
following conditions.  



     

1) The ball was held at an initial height of 0.65 m 
and released at time 0. Initially, the motor was 
stationary. After the first collision between the 
ball and the plate, the motor began to move.  

2) The nominal collision coefficient e  was set to 
0.65 and the error in the collision coefficient is 
set to -0.02, i.e., the real collision coefficient 
was set to 0.63.  

3) In Control 1, the gains of PI controller were set 
as Kp=30, Ki=3, Kpy=10 and Kiy = 5. 

4) In Controller 2, the division number N for the 
receding horizon control was always set to 4. 
The motor was represented by the transfer 
function in equation (9), where 3.0=α . 

5) The desired heights Hr of the lifting ball were set 
as follows: 
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In the first simulation, Control 1 involves no 
feedback controller, that is, Kp=0, Ki=0, Kpy =0 and 
Kiy = 0.  The trajectory of the plate and the ball are 
shown in Fig. 9.  The ball bounced rhythmically and 
the maximum height of the ball changes rapidly 
when the desired height Hr is switched from 0.25[m] 
to 0.4[m]. However, the maximum height does not 
reach the desired values because of the errors in 
collision coefficient e. 
 
 
 
 
 
 
 
  
 
 
 
 
Fig. 9 Time responses without feedback controller  
 
 
 
 
 
 
 
 
 
 
 
 
 
Fig. 10 Time responses with only collision time 

feedback controller 
 
 
In the second simulation, Control 1 involves only the 
collision time feedback controller, that is, Kp=30, 

Ki=3, Kpy =0 and Kiy = 0. Fig. 10 shows that the heights of 
the ball approaches to the desired heights but not reaches 
them. In this case, the collision height of the plate is much 
less than the desired height Ypref, hence the hitting velocity 
of the plate is less than the determined value Vref(k+1). 
This result indicates the significance of the hitting position 
feedback. 
 
In the last simulation, Control 1 involves both the hitting 
position feedback and the collision time feedback. Fig. 11 
shows that the ball height changes rapidly when the 
desired height Hr is switched from 0.25[m] to 0.4[m] and 
that the maximum height of the ball reaches the desired 
values despite the modeling errors. 
 
 
 
 
 
 
 
 
 
 
 
 
Fig. 11 Time responses with feedback controller 
 
 

6. CONCLUSIONS 
 
This paper proposed a control system for directing 
variables towards their desired values at each time interval 
even if the model contains uncertainty or modeling errors. 
To achieve this objective, an optimal control system was 
modified based on receding horizon control. The proposed 
control system was then applied to a system designed to 
lift a ping-pong ball without the use of a camera. For 
lifting the ball at the desired height, another controller was 
inserted in the system. The role of this controller was to 
estimate the subsequent collision time and to determine 
the next hitting position and the next hitting velocity at the 
estimated time. The effectiveness of the proposed control 
system was verified by performing simulations.  
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