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Abstract: This paper deals with the global stabilization of integrators chain by
means of a bounded feedback. Two nonlinear control laws made of summation
of saturation of the state are proposed. The first one extends [Sussmann et al.,
1994] and the second proposes variable level of the saturation to improve the
performance. Both remains very simple and improve significantly the efficiency of
the approach that is very competitive with respect to the other existing methods,
especially for its performance/complexity ratio. Copyright c©2005 IFAC
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1. INTRODUCTION

Bounded control is inherent to practical stabiliza-
tion problem: valves can only be operated between
closed and open, cars have limited steering angles,
tanks can only contain a finite volume, etc. There-
fore, design of controllers for systems with bounds
is an active area of research (see for instance re-
cent books Hu and Lin [2001], Saberi et al. [2000]
or special issues Bernstein and Michel [1995] and
the chronological bibliography therein).

Model predictive control is based on an online
computation of an open-loop optimal input de-
fined on a certain number of instant called ”hori-
zon” (that theoretically can be infinite) and re-
calculated at each new instant. This method is
known to enable the stabilization of linear sys-
tems with constrained control inputs Athans and
Falb [1966], Lee and Markus [1967], Vincent and
Grantham [1997] - with some possible restrictions.
However, due to the intensive computations led by
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the saturation function, the method is not always
applicable to real problems. Moreover, the optimal
solution may be discontinuous as for the time-
optimal problem. We shall mention the work of
Gauthier and Bornard [1983] where the problem
is reduced to a classical quadratic programming
problem that ensures the convergence and a rel-
ative efficiency of the algorithm. However, the
stability result can only be obtained in an infinite
horizon scheme whereas the algorithm works with
a finite horizon.

Solutions derived from the linear control tech-
niques have also been proposed. The linear anti-
windup compensation consist in designing a lin-
ear feedback, ignoring the input nonlinearity, and
then adding a compensation feedback to mini-
mize its effects [see Åstrom and Rundquist, 1989,
Campo and Morari, 1990, Kothare et al., 1994,
etc.]. Unfortunately, as mentioned by Megretski
[1996], a rigorous stability and robustness analysis
is rarely done because of its complexity.

Low gain control laws also gave rise to an impor-
tant literature [Lin and Saberi, 1993, Teel, 1995,



Saberi et al., 1996, Megretski, 1996, etc.]. This
consist in saturating a linear controller usually
obtained by solving a Riccati equation. It is known
that one can not achieve global stabilization by
this mean for system of dimension n ≥ 3 Suss-
mann and Yang [1991] and to disguise this draw-
back, it is proposed to tune the Riccati equation
with some parameter ε that can be adapted online
Lin and Saberi [1993], Megretski [1996], Grog-
nard et al. [2002]. This enables global stability
and better performances in terms of convergence.
Unfortunately, this requires to solve at each time a
convex optimization problem that requires at each
step to solve a linear Riccati equation that turns
out to be very expensive. Moreover, to obtain
good performances, the control law must to be
stiff (even discontinuous in Grognard et al. [2002])
due to a necessarily fast adaptation of the param-
eter ε. However, it should be mentioned that an
important work was carried out for these method
to handle perturbations Saberi et al. [1996], Sepul-
chre [2000].

Fully nonlinear approaches where also developed.
This axis was initiated by Teel [1992] who pro-
posed a fully nonlinear control law based on
nested saturation functions for the stabilization of
integrator chain. It followed various works extend-
ing the result to general controllable linear sys-
tems Sussmann et al. [1994] (with a slightly differ-
ent class of feedbacks) or handling measurements
bounds Lin [1995]. A common property of these
control laws is their extreme simplicity compared
with the other existing approaches. Furthermore,
as mentioned in Rao and Bernstein [2001] in a
comparison paper for the double integrator case,
the nonlinear approach shows good performances
in terms of robustness and performance degrada-
tion. Unfortunately, as mentioned by Megretski
[1996], for larger system the performance of the
closed loop system are degraded. The efficiency
and the simplicity of the nonlinear approaches en-
courage to further explore this field. The purpose
of this paper is to improve the performances of
the nonlinear control law proposed in Sussmann
et al. [1994] for the integrator case while trying to
keep as possible its extreme simplicity.

Notations: Let R? := R\ {0} and R?+ := R+\ {0}.
For any matrix P , pij will stand for the element
situated at the ith row and jth column, Pj for
its jth column. For any y ∈ R, satM (y) = y if
|y| ≤ M and satM (y) = sign(y)M otherwise.

2. PROBLEM STATEMENT AND
PRELIMINARY DEFINITIONS

An integrator chain is defined by:

ẋ = Ax + Bu (1)

where A is such that aij = 1 if j = i+1 and aij = 0
otherwise, B is such that bi = 0 for i = 1, . . . , n−1
and bn = 1, n being the dimension of the system.
The topic of this paper is to find stabilizing control
laws u for system (1) such that:

−ū ≤ u ≤ ū (2)

where ū is some a priori known strictly positive
real number. After an appropriate coordinates
change in order to fall within the generic case (1-
2), the control law proposed in Sussmann et al.
[1994] is:

u = −σ
n∑

i=1

εn−i+1 sat1(yi) (3)

where 0 < ε ≤ 1
4 , σ := ū/

∑n
i=1 εi is a scaling

factor and y := 1
σ Tx is a linear transformation of

x given by:

n∏
i=1

(λ + εi) = p0 + p1λ + · · ·+ pn−1λ
n−1 + λn

Tn = B
Tn−1 = (A + pn−1I)B
Tn−2 = (A2 + pn−1A + pn−2I)B

...
T1 = (An−1 + pn−1A

n−2 + · · ·+ p1I)B

(4)

The drawback of this control law shows
through (3). Indeed, if the yi’s are small for i ∈
{1, . . . , n− 1}, then for any large y1 the control
law will be close to σεn when a range of ū could
be used to drive faster the system to the origin.
Hence, the higher the dimension of the system is,
worse the performance is. Moreover, for a given
dimension, the choice of ε directly influences the
performances. The result of this paper extends
the range of possible ε that guarantees the global
stability of the closed loop and proposes a mod-
ification of the control law (3) that improves the
performances.

3. MAIN RESULTS

For any n > 2, the polynomial equation εn− 2ε+
1 = 0 has only one real solution in the interval
]0, 1[; let ε̄(n) denote this solution. For n = 2
let us define ε̄(2) := 1, the case n = 1 is not
treated since it has the trivial u = satūx. One
can easily see that for all n > 1, ε̄(n) > 1

2 and
limn→∞ ε̄(n) = 1

2 . With the above definitions, one
has:

Theorem 1. For all ε with 0 < ε < ε̄(n), the
control law



u = −σ
n∑

i=1

εn−i+1 sat1(yi) (5)

with y as in (3), globally asymptotically stabi-
lizes (1).

Corollary 2. The feedback law (5) globally
asymptotically stabilizes (1) for any ε < 1

2 .

Theorem 1 is proved in appendix A.1.

Corollary 2 directly follows from theorem 1 since
for all n > 1, ε̄(n) > 1

2 . This result is a generalisa-
tion of Sussmann et al. [1994] that assumes ε < 1

4 .
This extension sensibly improves the behavior of
the closed loop as shown on figure 1.

To improve the above mentioned bad performance
of control laws made of addition of saturation
functions due to a loss of possible “control energy”
if the states are badly scaled, we propose:

Theorem 3. Let ε be such that 0 < ε < ε̄(n) and
let the Mi’s be defined by:


Mn = 1

Mj = 1 +
1
ε

[
Mj+1 −

∣∣ satMj+1(yj+1)
∣∣]

for j = 1, . . . , n− 1

(6)

then, the control law

u = −σ
n∑

i=1

εn−i+1 satMi
(yi) (7)

with y as in (3), globally asymptotically stabi-
lizes (1).

Theorem 3 is proved in appendix A.2.

Thanks to this modification, the state yi will
inherit of the possible control left by the states
{yj}j=i+1,...,n in (7).

The next section is dedicated to a comparison
on the triple integrator case of the proposed
feedbacks and control laws of the literature: the
time optimal control, the control law proposed
by Megretski [1996] improved as recommended in
Lin [1998] based on solutions of a parametrized
Riccati equation, the original control law of Suss-
mann et al. [1994] and the first nonlinear feedback
proposed by Teel [1992].

4. THE TRIPLE INTEGRATOR CASE

In this section, we consider a chain of three
integrators:

ẋ =

0 1 0
0 0 1
0 0 0

 x +

0
0
1

 u

with u such that |u| ≤ 1.

We first apply the time optimal control. This
control law is known to minimize the time needed
by the state to join the origin. It consist in a bang-
bang control with at most n−1 switch instant (two
switch in the present case) that is n − 1 instants
where the control can switch from +1 to -1 or from
-1 to +1. This control is the best result that can be
obtained in term of convergence speed, however,
it is hard to compute especially for large systems.

Beside optimal control, the control law proposed
in Megretski [1996] was tested. This control laws
belongs to the class of feedbacks of the form:

u =− sat(kBT P (ε)x) (8)

where k and ε are two real parameters and P is
the solution of the Riccati equation:

P (ε)A + AT P (ε)− P (ε)BBT P (ε) = −εI

Megretski proposed to adapt ε according to the
following rule:

ε(x) := max{η ∈ (0, 1];

(xT P (η)x)(BT P (η)B) ≤ 1} (9)

with ε(x) = 0 if the set over which the maximum is
taken is empty. This maximization can be solved
very efficiently with the Newton’s method since
the function (x, η) → xT P (η)x − (BT P (η)B)−1

can be proved to be monotonically increasing
and concave for η ∈ [0, 1]. The adaptation is
issued from the observation that the gain ε is
required to be large close to the origin for good
performances and small far from the origin to
ensure the stability. As in Grognard et al. [2002],
we combined with the online adaptation of ε, a
gain k = 1

ε as proposed by Lin [1998] to increase
the performances near the origin. This control law
ensures global stability but requires to optimize
at each step a Riccati equation. A lighter version
that does not require to solve online an algebraic
Riccati equation is also proposed in Megretski
[1996] but only semi-global stability can then be
insured. Based on the same approach of adapting
a control law of the form (8), Grognard et al.
[2002] proposed a control law in three phases.
The performances are slightly improved but the
method is harder to implement and the obtained
control law may be discontinuous which is often
critical in case unknown delays Rao and Bernstein
[2001].



More in the spirit of the control law proposed in
this paper, we applied the control law proposed
in Teel [1992]. Taking Mi = Li+1 for all i ∈
{1, . . . , n− 1} and Mi = 1

2.00001Li+1 for i =
1, . . . , n−1 in order to fulfill the stability condition
Mi < 1

2Li+1, the control law is given by:

u =− satMn(yn + satMn−1(yn−1 + · · · ))

with Mn = 1 and yn−i =
∑i

j=0
i!

j!(i−j)!xn−j .

The above control laws are compared with the-
orem 1 and 3 with ε = 0.618 so to insure the
stability. The results are shown on figure 1 and
2. The control law proposed in theorem 3 clearly
appears to be the best in term of convergence
performance of the nonlinear approaches tested in
this paper. For instance, the time needed to join
the ball of radius 0.5 ‖x(0)‖ is reduced by a factor
10 from Sussmann et al. [1994] to theorem 3 for
large initial condition. Corollary 2, that simply
increases the range of possible values for ε ini-
tially proposed in Sussmann et al. [1994] brings a
significant performance contribution. Simulations
showed that further increasing ε reduces the am-
plitude of ‖x(t)‖ but is detrimental to the con-
vergence speed in the neighbourhood of the origin
(and to the global stability of the closed-loop).
Hence, further improving the possible range for
ε would not bring much benefits. Time optimal
and Megretski [1996]/Lin [1998] have slightly bet-
ter performances in terms of convergence speed.
However, this must be paid with intensive compu-
tations that prevent using these methods on large
systems.

The robustness of the proposed approach is tested
using the achieved settling time (AST) as indica-
tor. AST is the time needed to join and remain
in a ball centered at the origin of radius 0.05%
of the initial state norm. For the robustness to
measurement delay, the application of the theo-
rem 3 stabilizes the system for a delay τ < 1.6 s,
which is greater than the delay allowed by Teel
[1992] (τ < 1.1 s) and more than the double of
the delay allowed by the control law of Megretski
[1996]. Model uncertainty is also tested. First the
real poles of the system are moved to get 1

(s+a)3 .
Theorem 3 succeeded to settle the system till a =
−0.065, Teel [1992] failed to stabilize the system
beyond a = −0.01 while Megretski [1996] contin-
ued to stabilize the system for values of a down to
−0.07 on the real axis. Second the poles are moved
along the imaginary axis and the plant becomes

1
s(s2+w2) . The nonlinear control laws of Teel [1992]
and of Theorems 1 and 3 ceased to stabilize the
system for w > 2. The control law proposed by
Megretski [1996] performs better but this is paid
with high frequency chattering phenomena of the

control which may damage practical experiments.

5. CONCLUSION

In this paper, a generalization of the nonlinear
control law proposed by Sussmann et al. [1994]
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Fig. 1. Control of the third order integrator -
Evolution of ‖x(t)‖ for an initial condition
x0 = (2 − 2 3)T
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Fig. 2. Control of the third order integrator -
Evolution of x(t) (left) and u(t) (right) with
the approaches (from top to bottom) of the-
orem 3 with ε = 0.618, theorem 1 with
ε = 0.618, theorem 1 with ε = 0.5, Sussmann
et al. [1994], time optimal control, Teel [1992]
and Megretski [1996] with the improving fac-
tor proposed by Lin [1998]



is proposed as well as a possible improvements.
The convergence of the closed loop trajectory is so
deeply speeded. The proposed extensions render
nonlinear feedback very competitive compared to
the other existing methods particularly for the
simplicity of the feedback or the ability thanks
to the Lyapunov theory to quantify the accept-
able measurement or model errors. The next step
is clearly to extend the result to general linear
systems as in [Sussmann et al., 1994].

Appendix A. PROOFS

Let us start the proof with a preliminary lemma
that avoids to use a global lipschitz argument
as in Teel [1992] or in Lin [1995] to justify that
the trajectory of the closed loop system can not
diverge in finite time.

Lemma 4. Any closed loop trajectory of any lin-
ear system can not diverge in finite time under
bounded control.

PROOF. Let ẋ = Ax + Bu where u is such that
‖u‖ ≤ M . Then, one has:

d ‖x‖2

dt
= 2xT Ax + 2xT Bu

≤ 2λmax(A) ‖x‖2 + 2λmax(B)M ‖x‖

Recognizing a Bernoulli ordinary differential
equation, it follows:

‖x(t)‖2 ≤
[λmax(B)M

λmax(A)

(
eλmax(A)t − 1

)
+ ‖x(0)‖ eλmax(A)t

]2

which ends the proof, the system can not blow
up in finite time. Note that the result does only
assumes the existence of a closed loop trajectory.

Now, if one takes z := 1
σ x and v := 1

σ u, system (1)
becomes:

ż = Az + Bv

with the constraint |v| ≤
∑n

i=1 εi and after the
coordinate change y = Tz, with T as in (4) one
gets:

ẏ =


0 εn−1 εn−2 . . . ε
0 0 εn−2 . . . ε
...

. . . . . .
...

0 . . . . . . 0 ε
0 . . . . . . 0 0

 y +



1
...
...
...
1


v (A.1)

A.1 Proof of Theorem 1

Assume that |yn| > 1 and let us prove that yn

joins [−1, 1] in finite time. Let Vn := 1
2y2

n.

V̇n =−ynε sat1(yn)− yn[ε2 sat1(yn−1) +

· · ·+ εn sat1(y1)]

Clearly, the decrease of the Lyapunov function Vn

holds if ε >
∑n

i=2 εi. But one has:

ε >
n∑

i=2

εi ⇔ ε− 2ε2 + εn+1 > 0

⇔ 1− 2ε + εn > 0

and p : ε → εn − 2ε + 1 has its unique extremum

for ε = n−1

√
2
n . It is also easy to see that for

n > 2, this extremum necessarily lies in ]0, 1[
since p(0) = 1, dp

dε (0) = −2 < 0, p(1) = 0 and
dp
dε (1) = −2 + n > 0. Hence, for all n > 2, p
necessarily has one and only one root ε̄(n) in the
open interval ]0, 1[ and p(ε) > 0 for all ε < ε̄(n)
and p(ε) < 0 if ε > ε̄(n). One can trivially
notice that this also holds for n = 2. Hence, yn

necessarily joins [−1, 1] in finite time. During that
time, the other states can not blow up thanks to
Lemma 4.

Once yn lies in [−1, 1], the evolution of Vn−1 :=
y2

n−1 satisfies:

V̇n−1 =−yn−1ε
2 sat1(yn−1)

−yn−1[ε3 sat1(yn−2) + · · ·+ εn sat1(y1)]

With the same argumentation as above, yn−1 joins
[−1, 1] in finite time.

Hence, after some finite time, all the yi’s are in
the interval [−1, 1] where the system is linear with
strictly negative eigenvalues:

ẏ =



−εn 0 0 . . . 0

−εn −εn−1 . . .
...

...
...

. . . . . .
...

−εn −εn−1 . . . −ε2 0
−εn −εn−1 . . . −ε2 −ε

 y (A.2)

which ends the proof.

A.2 Proof of Theorem 3

Let here again assume that |yn| > 1 and take
Vn := 1

2y2
n. It follows:

V̇n =−ynε satMn
(yn)− yn[ε2 satMn−1(yn−1) +

· · ·+ εn satM1(y1)]



The decrease of the Lyapunov function holds if

| satMn(yn)|>

∣∣∣∣∣
n−1∑
i=1

εn−i satMi(yi)

∣∣∣∣∣ (A.3)

But, using (6), one has:

∣∣∣∣∣
n−1∑
i=1

εn−i satMi(yi)

∣∣∣∣∣ ≤
n−1∑
i=1

εn−i | satMi(yi)|

≤
n−1∑
i=2

εn−i | satMi
(yi)|+ εn−1M1

≤
n−1∑
i=2

εn−i | satMi
(yi)|+ εn−1

+εn−2[M2 − | satM2(y2)|]

≤
n−1∑
i=3

εn−i | satMi
(yi)|+ εn−1 + εn−2M2

...

≤ εn−1 + εn−2 + · · ·+ ε2 + εMn−1

Since |yn| > 1, Mn−1 = 1 and it follows:

∣∣∣∣∣
n−1∑
i=1

εn−i satMi
(yi)

∣∣∣∣∣≤
n−1∑
i=1

εi

A choice of ε strictly lower than ε̄(n) ensuring that
ε >

∑n
i=2 εi will also ensure (A.3). Hence, here

again, yn necessarily joins [−1, 1] in finite time.
During that time, the other states can not blow
up thanks to Lemma 4.

Repeating the same reasoning for all the states,
all the yi’s rejoin [−1, 1] in finite time where the
system takes the form (A.2). This ends the proof.
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