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Abstract: A nonlinear dynamic output feedback control method for a 5-degree-of-
freedom AMB is presented in this paper. This method is based on the system
structure of AMB and a quadratic-like Lyapunov function. It is shown that
backstepping and completing square techniques enable the construction of the
voltage input by using measured output only. The control law guarantees the
asymptotic stability of the closed loop system. Copyright c©2005 IFAC
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1. INTRODUCTION

AMB (active magnetic bearing) systems have an
outstanding advantage over conventional bear-
ings: noncontact support. For this reason, its ap-
plication in high speed rotating machines is quite
attractive. The price payed is that AMB is inher-
ently an unstable system and can not be operated
without feedback control.

In AMB systems, the attractive force each electro-
magnet exerts on the rotor has a strong nonlinear-
ity on both the current and the air gap. In order
to use linear control approaches in this system,
large bias currents have to be applied to pairs of
electromagnets so as to guarantee that magnetic
force acting on the rotor can be approximated as
a linear function of the currents (A bias current
of I0 ≈ 0.5Imax is used to linearize the system
in traditional control design (Tsiotras and Vele-
nis, 2000)). This large bias current however does
not contribute to the control of magnetic bearing
but is a waste of power. Furthermore, the control
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system designed based on linear approximation
works only in a very narrow range.

Therefore, in recent years in order to design
AMB systems with low power consumption, ap-
proaches called ”zero-bias” or ”zero-power” and
”low-power”, in which zero bias or low bias is used,
are emerging as popular alternatives. See (Ariga
et al., 2000; Liu et al., 2002; Charara et al., 1996;
Tsiotras and Velenis, 2000; Motee et al., 2002;
de Queiroz and Dawson, 1996b; de Queiroz and
Dawson, 1996a; Knospe and Yang, 1997; Lévine
et al., 1996).All these aforementioned approaches
are fundamentally state feedback based.

However, state feedback control approaches can
not be extended to high speed rotor in which the
flexibility (high order vibration modes) has to be
taken into consideration and the states of these
high order vibration modes are not measurable.
Therefore, it is highly desired to find a nonlinear
output feedback approach for AMB systems. The
purpose of this paper is to show how such a
nonlinear output feedback control law can be
designed for a 5-degree-of freedom (5DOF) AMB
system. This paper is the extension of (Liu and
He, 2003) in which the idea is outlined for the
1DOF case.



2. MODEL OF A 5DOF AMB SYSTEM

The rotor is assumed to be rigid for simplicity.
Control of flexible rotor will be considered in a
forthcoming paper.

The model in Fig.1 is composed of 10 electromag-
nets. The distances between the center of gravity
and each acting point of magnetic forces F1 ∼ F8

are set as l.
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Fig. 1. Structure of a 5DOF AMB system

Let (xG, yG) denote the displacements of the cen-
ter of gravity of the rotor in xoy plane, θx, θy

denote the angular displacements in yoz plane and
xoz planes, respectively. Also, the air gaps in x
and y directions at the equilibrium are denoted
by X0 and Y0.

Rotor Dynamics As the motion in z direction
can be controlled independently as an 1DOF
AMB system which is much simpler, only the
control of the remaining 4DOF will be described
in this paper.

Let the forces and torques along x, y axes be
denoted by fx, τx and fy, τy respectively. Then
the motion equations for the 4DOF system are
described by (Higuchi and Mizuno, 1982)

mẍG = fx (1)

mÿG = fy (2)

Jr θ̈y − Jaωz θ̇x = τx (3)

Jr θ̈x + Jaωz θ̇y = τy. (4)

Here m is the mass of the rotor, Jr the inertial
moment around x and y axes and Ja the inertial
moment around z axis. The positive rotating
directions for θx and θy are as shown in Fig.1.
The terms of Jaωz θ̇x and Jaωz θ̇y in (3) and (4)
represent gyroscopic moments. In this paper, it is
assumed that ωz = const. Moreover, disturbances
caused by the unbalance of the rotor are ignored.

The state variables are set as

x1 = xG, x2 = ẋG, y1 = yG, y2 = ẏG

z1 = θy, z2 = θ̇y, z3 = θx, z4 = θ̇x.

The measured outputs are displacements ηx :=
x1, ηy := y1, ηz := [z1 z3]T for the rotor part.
Then the state equations are obtained as

Ẋ = AxoX + bxofx, ηx = cxoX (5)

Ẏ = AyoY + byofy, ηy = cyoY (6)

Ż = AzoZ + BzoΓ, ηz = CzoZ (7)

where the state vectors and torque input vector
are X = [x1 x2]T , Y = [y1 y2]T , Z = [z1 z2 z3

z4]T , Γ = [τy τx]T and the coefficient matrices are
omitted since they can be obtained from (1)∼(4)
easily.

Electromagnetic Circuit Let the currents of mag-
nets be denoted by (ξ1, . . . , ξ8) and the resistance
of each circuit be R. All currents are assumed
to be measured. Moreover, let xu, yu and xl, yl

denote the gaps between the upper electromag-
nets and the rotor, the gaps between the lower
electromagnets and the rotor respectively. Since
z1 = θ1, z3 = φ1 are small enough, these gaps are
approximated as

xu = x1 + lz1, xl = x1 − lz1 (8)

yu = y1 − lz3, yl = y1 + lz3. (9)

Then the state equations of electromagnetic cir-
cuits are described by (r = 1, . . . , 8)

ξ̇r =
1
Lr

(
−Rξr − L̇rξr + ur

)
(10)

where the inductances L1, . . . , L8 are given by

L1 =
2k

X0 − xu
, L2 =

2k

Y0 − yu
, L3 =

2k

X0 + xu

L4 =
2k

Y0 + yu
, L5 =

2k

X0 − xl
, L6 =

2k

Y0 − yl

L7 =
2k

X0 + xl
, L8 =

2k

Y0 + yl
.

Here k is a constant. The electromagnetic forces
of the magnets are described by (r = 1, . . . , 8)

Fr =
1
4k

L2
rξ

2

r. (11)

As is obvious from Fig.1, electromagnetic forces
fx, fy and torques τx, τy are given by

fx = F1 − F3 + F5 − F7 (12)

fy = F2 − F4 + F6 − F8 (13)

τy = (F1 − F3 − F5 + F7) l (14)

τx = (−F2 + F4 + F6 − F8) l. (15)

For future use, the time derivatives of Li(i =
1, 3, 5, 7) and Lj(j = 2, 4, 6, 8) are listed below



L̇i =
∂Li

∂x1
x2 +

∂Li

∂z1
z2, i = 1, 3, 5, 7 (16)

L̇j =
∂Lj

∂y1
y2 +

∂Lj

∂z3
z4, j = 2, 4, 6, 8. (17)

Relative Degree of Actuator A discussion similar
to that of (Liu et al., 2002) reveals that the
relative degree is not defined at the equilibrium
if the bias current is ε = 0. So a bias current
ε 6= 0 is applied on the four pairs of electromagnets
in order for the backstepping technique to be
applicable. This renders a relative degree of 1.

To shift the equilibrium currents to zeros, new
states and new inputs

ξr = ξr − ε, ur = ur −Rε, r = 1, . . . , 8 (18)

are defined. In this new coordinate the state
equations of the actuator change to (r = 1, . . . , 8)

ξ̇r =
1
Lr

(
−Rξr − L̇rξr + ur

)
. (19)

3. CONTROL DESIGN

To design the control law for the system, the AMB
system is decomposed into 3 parts: the first one is
the rotor dynamics (5)∼(7), the second one is the
static relations (11)∼(15) between the currents
and electromagnetic forces, and the third one is
the electromagnetic circuit (19).

Since the rotor dynamics (5)∼(7) is linear, any
linear control method can be applied to design
the required electromagnetic forces so as to sta-
bilize this subsystem (H∞ linear controllers are
designed in the simulation.) So the design process
consists of the following 3 steps:

(1) Construct (f∗x , f∗y , τ∗y , τ∗x ) by linear dynamic
output feedback of (x, y, θx, θy).

(2) Compute the desired currents (ξ∗1 , . . . , ξ∗8)
which correspond to (f∗x , f∗y , τ∗y , τ∗x ).

(3) Use backstepping and completing square
techniques to find (u1, . . . , u8) using only the
measured outputs (x, y, θx, θy) and (ξ1, . . . , ξ8).

Structural Requirement On K(s) First of all, a
condition on the linear dynamic output feedback
controller K(s) is given, under which the input
of nonlinear actuator can be realized by dynamic
output feedback(Liu and He, 2003).

Lemma 1. The relative degree of K(s) must be
greater than or equal to that of the actuator in
order for dynamic output feedback to be realiz-
able.

Output Feedback Design of Magnetic Force Since
the relative degree of the electromagnetic actuator
is 1, the linear controller must be strictly proper.

Here it is assumed that the linear controller is
designed as follows:

Ẋk = AxkXk + bxkηx, f∗x = cxkXk (20)

Ẏk = AykYk + bykηy, f∗y = cykYk (21)

Żk = AzkZk + Bzkηz, Γ∗ = CzkZk. (22)

This controller yields 3 decoupled closed-loop sub-
systems corresponding to each motion. As an ex-
ample, the closed-loop subsystem for the motion
in x direction is shown below[

Ẋ

Ẋk

]
= Ax

[
X
Xk

]
+ bxfxe, fxe := fx − f∗x (23)

in which

Ax =
[

Axo bxocxk

bxkcxo Axk

]
, bx =

[
bxo

0

]
.

The coefficient matrices Ay, by, Az and Bz for
the closed loop of other 2 motions are obtained
similarly.

To find a Lyapunov function for the whole linear
closed-loop subsystem, let us define the following
notations:

ζ =
[
XT XT

k Y T Y T
k ZT ZT

k

]T

Te = [fxe fye τye τxe]
T

in which

fye = fy − f∗y , τye = τy − τ∗y , τxe = τx − τ∗x .

Then it is easy to verify that the state equation of
the linear closed-loop subsystem is described by

ζ̇ = Acζ + BcTe (24)

where

Ac = diag(Ax Ay Az), Bc = diag(bx by Bz).

Further, since Ac is stable, there exists a matrix
P > 0 satisfying the following Lyapunov equation

AT
c P + PAc + I = 0 (25)

and P has a structure of P = diag(Px Py Pz).

Then it is well-known that the quadratic function

V1(ζ) = ζT Pζ (26)

provides a Lyapunov function for the linear sub-
system (24). The derivative of V1(ζ) is found to
be

V̇1 =−||ζ||2 + ζT (PBcTe) + (PBcTe)T ζ. (27)

Computation of Desired Currents Next, to find
the desired currents (ξ∗1 , . . . , ξ∗8) corresponding to



(f∗x , f∗y , τ∗y , τ∗x ), let us begin with the analysis of
equations (11)∼(15). Obviously, the solution is
not unique. The solution that minimizes the total
electric power is to be determined. (12) and (14)
can be transformed into

(
αf∗x + βτ∗y

)
/2 = L2

1(ξ1
∗
)2 − L2

3(ξ3
∗
)2 (28)

(
αf∗x − βτ∗y

)
/2 = L2

5(ξ5
∗
)2 − L2

7(ξ7
∗
)2 (29)

in which

α = 4k, β = 4k/l, ξ
∗
r = ξ∗r + ε (r = 1, . . . , 8).

Define

S1 = αf∗x + βτ∗y , S2 = αf∗x − βτ∗y (30)

as 2 switching functions. In order to minimize the
electric power, there must hold





S1 > 0, ξ∗3 = 0
S1 = 0, ξ∗1 = ξ∗3 = 0
S1 < 0, ξ∗1 = 0

,





S2 > 0, ξ∗7 = 0
S2 = 0, ξ∗5 = ξ∗7 = 0
S2 < 0, ξ∗5 = 0

Consequently, the optimal odd numbered desired
currents are obtained as

ξ∗1 =
1
L1

√
S1

2
+ L2

3ε
2 − ε (S1 > 0), 0 (S1 ≤ 0)

ξ∗3 = 0 (S1 ≥ 0),
1
L3

√
−S1

2
+ L2

1ε
2 − ε (S1 < 0)

ξ∗5 =
1
L5

√
S2

2
+ L2

7ε
2 − ε (S2 > 0), 0 (S2 ≤ 0)

ξ∗7 = 0 (S2 ≥ 0),
1
L7

√
−S2

2
+ L2

5ε
2 − ε (S2 < 0).

Similarly, the optimal even numbered desired cur-
rents are

ξ∗2 =
1
L2

√
S3

2
+ L2

4ε
2 − ε (S3 > 0), 0 (S3 ≤ 0)

ξ∗4 = 0 (S3 ≥ 0),
1
L4

√
−S3

2
+ L2

2ε
2 − ε (S3 < 0)

ξ∗6 =
1
L6

√
S4

2
+ L2

8ε
2 − ε (S4 > 0), 0 (S4 ≤ 0)

ξ∗8 = 0 (S4 ≥ 0),
1
L8

√
−S4

2
+ L2

6ε
2 − ε (S4 < 0)

where

S3 = αf∗y − βτ∗x , S4 = αf∗y + βτ∗x . (31)

Design of Voltage Inputs In this part, the volt-
age inputs will be designed by using backstepping
and completing square techniques.

Error Equations As in the standard backstep-
ping, the errors between real currents (ξ1, . . . , ξ8)
and the desired currents (ξ∗1 , . . . , ξ∗8) are defined
as

er = ξr − ξ∗r , i = 1, . . . , 8.

Then their dynamics are described by

ėr =
1
Lr

[
−Rξr − L̇rξr + ur − Lr ξ̇

∗
r

]
. (32)

Further, it can be verified that equations

∑

i∈I

∂Li

∂x1

(
1
2
ei − ξi

)
ei = −fxe (33)

∑

j∈J

∂Lj

∂y1

(
1
2
ej − ξj

)
ej = −fye (34)

∑

i∈I

∂Li

∂z1

(
1
2
ei − ξi

)
ei = −τye (35)

∑

j∈J

∂Lj

∂z3

(
1
2
ej − ξj

)
ej = −τxe (36)

hold where I and J are 2 integer sets

I = {1, 3, 5, 7} , J = {2, 4, 6, 8} .

Lyapunov Function The key point in obtaining
an output control law for this AMB system is to
use the following quadratic-like function

V (ζ, e1, . . . , e8) = V1 +
1
2

8∑
r=1

Lre
2
r (37)

as a candidate of Lyapunov function for the whole
system. Note that Lr is a (positive) function of
the air gap, so this Lyapunov function is different
from the one provided by standard backstepping
method. Derivation of V along the trajectory
yields

V̇ = V̇1 +
8∑

r=1

L̇r

(
1
2
ei − ξi

)
er

+
8∑

r=1

er(ur −Rξr − Lr ξ̇
∗
r )

based on (32). Further, substitution of (16), (17),
(27) as well as (33)∼(36) leads to

V̇ =−‖ζ‖2 + ζT (PBcTe) + (PBcTe)T ζ

−fxex2 − fyey2 − τyez2 − τxez4

+
8∑

r=1

er(ur −Rξr − Lr ξ̇
∗
r ) (38)

First Completion of Square As (x2, y2, z2, z4) are
not measured, the terms containing them can
not be cancelled by the voltage inputs ur(r =
1, . . . , 8). What is possible is to cover these terms
by the negative term −‖ζ‖2. Define

P = PBc − 1
2
BcM, M = diag(m m Jr Jr).



Since [x2 y2 z2 z4]T = MBT
c ζ, completion of

square yields

V̇ =−||ζ − PTe||2 + ||PTe||2

+
8∑

r=1

er(ur −Rξr)−
8∑

r=1

erLr ξ̇
∗
r . (39)

Second Completion of Square Further, let us
deal with the last term in (39). Tedious but
straightforward computation yields

Liξ̇
∗
i = wix2 + w̃ilz2 + vi, i = 1, 3, 5, 7 (40)

Lj ξ̇
∗
j = wjy2 + w̃j lz4 + vj , j = 2, 4, 6, 8. (41)

The signals wr, w̃r, vr (r = 1, . . . , 8) are functions
of measured outputs. Then it is obtained that

8∑
r=1

erLr ξ̇
∗
r =

8∑
r=1

ervr +

wodx2 + wevy2 + w̃odz2 + w̃evz4

where wod =
∑

i∈I eiwi, w̃od = l
∑

i∈I eiw̃i, wev =∑
j∈J ejwj and w̃ev = l

∑
j∈J ejw̃j . In order to

get rid of the unmeasured states in this term,
completion of square will be executed one more
time. For simplicity of presentation, define

W = [wod wev w̃od w̃ev].

Then, this equation can be further written as

8∑
r=1

erLr ξ̇
∗
r

= −||ζ − PTe||2 + ||ζ − PTe +
1
2
Bc(WM)T ||2

−||1
2
Bc(WM)T ||2 + WMBT

c PTe +
8∑

r=1

ervr.

Substitution of this equation into (39) gives

V̇ =−||ζ − PTe +
1
2
Bc(WM)T ||2

+||PTe||2 + ||1
2
Bc(WM)T ||2 −WMBT

c PTe

+
8∑

r=1

er(ur −Rξr − vr). (42)

The 2nd to the 4th terms can be expressed in
terms of er explicitly. After the cancellation of
these terms by the voltage input ur (see Theo-
rem 2 for the formula), a nonpositive

V̇ = −‖ζ − PTe +
1
2
Bc(WM)T ‖2 −

8∑
r=1

(cr + R)e2
r

is obtained. Here cr > 0 (r = 1, · · · , 8) is a control
gain. Moreover, V̇ ≡ 0 iff

ζ − PTe +
1
2
Bc(WM)T = 0, e1 = · · · = e8 = 0.

As e1 = · · · = e8 = 0 implies Te = 0 and W = 0,
it follows from the above equation that ζ = 0.
Therefore, asymptotic stability is guaranteed by
LaSalle’s invariance principle.

Theorem 2. The asymptotic stability of the AMB
system is guaranteed by the following dynamic
output feedback voltage inputs:

ui = Rξ∗i + vi − ciei − 1− l2

4
(wiw5e5 + wiw7e7)

±
(

κ1

α
+

κ3

β
− λ1fxe − λ3τye − λ5τxe

)
L2

i (ξi + ξ
∗
i )

−1 + l2

4
w2

i ei (i = 1 : +, i = 3 : −)

uj = Rξ∗j + vj − cjej − 1− l2

4
(wjw6e6 + wjw8e8)

±
(

κ2

α
− κ4

β
− λ2fye + λ4τxe + λ5τye

)
L2

j (ξj + ξ
∗
j )

−1 + l2

4
w2

j ej (j = 2 : +, j = 4 : −)

up = Rξ∗p + vp − cpep − 1− l2

4
(wpw1e1 + wpw3e3)

+
(

κ1

α
− κ3

β
− λ1fxe + λ3τye + λ5τxe

)
L2

p(ξp + ξ
∗
p)

−1 + l2

4
w2

pep (p = 5 : +, p = 7 : −)

uq = Rξ∗q + vq − cqeq − 1− l2

4
(wqw2e2 + wqw4e4)

+
(

κ2

α
+

κ4

β
− λ2fye − λ4τxe − λ5τye

)
L2

q(ξq + ξ
∗
q)

−1 + l2

4
w2

qeq (q = 6 : +, q = 8 : −).

Note that wr, vr and w̃r are bounded since ξ
∗
r > 0

(r = 1, . . . 8). Therefore, the given control inputs
are bounded.

4. NUMERICAL SIMULATION

Parameters used in simulations are listed below:
m = 14.46, l = 0.13, Ja = 0.0136, Jr = 0.333,
k = 0.00769, X0 = Y0 = 0.55, R = 14.7.

In simulation, initial displacements are set as
x(0) = −5 × 10−2[mm], y(0) = 5 × 10−2[mm],
θx(0) = −5×10−4[rad] and θy(0) = 5×10−4[rad].
Initial speeds are all set as zeros. The bias current
applied is ε = 0.2[A] and the axial rotation speed
ωz is set as 1000[rad/s]. Some of the responses are
shown in Fig.2∼Fig.5. Here, control gains used
are c1 = . . . = c8 = 20. The linear controller is
designed using H∞ control to suppress the effect
of torque disturbance on the displacement output



and electromagnetic force input. The detail is
omitted.

The displacements and velocities of rotor settle in
about 4[ms], the currents of electromagnets also
settle to the bias currents in about 4[ms]. Further,
as can be seen from Fig.4∼Fig.5, the control volt-
ages switch and only one of each pair of magnets
is active. The switching works well because it is
determined based on the change of directions of
the synthesized magnetic forces necessary for the
control of the rotor. Simulations under other bias
currents level and initial conditions show similar
trend.
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Fig. 2. xG and yG
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5. CONCLUDING REMARKS

In this paper, a nonlinear dynamic output feed-
back control method has been presented for a
5DOF AMB system. This method guarantees the
asymptotic stability.

The extention of this approach to more general
cases is under study, where the axial rotation
speed ωz is time-varying and the rotor is flexible.
The result will be reported in a forthcoming
paper.
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