

A HARDWARE IMPLEMENTATION OF EIA 709.1 CONTROL NETWORKING STANDARD

Jeon Il Moon*, Jung Sub Kim**, Jong Bae Kim*, Kye Young Lim***, Byoung Wook Choi****

*R&D Center of LG Industrial Systems CO., Ltd, Anyangshi, Korea,
**School of Electrical Engineering, Penn State University, U.S.A.

***Korea Polytechnic University, Kyonggido, Korea

****Dept. of Electrical Engineering, Seoul Nat'l Univ. of Technology, Seoul, Korea

Abstract: This paper presents a solution for the hardware implementation of EIA-709.1
Control Networking Protocol. It is the basic protocol of LonWorks systems that is widely
used for the building system and the sensor system. The EIA 709.1 protocol has been
implemented at the hardware level from physical layer to network layer to reduce the
computing load on the CPU. VHSIC hardware description language (HDL) has been used
for the EIA-709.1 protocol. Other layers have been implemented using C programs on
Intel 8051 processor. The EIA-709.1 protocol has been implemented using field
programmable gate array (FPGA) technology and the commercial feasibility of the
proposed solution has been performed through the communication test using the Neuron
Chip of EIA-709.1 protocol. The designed EIA709.1 core is usable as one of the
intellectual properties (IPs) and it is applicable to design System-on-a-Chip (SoC) for
various industrial controllers. Copyright © 2005 IFAC

Keywords: EIA-709.1, fieldbus, networks, protocols, embedded systems

1. INTRODUCTION

Industrial system manufacturers have usually
integrated devices by using their own proprietary
protocol and physical network. It has been
historically difficult to support interoperability
between digital control equipment from various
manufactures. Therefore, standardization for both
open network and protocol in industrial domain is
inevitable.

The fieldbus is a digital serial communication
network designed to exchange data in real-time
between distributed controllers and equipment
installed in the automation industry. In building such
systems, a growing number of devices such as sensor,
loop controller, Programmable Logic Controller
(PLC), motor, valve, robot and microprocessor-based
control systems are used to implement intelligent and
distributed functions; these are connected to a
fieldbus network. As the number of devices in a
system grows and the functions of a system need to
be more intelligent, these devices need to rapidly
exchange increasing amounts of data among them.
Point-to-point or direct connections are not
considered suitable any more for systems composed
of many devices because the number of cables is
increasing proportional to the square of the number

of devices. In order to solve this problem, various
serial communication networks have been designed
and implemented to provide reliable and efficient
communication paths for data exchange among the
system components; such networks are called
fieldbuses (Schumny, 1998; Thomesse, 1998) A
fieldbus is a type of real-time communication system
based on a layered structure deduced from the seven
layers Open System Interconnection (OSI) model
(Zimmermann, 1980). Fieldbuses include Profibus,
World FIP, Fieldbus Foundation, Controller Area
Network (CAN) and LonWorks (Choi, et al., 2000;
Lee, et al., 2004; Almedia, et al., 2002).

Most industrial devices readily incorporate the
processor chip without a price burden because the
cost of microprocessors has been down for
consecutive years. Design engineers began to realize
the necessity of open protocols for optimal
communication performance in control systems.
Control networks have a number of unique
requirements that are different from data networks.
The followings are some of these unique
requirements.
- Frequent, reliable, secure communications between

devices
- Short message format for the information being

passed

- Peer-to-peer functionality for every device
- Chip price that enable small and low-cost devices

There are needs to address these control specific
network requirements. In addition, there is the belief
that a market standard for communications would
provide interoperability between control devices
from various manufacturers and empower the market
to increase in both size and efficiency.

The LonWorks protocol was introduced as a solution
in the domain of the control specific network
(Echelon, 1999). A LonWorks network uses the
LonWorks protocol, also known as the ANSI/EIA
709.1 Control Networking Standard, to accomplish
these tasks that was invented by Echelon in 1988
(ANSI, 1988). The LonWorks protocol is a layered,
packet-based, peer-to-peer communications protocol.
To ensure the requirements of control systems, the
protocol has the layered structure as recommended
by International Standards Organization (ISO). This
is a different feature from other fieldbus protocols.
By tailoring the protocol of each layer of the Open
System Interconnection (OSI) reference model in
order to guarantee domain specific control
performance, the LonWorks protocol provides a
control-specific solution that guarantees reliability,
performance, and robust communications required
for control applications. The protocol is originally
embedded in Neuron Chip which Echelon has
published the LonWorks protocol and made it an
open standard under the ANSI/EIA 709.1 Control
Networking Standard. The protocol is, therefore,
freely available to anyone.

The variety of services provided by the LonWorks
protocol allows for enhanced reliability, security, and
optimization of network resources.

In this paper we develop EIA-709.1 protocol by
using VHDL and the C programming language. Of 7-
layers of EIA-709.1, the physical layer, Medium
Access Control (MAC) layer, and the data link layer
are implemented at the hardware level. And then the
functional verification is performed in Field
Programmable Gate Array (FPGA). The software
implemented in an 8032 microprocessor handles the
protocol implemented in FPGA, and the experiment
is performed with Neuron chip to verify the
functionality and interoperability.

2. OUTLINE OF EIA-709.1 PROTOCOL

The seven layers of the ISO/OSI model, along with
the corresponding services, are provided by the
LonWorks protocol. It is not a requirement that any
given protocol implement every layer of this model.
A truly complete and fully scalable protocol – such
as the LonWorks protocol – provides all the services
described in this model.

The physical layer defines the raw bits over a
communication channel. The LonWorks protocol is

media-independent so that multiple physical layer
protocols are supported according to the
communication medium.

The link layer defines media access method and data
encoding scheme to ensure efficient use of a single
communications channel. The raw bits of the
physical layer are broken up into data frames. The
LonWorks protocol uses a unique media access
control algorithm, called predictive p-persistent
Carrier Sense Multiple Access (CSMA) protocol that
has excellent performance characteristics even during
the period of network overload, allowing a channel to
operate with full capacity with minimum collision.
The CSMA protocol is a listen-before-transmit
scheme in which a device with a message to transmit
first listens to the network. If no message traffic is
detected, then the device will transmit its message
after a calculated number of packet time slots.

Ver PDU Fmt AddrFmt Length Address

1

SrcSubnet

SrcSubnet

SrcSubnet

SrcSubnet

SrcSubnet

1

1

1

0

1

SrcNode

SrcNode

SrcNode

SrcNode

SrcNode

DstSubnet

DstGroup

DstSubnet

DstSubnet

DstSubnet

1

DstNode

DstNode Group GrpMemb

Unique_Node_ID

Broadcast

8 1 7 8

1 7

8 8

48

2 2 2 2

0

1

2a

2b

3

Domain

0/8/24/48 (domain field length is 0, 1,
3, or 6 bytes)

Fig. 1. EIA-709.1 Address Format

The link layer supports simple connection-less
service. It is limited to Frame transferring, frame
encoding, and error search function. However, the
layer does not support the error restoration function.
The address format of this protocol supports a total 5
modes, and the details are shown in Fig. 1. The
format performs 2 broadcast modes, 2 subnets, node
communication, and Unique Node ID
communication.

The network layer deals with transmission of packets
within a single domain, but does not support
communication between domains. The network layer
provides connection-less and unacknowledged
service. On the contrary, it does not support message
division and the reassembling function.

The transaction control sub-layer that is common in
both transport layer and session layer makes
transactions in order and senses duplicated message.
The transport layer provides connection-less reliable
transaction with either one or several nodes.
Authentication to identify message sender is
provided optionally. Transaction control sub-layer is
designed only to perform that function. Therefore,
the message from the transport layer and session
layer can be authorized using all the addressing
modes except broadcast. The session layer provides
simple Request-Response mechanism approachable
to remote server.

There are a total of 5 forms of communication
services used here. First of all, Unacknowledged
service does not require an acknowledge frame, and a

simple unacknowledged message that is one of this
service does not need to sense the duplicated
message. Just as acknowledged service requires an
acknowledge frame, repeated service also requires an
acknowledge frame, but instead, it completes the
service after sending messages repeatedly as many as
specified count. Request/Response service requires a
response frame instead of an acknowledged frame.
Finally, Authentication service is a service form to be
used to avoid uncertainty in security.

Both Presentation layer and practical application
layer provide all the general services to transmit and
receive messages including Network Variables. In
addition, the service related to maintenance such as
management and security of network is performed at
this layer.

3. PROBLEMS OF CONVENTIONAL METHOD

EIA-709.1 protocol was developed by Echelon.
Implementation method widely-used till now is, as
mentioned previously, as follows: to design hardware
board using Neuron Chip of either Toshiba or
Cypress, to compile basic form, firmware and
application program using LonBuilder Developer’s
Workbench and Neuron C of Echelon, and then to
load the Neuron Chip with the compiled result.
Although EIA-709.1 is open protocol, due to
dependency of both hardware and software on a
particular company, several problems could happen.

First of all, the network configuration is possible
only with the hardware referred to as Neuron Chip;
therefore, other network configurations that Neuron
Chip does not provide are not feasible. As other
communication speed except the speed provided by
Neuron Chip cannot be used, the efficiency of a
network could not be improved. When some problem
happens in network, it cannot be handled because
debugging is impossible at chip level. Also, in the
case of the communication using Neuron Chip and
LonBuilder, due to the problem dealing with
firmware, the duration between sending data packet
and sending next data packet is relatively long
compared with logical duration that can be
implemented by EIA-709.1. This is not such a big
problem in the normal state, but it could cause
serious problems in the case that either the amount of
packet gets increased or some error occurs on the
network.

Another problem is to write an application program
only by following the guideline that LonBuilder
supports. In other words, Neuron C programming
language, which is transformed from ANSI-C, must
be used instead of the general C. In this case,
software programming becomes tightly dependent on
the LonBuilder development environment. When
implementing various functions, we cannot use the
functions that the development environment does not
support. Therefore, application program has little

flexibility and compatibility, and there is a limit in
implementing program as well.

4. CONFIGURATION OF THE DEVELOPMENT

SYSTEM

This system implemented EIA-709.1 protocol in
hardware using VHDL, which is composed of a
physical layer, MAC layer and link layer, and
network layer. FPGA fitting was made, and design of
firmware and hardware board was performed in order
to verify function specification. The hardware board
is not only for implementing the protocol, but also
for designing the hall station board for an elevator
system that adopts the protocol. That is why some
other functions were added.

4.1 Implementation of FPGA

FPGA was designed by Logic design using VHDL
(VHSIC Hardware Description Language; VHSIC
stands for Very High Speed Integrated Circuit),
synthesized using Design Compiler of Synopsis, and
performed Logic simulation using Verilog-XL
simulator of Cadence. Finally, FPGA P&R (Place &
Route) and FPGA fitting were performed using
Maxplus II Tool of Altera (Motorola, 1997; Altera,
1999; Douglas, 199).

This FPGA is composed of major 6 blocks such as
MAC block, transmitting block, receiving block,
timer block, interrupt block, and register block. The
overall block diagram is shown in Fig. 3.

Interrupt
Control

Bus I/F

UART
2 Channel

Discrete I/O
(16 bit)

INTR0

INTR1

Data
Address

CLK, CSB
RDB, WRB

I/O Port

Clock Generator
Block

Tx
Block

Rx
Block

Register
Block

MAC

Interrupt
Control

Bus I/F

UART
2 Channel

Discrete I/O
(16 bit)

INTR0

INTR1

Data
Address

CLK, CSB
RDB, WRB

I/O Port

Clock Generator
Block

Tx
Block

Rx
Block

Register
Block

MAC

Fig. 3. Overall Block Diagram of EIA-709.1 protocol

4.2 MAC (Media Access Control) Block

This block is divided into several sub-blocks such as
the blocks for variable communication boardrate
setup, Differential Manchester Encoder/Decoder,
digital filter for communication port, and Cyclic
Redundancy Check (CRC) generation and detection.
Predictive p-persistent CSMA algorithm is
implemented in the MAC block as well (Fred, 1988).

In the case of communication through Twisted Pair
cable, all of the communication data are not the form
of NRZ, and the communication is always performed
using Differential Manchester coding algorithm.
Differential Manchester coding is a method to cause
a transition only once at the starting point of 1 bit,
and to keep the current value for 1 bit duration in

case that the value equals to 1, and to cause a
transition once more at the time position of 1/2 bit in
case of 0. The design algorithm of Differential
Manchester Encoder/Decoder is shown in Fig. 4.

2 Bit Counter : Counting the number of '1‘
Operations according to the value of Sampling Counter

0. 4 : Reset
1, 2, 3, 5, 6, 7 : Increasing one when the value of Rx is ‘1’

Half Register(1bit) : Register storing the value of front half
Storing the high bit of 2 Bit Counter when the value of Sampling
Counter is ‘4’

NRZ Result : Generating the complement of high bit when the
value of Sampling Counter is ‘0’ after verifying that the value
of XOR between the value of Half Register and the high bit of
2 Bit Counter is ‘1’

NRZ
Result

3

Sampling
Counter

Rx

Sampling
Clock

2 Bit Counter : Counting the number of '1‘
Operations according to the value of Sampling Counter

0. 4 : Reset
1, 2, 3, 5, 6, 7 : Increasing one when the value of Rx is ‘1’

Half Register(1bit) : Register storing the value of front half
Storing the high bit of 2 Bit Counter when the value of Sampling
Counter is ‘4’

NRZ Result : Generating the complement of high bit when the
value of Sampling Counter is ‘0’ after verifying that the value
of XOR between the value of Half Register and the high bit of
2 Bit Counter is ‘1’

NRZ
Result

3

Sampling
Counter

Rx

Sampling
Clock

Fig. 4. Manchester Encoder and Decoder Algorithm

4.3 Transmitting Block

The Transmitting block is generated as state
transition block according to generation of frame to
transmit, generation of control signal, and generation
signal of each frame. The diagram of the transmitting
block is described in Fig. 5.

Tx FIFO
(16 Byte)

Preamble
(8/16/24/32 bit)

Mux

Shift Reg. FCS Gen.

Tx
Generator

Jabber
Timer

Tx Control
Signal Gen.

Tx

Fig. 5. Block Diagram of the Transmitting Block

The transmitting order starts from the Line Idle state.
While in the Line Idle state, Beta-1 timer operates
automatically and checks the Beta-1 time. When
Beta-1 timer is operating, expired or ready to operate,
if the Transmit Start Enable signal get activated from
outside, first the transmitting block waits for the
Beta-1 timer to expire. Afterwards, while waiting for
the Beta-2 time of Priority Slot and Random Slot, if
the line state keeps being inactivated, the block starts
to transmit a packet.

Preamble is loaded on a shift register as many times
as there are Preamble Bytes. Preamble consists of
BitSync and ByteSync; BitSync has the value of ‘1’
and ByteSync has the value of ‘0’. First, the value of
‘1’ is transmitted to all the bits of every shift register,
and then the final Preamble would be loaded with the
value of ‘0’ on the last bit.

After completing Preamble transmission, a packet is
transmitted in order from FIFO to shift register one
by one. While transmitted from FIFO one by one, the
number of transmission data length written before
transmitting is decreased. If the number is ‘0’ after
all packets are transmitted, the normal operation is
performed, and otherwise Data Length Mismatch
Error takes place. After transmitting all values of

FIFO, it sends out 16 bits CRC by performing the
operation of CRC generator. It also checks by Jabber
Timer if a transmission line is occupied abnormally.
After completing CRC transmission, it notices the
end of a packet by remaining in the state of Code
Violation for interval time of 2.5 bits.

4.4 Receiving Block

The Receiving block consists of receiving control
block, FIFO of 32 bytes, shift register, address
recognition block, and etc. The block diagram is
described in Fig. 6.
As the Differential Manchester decoder recognizes
the new packet, it transfers serial data to the shift
register. When 16 bit data is stored in the shift
register, upper 8 bits are loaded into FIFO. At the
same time, it recognizes the address field in the shift
register and decides if the data is to be received. In
case that address does not match, data is not loaded
in FIFO, and CRC in the shift register is checked to
determine whether CRC error occurs. Finally, it is
used to control generation of random numbers.

Rx FIFO
(32 Bytes)

Rx Control
Block

CRC
Checker

16-bit Shift Register

Address
Recognition

Rx FIFO WR Control

8-bit Bus

8

8

Rx FIFO
(32 Bytes)

Rx Control
Block

CRC
Checker

16-bit Shift Register

Address
Recognition

Rx FIFO WR Control

8-bit Bus

8

8

Fig. 6. Block Diagram of the Receiving Block

The Receiving control block is used to control FIFO
of the receiving block, shift register, and address
recognition block.

4.5 Interrupt Control Block

Interrupt control block supports the interrupt
handling by Interrupt Pin, and selectively deals with
the interrupt based on the priorities of eight interrupt
sources. Interrupt source supports Edge Trigger
Mode only. The overall block diagram is described in
Fig. 7.

IMR

IRR ISR
Interrupt
Sources

Interrupt
Solver

ISR_DATA

ISR_REQ

IMR : Interrupt Mask Register IRR : Interrupt Request Register
ISR : Interrupt Service Register

IMR

IRR ISR
Interrupt
Sources

Interrupt
Solver

ISR_DATA

ISR_REQ

IMR : Interrupt Mask Register IRR : Interrupt Request Register
ISR : Interrupt Service Register

Fig. 7. Interrupt Control Block Diagram

4.6 Other Blocks

As for other implementation, Loop-back mode is
supported for the convenience of debugging, and 16
input ports and 16 output ports are provided for hall
station control of an elevator system. The
implementation provides software reset function and
has an output port to show current communication
status.

4.7 Testing Board

The test board was designed with 8032 for CPU,
ROM (32K bytes) and RAM (32K bytes). The board
was also implemented with RS-232 channel for
debugging, and FPGA was implemented using
EPF10K100GC503-4 chip of Altera. The board
performs communication using the designed
communication transceiver, and consists of other
blocks for elevator hall station. The overall block
diagram is shown in Fig. 8.

RS232

CPU
8032

Pulse
Trans

DIP
S/W

ROM 32K

RAM 16K

Core
FPGA

5V
Power

DIP
S/W

24V
Power

1st
Indicator

2nd
Indicator

B/T

Hall Station
Comtrol Board Serial

Network

UP Lamp
DN Lamp

UP Call
DN Call

Data
Enable

Clock

Data
Enable

Clock

Fig. 8. The Board with FPGA implementing EIA

709.1

4.8 Firmware

The firmware program for i8051 using C language
was designed. It is compiled using IAR 8051 C
compiler of IAR Systems Co., Ltd. The test program
is performed to display the transmitting/receiving
data on the display unit using RS-232 port. We also
debugged the firmware with a commercial emulator
and a ROM-based method.

5. EXPERIMENT OF EIA 709.1

5.1 Test System Configuration

The test environment, as shown in Fig. 9, consists of
one hall board equipped with FPGA that is
implemented with EIA-709.1 protocol, one original
hall board, and controller board that manages overall
data. Besides them, the test system consists of other
test components such as button or lantern so that the
transmission and receiving of packets were verified.
Fig. 9 shows the detailed picture of the hall board
equipped with FPGA implemented with EIA-709.1
protocol. The clock for CPU and FPGA is
14.7456MHz and 20MHz, respectively. The
maximum input frequency shown in the specification
sheet of the Neuron Chip is 10 MHz. Therefore, the
frequency of 20 MHz for FPGA is suitable for EIA-

709.1 protocol to be implemented. The
communication speed is used with 78.125Kbps fixed.
An original hardware with the Neuron Chip
implemented is used to test and verify
interoperability between the original hardware and a
new hardware implemented with the newly designed
FPGA.

Fig. 9a. Test System Configuration

Fig. 9b. The Board with FPGA implemented with

EIA-709.1 Protocol

5.2 Verification Results

First of all, the result of simulation was verified using
SimWaves and Verilog-XL of Cadence. Fig. 10
shows a communication packet that the transmitting
block generates in case of Unrepeated service
communication of the group address method. When
the total of 10 data is loaded and then the
transmission starts, Fig. 10 shows that the packets for
each state are generated and sent out.

Fig. 11 shows the simulation waveforms of the
receiving block. These are the waveforms at the time
of receiving the second packet. The total of 9 data
points, from the 11th received FIFO through the 19th
received FIFO, are received and stored, and we can
also see that the control signals corresponding to
each state are generated.

The board test for the transmitting block was
performed as the following. As key input is activated,
packets are transmitted and then the original Neuron
board receives the packets and changes the value of
lantern of a hall board. On the contrary, the test for
the receiving block was performed such that the
received packets are displayed on the terminal using
RS-232 port. Fig. 12 shows the oscilloscope
waveforms measured from FPGA board when
transmitting. Channel number 1 represents the signal

that packet is transmitting, and channel number 2
shows the data of the transmitting packet and
represents that a normal operation has been
performed.

Fig. 10. Simulation Waveforms of Transmitting

Block

Fig. 11. Simulation Waveforms of Receiving Block

Fig. 12. Oscilloscope waveforms of Receiving Block

6. CONCLUSIONS

In this paper, EIA-709.1 Control Networking
Protocol was implemented. We resolved several
problems raised as the conventional methods based
on original Neuron chip are implemented. First, in

order to increase flexibility, the protocol from
physical layer to network layer was implemented
using VHDL in hardware level, and verified with
FPGA. Other upper layers were handled in software.
By doing this, it is possible to control lower layers
directly so that we can effectively deal with
communication errors such as network failure, packet
error, and etc. Secondly, CPU can be widely selected
to control communication speed or process freely
compared to conventional method, and high
effectiveness could be accomplished as well.
Therefore, if the result of this study is adopted to
implement the EIA-709.1 protocol, the flexibility can
be increased. In addition, because any kind of
commercial CPU can be used with the method
proposed in this paper, it can be used as a more
useful and convenient approach than conventional
methods. As a hardware part is designed using
VHDL and implemented as IP, it is possible to apply
this result in designing any application product using
EIA 709.1 protocol such as SoC chip design of a
distributed control system. The further work is to
design optimal hardware and advanced firmware
program. In addition, in case of using general
processor, it is essential to build the integrated
development environment, and especially, the study
on application layer and network maintenance should
be performed.

7. REFERENCES

Almedia, L., E. Tovar, J.A.G. Fonseca and F. Vasques
(2002). Schedulability Analysis of real-time
traffic in WorldFIP networks: an integrated
approach, IEEE Transactions on Industrial
Electronics, 49, pp. 1165-1174.

Altera (1999), Altera Device Data Book.
Choi, B. W. and J. S. Kim, C. H. Lee, J. B. Kim, and

K. Y. Lim (2000). Implementation of the field
bus system which used EIA-709.1 Control
Network Protocol, Journal of ICASE, 7, pp.
594-601.

Douglas L. Perry (1993). VHDL Second Edition, R.
R. Donnelley & Sons Company

Echelon (1999). Introduction to the LonWorks System
Fred Halsall (1988). Data Communications,

Computer Networks and OSI. 2nd edition.
Addison Wesley, pp. 88 ~91.

Lee, K. C., S. Lee and H. H. Lee (2004).
Implementation and PID tunning of network-
based control systems via Profibus polling
network, Computer Standards & Interfaces, 26,
pp. 229-240.

Motorola (1997). LonWorks Technology Device Data
Schumny, H. (1998). Fieldbuses in measurement and

Control, Computer Standards & Interfaces, 19,
pp. 295-304.

Thomesse, J. P. (1998). A Review of the Fieldbuses,
Annual Reviews in Control, 22, pp. 35-45.

Zimmermann, H. (1980). OS1 reference model. The
IS0 model of architecture for open system
interconnection, IEEE Trans. COM 28, pp. 425-
432.

