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Abstract: A PID design method is presented. The work done is part of an attempt to find
an automatic tuning algorithm for two times two systems in the process industry. The
method tries to minimize the impact of load disturbances. The method was developed
mainly because previous design methods with the same objectives could not handle the
processes obtained in decoupled systems.
Copyright c©2005 IFAC

Keywords: PID control, MIMO, Design, Decoupling, Nyquist diagrams

1. INTRODUCTION

The PID controller is the most common controller
(Åström and Hägglund, 2001). There are several good
PID design methods for SISO systems (Kristiansson
and Lennartson, 2002), (Panagopoulos and Åström,
1999), (Panagopoulos et al., 2002), (Hägglund and
Åström, 2002), (Hägglund and Åström, 2004). The
work presented in this paper is part of an effort to find
a good tuning algorithm for two times two systems. If
two PID controllers are to be used to control a two
times two system, the system would in most cases
have to be decoupled. The diagonal elements of the
decoupled system would then consist of two parallel
coupled processes with, possibly, different time delays
and different signs. Most PID tuning algorithms are
not appropriate for these systems. The algorithm pro-
posed here can handle that kind of element as well as
more easily tuned processes.

2. THE PROBLEM

Many PID design methods exist. These methods are
normally based on the idea to first approximate the
process dynamics with a simple model, and then
base the design on this model. This approach works

well on SISO processes in the process industry, since
these processes often are well described by the sim-
ple models. An example of that is methods that
use step responses for tuning (Ziegler and Nichols,
1942), (Hägglund and Åström, 2002), (Hägglund and
Åström, 2004). These methods have in common that
they require the process to have quite simple dynam-
ics.

When PID controllers are to be used for multi-variable
control of processes with strong cross couplings the
situation is different. In many cases the system has
to be decoupled. Even if the elements of the sys-
tem have simple dynamics, decoupling may result in
complicated diagonal elements that consist of parallel
coupled processes that might have different signs and
different time delays. An example of such a diagonal
element could be:

G =
1.7

(s+1)4 e−12s −
1

(s+1)4 e−5s (1)

The step response of this process is shown in Figure 1.

If PID controllers are used to control a system with
diagonal elements like this, methods that rely on sim-
ple process dynamics, like step response methods, are
not appropriate. A PID design method that do not rely
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Fig. 1. Step response of the process (1).

on simple process dynamics will be presented in this
paper.

3. THE DESIGN PROCEDURE

3.1 The Controller

The PID controller is described by

C = K

(

1+
1

Tis
+Tds

)

(2)

where K is the proportional gain, Ti is the integral time
and Td is the derivative time. A pure PID controller
would have infinite high frequency gain. It is both
undesirable and impossible to realize such a controller.
Therefore a low pass filter would be required. A sec-
ond order low pass filter is used here.

3.2 The design objective

The design objective is to minimize the integrated ab-
solute error, IAE, at step load disturbances subject to
a bound on the sensitivity function. Previously the in-
tegrated error, IE, together with the bound on the sen-
sitivity function and other constraints has been used
to approximate the IAE (see Introduction). Further it
has previously been shown that the IE of a step load
disturbance is directly proportional to the inverse of
the integral gain of the controller -a fact that makes
minimization of the IE easier than direct minimiza-
tion of the IAE. However, if the step load disturbance
response shifts signs it is not good enough to calculate
the IE.

The bound on the sensitivity function can be inter-
preted as a circle centered in -1 in the complex plane
that the Nyquist curve of the open loop system has
to stay outside. The bound is called Ms and the circle
is called the Ms circle. The radius of the Ms circle is
R = 1/Ms.

3.3 The design method

An upper bound on the sensitivity function is speci-
fied. The space of possible controllers is discretized in
the parameters Ti, Td , and K. For each combination of
Ti and Td , a K, that puts the Nyquist curve of the open
loop system on the edge of the Ms circle in a way such
that the Nyquist curve does not encircle the point -1,
is found, if possible. For each controller a step load
disturbance is simulated and the integrated absolute
error, IAE, is calculated. The controller that gives the
smallest IAE is chosen.

3.4 The sign

Since the algorithm should be able to handle processes
with different signs, a sign is added to the PID con-
troller. The output of the process after a step change
of the control signal is simulated. If the output goes
to a positive value or towards plus infinity the sign
is chosen positive. If the output goes to a negative
value or towards minus infinity the sign is chosen
negative. The controller is in either case connected to
the process using negative feedback.

3.5 Td and Ti

The controller (2) has one pole in the origin, two filter
poles and two zeros. The zeros are located in:

z = −
1

2Td

±

√

1
4T 2

d

−
1

TiTd

(3)

If Ti is less than 4Td the zeros are complex conjugated
with a real part a = −1/2Td . The imaginary part will
increase with decreasing Ti. If Ti is greater than 4Td ,
the zeros will be real and centered around a =−1/2Td .

1/2Td is swept over the frequency region of interest.
This region could for example be 0.001Hz to 1000Hz
with the grid points spread in a logarithmic fashion. In
this way many processes can be covered.

For each value of Td , Ti is swept over a reasonable
region. In most cases it is not interesting to get a
controller with zeros that have very large imaginary
parts or a controller with zeros at frequencies far
below or above the non-integrator poles and the zeros
of the process, so this region is limited.

3.6 K

For every pair of Td and Ti, a K that gives the system
the prespecified maximum value of the sensitivity
function without making the system unstable has to be
found. For stable processes this corresponds to finding
a K that puts the Nyquist curve on the edge of the
Ms circle without making it encircle the point -1. An



algorithm that checks if the point -1 is encircled has to
be used.

A large K is chosen as a starting value. K is decreased
until the point -1 is not encircled and the peak of the
sensitivity function is less than the prespecified Ms

value. If K is lowered under a certain bound, without
making the system satisfy these specifications, the
conclusion that no stable closed loop system exists
for the present combination of Ti and Td , is drawn.
Subsequently K is gently increased until the Nyquist
plot is close to the edge of the Ms circle. Off course, it
would be easy to put a bound on K when the proposed
design method is used.

3.7 IAE

The integrated absolute error is defined as:

IAE =

∫

∞

0
|e(t)|dt (4)

where e(t) is the control error at the time t. It is
calculated by integration of a simulation of a step
load disturbance response. The controller with the
smallest IAE is then chosen. To improve the accuracy
the algorithm can be repeated with the intervals of Td

and Ti centered around the Td and Ti values of the first
controller and with a narrower grid.

4. EXAMPLE 1

Another algorithm that tries to minimize the load dis-
turbance step response was presented in (Panagopoulos
et al., 2002), (Hägglund and Åström, 2004). That al-
gorithm (called MIGO tuning) works well on a large
class of processes but fails when it comes to more
complicated processes like two parallel coupled pro-
cesses with different time delays and different signs.

The proposed algorithm was compared in an example
with the MIGO tuning algorithm. A simple process
that both algorithms could handle was used:

G =
1

(s+1)4 (5)

The grid used in the proposed design method was the
following: 1/2Td was first divided into 10 grid points
between 0.001 and 10000 Hz in a logarithmic fashion.
The best controller for these values was calculated
as described above. Subsequently 1/2Td was again
divided into 10 grid points with the best value of the
first round in the middle. The calculations were done
in Matlab (R13) and Simulink on a 2.66 GHz Pentium
4. It took 88s to find the controller.

The algorithm that is proposed in this paper is most
easily explained in the Nyquist plot of the open loop
system. Figure 2 shows a Nyquist plot of the process

(5). The controller tries to find a way to bend the
Nyquist plot to the edge of the Ms circle and at the
same time to minimize the impact of load disturbances
on the closed loop system.
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Fig. 2. Nyquist diagram of the process (5).

4.1 The controllers

The MIGO tuning algorithm tries to minimize the inte-
grated area error by minimization of the integrated er-
ror IE subject to a constraint on the sensitivity function
and some additional constraints. The MIGO tuning
with an Ms value of 1.4 gave the parameters K = 1.19,
Ti = 2.22 and Td = 1.20. The controller was filtered
by a low pass filter. The poles of the low pass fil-
ter were chosen sufficiently high not to compromise
the controller properties claimed in (Hägglund and
Åström, 2004).

The design method proposed in this paper with the
same Ms value gave the parameters K = 1.18, Ti =
2.27 and Td = 1.28. The low pass filter used had two
poles in p =−19.6 Figure 3 shows the Nyquist curves
of the loop transfer functions.
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Fig. 3. Nyquist diagram of the loop transfer functions
in Example 1. The controllers were designed by
MIGO (dot-dashed line) and the design method
proposed in this paper (full line).

The step load disturbance responses (y) and the con-
trol signals (u) are shown in Figure 4.
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Fig. 4. Step load disturbance response of the closed
loop systems in Example 1. The controllers were
designed by MIGO (dot-dashed line) and the
design method proposed in this paper (full line).

The integrated area error of the MIGO controlled
system was calculated as:

IAE = 2.35 (6)

The integrated area error of the system controlled
by the controller that the proposed design method
resulted in was calculated to:

IAE = 2.43 (7)

4.2 Conclusions from the first example

There were some differences in the prerequisites for
the two methods. In the MIGO design an M circle was

used instead of an Ms circle. The M circle is slightly
bigger than the Ms circle (Hägglund and Åström,
2004). Further the filter was not a part of the design in
the MIGO case and the minimization was done on the
IE instead of the IAE. However, the point was not to
make an exact comparison of the methods, but rather
to show that the proposed design method works as
well as the MIGO method on an simple process.

5. EXAMPLE 2

The proposed algorithm was used to determine a con-
troller for an example of two parallel coupled pro-
cesses with different dead time and different signs,
see (1). This is a kind of process that is expected to
appear at diagonal elements of a decoupled two times
two system in the process industry. A Nyquist plot of
the process is shown in Figure 5.
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Fig. 5. Nyquist diagram of the process (1).

The same grid as in Example 1 was used. The cal-
culations were done in Matlab (R13) and Simulink
on a 2.66 GHz Pentium 4. It took 151s to find the
controller. The proposed design method gave the con-
troller parameters K = 0.152, Ti = 6.50, Td = 2.83.
The controller low pass filter had its poles in p =
−8.82. Figure 6 shows a Nyquist plot of the loop
transfer function. It is easy to see that the specification
that the Nyquist plot should touch the edge of the Ms

circle holds. Further, we know that the algorithm has
compared a lot of different PID controllers that fulfill
this specification and chosen the one that gives the
smallest IAE of a step load disturbance response.

Figure 7 shows a step load disturbance response of the
process (y) controlled by the controller and the control
signal (u). The sign of the step response changes,
indicating that a minimum of the IE would not be a
good approximation of the IAE in this case.

The integrated area error of the controlled system was
calculated as:

IAE = 54.6 (8)
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Fig. 6. Nyquist diagram of the loop transfer function
in Example 2.
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Fig. 7. Step load disturbance response of the closed
loop system in Example 2.

This example shows that the proposed design method
is able to handle processes that are quite complicated,
in this case a process that is expected to appear among
the cases that the method has to cope with.

6. EXAMPLE 3

In Example 5 of (Skogestad, 2001) several controllers
for the process (9) were tuned with different methods.
The best one was a SIMC-PID controller. This con-
troller was given on cascade form (Skogestad, 2001)
but was converted to the form in (2).

G =
1

(s+1)(0.2s+1)(0.04s+1)(0.008s+1)
(9)

A controller determined with the design method pro-
posed in this paper was compared with the SIMC-
PID controller. The tuning was done under the same
prerequisites as in Example 1 and Example 2. The
tuning time was 91s.

Figure 8 shows a Nyquist plot of the process (9).
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Fig. 8. Nyquist plot of the process (9).

6.1 The controllers

The SIMC-PID controller had the recommended pa-
rameters K = 21.8, Ti = 1.22 and Td = 0.180. It was
filtered by a low pass filter. The poles of the low pass
filter were chosen sufficiently high not to compromise
the controller properties claimed in (Skogestad, 2001).
The design method proposed in this paper with Ms =
1.58 gave the parameters K = 18.1, Ti = 0.632 and
Td = 0.117. The low pass filter used had two poles in
p = −321. Figure 9 shows the Nyquist curve of the
loop transfer functions.
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Fig. 9. Nyquist diagram of the loop transfer functions
in Example 3. The controllers were SIMC-PID
(dot-dashed line) and a controller produced by
the design method proposed in this paper (full
line).

The step load responses (y) and the control signals (u)
are shown in Figure 10.

The integrated absolute error of the SIMC-PID con-
trolled system was calculated as:

IAE = 0.0559 (10)
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Fig. 10. Step load disturbance response of the closed
loop systems in Example 3. The controllers were
SIMC-PID (dot-dashed line) and a controller de-
termined by the design method proposed in this
paper (full line).

The integrated area error of the system controlled
by the controller that the proposed design method
resulted in was calculated to:

IAE = 0.0349 (11)

6.2 Conclusions from the third example

The tuning method proposed in this paper resulted in
a controller that has considerably better load distur-
bance attenuation properties than the controller pro-
posed in (Skogestad, 2001), even though it had the
same Ms value.

7. CONCLUSIONS

A design method for PID controllers has been pro-
posed. The aim is to find controllers that minimize the
impact of load disturbances under a bound on the sen-
sitivity function. The method has in an example been
shown to work as well as another method with the
same tuning objectives. Further, the method has been
shown to work in an example in the difficult case of
two parallel coupled processes with different time de-
lays and signs. It has also been compared in an exam-
ple with a controller proposed in (Skogestad, 2001).
The implementation of the design method was not
time optimized. The time to find a controller was ap-
proximately 1 to 3 minutes in the examples. The time
could probably be significantly shortened if effort was
put into time optimization.

8. FURTHER WORK

A design method for PID controllers that is effective
in a wide class of processes has been presented. The

motivation for this work was to find an algorithm
that could be suitable for decoupled process industry
two times two systems, without degradation in perfor-
mance on simpler systems. The next step in this work
will be to find criteria that can be used to automatically
decouple two times two systems.
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