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Abstract: A statistical method for the on-board detection and control of oscillatory
phenomena in pilot-aircraft systems is presented. Recursive identification is used
to obtain a linear model of the system at every time instant. The estimated system
parameters are monitored, and the system stability margins are continuously
assessed. Oscillations due to stability loss are detected early, using a composite
statistical hypothesis test. Finally, a simple stability augmentation system is
designed to assist the pilot-aircraft system during the critical time intervals. The
method is successfully tested with data from a detailed nonlinear aircraft model
and a flight simulator facility. Copyright c©2005 IFAC

Keywords: Recursive estimation, statistical analysis, decision making, aircraft
control, critical damping, safety analysis, stability limits.

1. INTRODUCTION

“Aircraft Pilot Coupling” (APC) events are in-
advertent aircraft attitude and flight path mo-
tions that result from anomalous interactions be-
tween the aircraft and the pilot (National Re-
search Council, 1997). They occur under specific
conditions when the combined dynamics of the
aircraft and the pilot produce a marginally stable
closed-loop pilot-aircraft system, and may lead to
potentially severe aircraft damage or even destruc-
tion. Although it is very difficult to pinpoint the
exact cause of specific APC events, the majority
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of them seem to result from deficiencies in the
design of the aircraft and specifically of the flight
control system (low rate limiting of actuators,
flight controls or displays with excessive filtering
and/or delay, and so on).

Traditional “rules of thumb” are used during the
flight control design stage, followed by extensive
testing under a variety of conditions. Nonetheless,
even with such intensive design and testing, air-
craft and/or pilot behavior may lead to adverse
couplings with disastrous results. It would, there-
fore, be highly desirable to detect and correct
potential symptoms of aircraft-pilot couplings in
flight. Various schemes that attempt to explore
this idea have been proposed.

Mitchell and Hoh (1999) proposed a scheme called
ROVER (Real-time Oscillation VERifier) which



checks for oscillatory signals in stick input and an-
gular rate output and compares the characteristics
of the two sets of signals. Cox and Lewis (1998)
use neural network methods (“trained” with time-
history data from actual adverse events) to iden-
tify oscillatory coupling phenomena. An approach
based on a probabilistic neural network scheme
has been developed by Raimbault and Fabre
(2001). They classify flights as “incident-prone”
and “incident-free” with respect to oscillatory
behavior and the output of the detector is the
probability of event occurrence. Jeram and Prasad
(2003) propose a fuzzy logic based approach, with
rules derived from oscillatory events expertise to
identify such signals. Alternative approaches con-
centrate on factors such as the power spectral
density of pilot input signals for the detection
of oscillations (Hess and Stout, 1998), the behav-
ioral changes of the human operator as a pream-
ble to the occurrence of oscillatory phenomena
(Repperger and Koivo, 1997) and special cases of
pilot-aircraft couplings, such as limit cycle oscil-
lations (Anderson, 1998).

The aim of the present study is the introduction
of a simple, yet effective means of early detection
and control of adverse oscillatory phenomena. The
proposed method uses:

(a) Recursive identification techniques to up-
date, in flight, pilot-aircraft system models at
every time instant. Model estimation is performed
within a stochastic framework, accounting for sen-
sor noise and the inherent uncertainties in the
pilot-aircraft interaction. Unlike previous detec-
tion procedures, the proposed method does not
require any expert knowledge during the tuning
phase. The estimated models are used to monitor
the pilot-aircraft damping factors throughout the
flight, and to derive statistical limits for their
values. The detection of stability loss (and the
resulting oscillation onset) is accomplished via a
composite statistical hypothesis test, allowing for
rapid and reliable detection of incidents.

(b) A simple stability augmentation system, ac-
tuated as soon as oscillations are detected. This
system is used to increase the damping of the
pilot-aircraft loop and tame the oscillatory behav-
ior during these instants of marginal stability.

2. ANOMALOUS INCIDENT DETECTION

2.1 The Monitor Design Method

The pilot-aircraft system is modelled via a discrete-
time univariate ARMA (AutoRegressive Moving
Average) model of the form 3 :

3 Lower case/capital bold face symbols designate vec-
tor/matrix quantities, respectively.

y[t] +
na∑

i=1

αi y[t− i] = e[t|θ] +
nc∑

i=1

ci e[t− i|θ] (1)

where t designates normalized discrete time (t =
0, 1, ... with the corresponding analog time being
t · Ts, where Ts stands for the sampling period),
y[t] the monitored signal (system output), and
e[t] a zero-mean uncorrelated sequence (white) se-
quence (prediction error sequence) with variance
σ2

e . The AR and MA orders are designated as
na and nc, respectively, while θ represents the
model parameter vector (AR/MA parameter vec-
tor). Notice that in the case of monitoring more
than one signals a multivariate form of the model
would be used (Fassois and Lee, 1993).

A recursive algorithm with forgetting factor is
used for model parameter estimation, so that less
weight is attributed to older (no longer repre-
sentative) signal samples. Such an algorithm is
well suited for tracing variations of the system’s
properties. Parameter estimation is carried out by
minimizing the loss function:

Vt(θ) =
t∑

k=1

λt−ke2[k] (2)

at each time instant t. In this expression λ is the
forgetting factor and e[t] the current prediction
error.

For the approximate minimization of the above
criterion the well known Recursive Maximum
Likelihood (RML) is used (Ljung, 1999).

2.2 Statistical Properties of the Damping Factor
Estimates

Once a discrete-time estimated model is avail-
able at time instant t, its transfer function is
used for obtaining the corresponding continuous-
time poles and their damping factors and natu-
ral frequencies. These are continuously monitored
throughout the flight. In addition, the computed
statistical limits for the damping factors provide
a measure of the accuracy of the estimated val-
ues. Given the covariance matrix P (θ̂) of the
estimated model parameters, the global modal
parameter [that is the model’s natural frequencies
and damping factors (Fassois, 2001)] covariance
matrix may be obtained as follows.

Let a change of parametrization from a set of
m × 1 dimensional model parameter vector θ to
another set of physical parameters given in a n×
1 dimensional vector κ (in this case the modal
parameter vector) be designated by the non-linear
functional relation:

κ = f(θ) (3)



Equation (3) is linearized using a first order gen-
eralized Taylor expansion at the current operating
point (κ̂[t], θ̂[t]), as follows 4 :

κ ∼= κ̂[t] +
∂f(θ)

∂θ
|
θ=θ̂[t]

(θ − θ̂[t])

= κ̂[t] + J(θ̂[t])(θ − θ̂[t])

(4)

where J(θ̂[t]) is the Jacobian matrix:

J(θ) =




∂f1(θ)
∂θ1

∂f1(θ)
∂θ2

...
∂f1(θ)
∂θm

. . ... .
∂fn(θ)

∂θ1

∂fn(θ)
∂θ2

...
∂fn(θ)
∂θm


 (5)

evaluated at the operating point θ̂[t]. The devia-
tion of the estimate κ̂[t] from the true parameter
vector κ0 is calculated from Equation (4) as:

κ0 − κ̂[t] ∼= J(θ̂[t])(θ0 − θ̂[t]) (6)

Consequently, the covariance matrix of κ̂[t] may
be obtained as:

P (κ̂[t]) = E[(κ0 − κ̂[t])(κ0 − κ̂[t])T ]

∼= J(θ̂[t])P (θ̂[t])JT (θ̂[t])
(7)

The Jacobian matrix J(θ) may be evaluated via
a numerical differentiation scheme (the central
difference approximation is presently used).

2.3 Statistical Decision Making

The detection of the adverse oscillatory phenom-
ena may be formulated as a statistical hypothesis
testing problem. For this purpose, the variable
δζ̂ = ζ̂ − ζ0 is considered, with ζ̂ being the
damping factor estimated at each time instant
and ζ0 the threshold below which the system may
enter an oscillatory phase. In the present case ζ0

is set to zero. The following composite hypothesis
testing problem is then considered for the true
(but unknown) damping factor:

H0 : δζ > 0 (damped system)
H1 : δζ ≤ 0 (undamped system) (8)

In the above, H0 and H1 designate the null and
alternative hypothesis, respectively. Treating the
computed variance of ζ̂ as a fixed quantity, the
following test (characterized by a maximum risk
of α, that is maximum probability of accepting H1

when H0 is true equal to α) is used:

δζ̂√
δσ2

> Zα =⇒ H0 is accepted

Else =⇒ H1 is accepted
(9)

4 The hat over a quantity designates estimator/estimate.
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Fig. 1. SE-Case time histories: (a) Pilot in-
put u(t), (b) actual roll attitude φ(t) ver-
sus ARMA(10, 0) model-based predictions,
(c) model-based prediction error (the vertical
dashed line designates APC detection).

with δσ2 designating the variance of δζ̂ (which is
equal to that of ζ̂) and Zα the standard normal
distribution’s α critical point. A typical value for
α is 0.05, for which Z0.05 = −1.645.

2.4 Application to APC Incidents

The monitor design method is applied to two par-
ticular anomalous pilot-aircraft interaction cases.
The roll data of the first case (Figure 1) have
been generated using a detailed non-linear aircraft
model (Ciniglio and Verse, 1999), (Samara, et
al., 2003). Note that the recorded roll attitude
(sampling frequency of 50 Hz) has been based
upon actual pilot input data, covering a time pe-
riod of approximately 47 seconds. The oscillations
are present from t = 15 sec onward, start growing
at t = 17 sec, and become quite severe from
t ≈ 19.80 to t ≈ 35 sec. The roll attitude attains
values between +10.5 deg and −8.6 deg. This first
case is referred to as the SE-Case.

The second set of data is flight recordings obtained
from the NLR Simulator Facility in Amsterdam
(The Netherlands). This case is referred to as
the Simulator Case. The specific flight examined
exhibits adverse APC events on the roll axis
(Figure 2), which occurred during the ADFCS-
II research project simulator campaign. The data
record covers a time interval of approximately 148
sec and is recorded at 50 Hz. Oscillations start
from t = 122 sec and reach extreme roll attitudes
of approximately +6.7 deg and −5.4 deg.

Stochastic Modelling
The roll attitude, φ, is chosen as the signal y[t]
of the pilot-aircraft system to be modelled. The
selection of the ARMA(na, nc) model orders and
the forgetting factor λ reflect the tradeoff between
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Fig. 2. Simulator Case time histories: (a) Pilot
input u(t), (b) actual roll attitude φ(t) versus
ARMA(10, 0) model-based predictions, (c)
model-based prediction error (the vertical
dashed line designates APC detection).
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Fig. 3. Sample normalized autocorrelation of the
model residual sequence (Simulator Case;
“local” autocorrelation within a signal win-
dow).

low Residual Sum of Squares (RSS) and easy
real-time application. A rigorous selection of both
(na, nc) and λ implies that the values of e[t] in
Equation (1) should form a white sequence, while
a low RSS must be achieved. Extensive tests, with
na ∈ [2, ..., 25], nc ∈ [0, ..., 25] and λ ∈ [0.975, 1),
have shown that high order models are quite sat-
isfactory with respect to the previous constraints.
However, such models are quite cumbersome for
on-line use. For that purpose, a lower order model
with na = 10, nc = 0 and λ = 0.99 proves
sufficient in describing the most important system
dynamics, i.e. the damping factor corresponding
to dangerous APC frequencies (up to 2 Hz). At
the same time, low RSS values are obtained, with
e[t] forming an almost uncorrelated sequence for
t ≥ 10 sec (SE-Case) and t ∈ [10, 128] sec
(Simulator Case). Furthermore, inside the above
mentioned intervals the obtained residuals are lo-
cally uncorrelated in the majority of the cases (see
Figure 3).

The one-step-ahead predictions of the recursive
ARMA(10, 0) model are compared to the actual
roll attitude signal φ in Figures 1(b,c) and 2(b,c)
for the SE and the Simulator Cases, respectively.
In both cases, the prediction errors (model residu-
als) are substantially constrained, since the actual
and predicted signals practically coincide.

Remark: To compensate for the lack of initial con-
ditions for θ̂[t] and its “covariance” matrix P [t],
the values of y[t] corresponding to the (analog)
time interval [0, ti] sec are used to perform:
i) one forward pass (i.e. a normal operation of the
algorithm up to time ti),
ii) one backward pass (i.e. a reprocessing of the
signal data recorded from ti to 0 using as starting
point for θ̂, P the final values θ̂[ti], P [ti] of the
forward pass), and,
iii) one final forward pass up to ti.
The obtained values for θ̂[t] and P [t] after these
passes improve the performance of the recursive
algorithm, at the expense of having the monitor-
ing method inoperative during the first (arbitrar-
ily chosen) ti sec.

APC Detection
As indicated in Figures 4 and 5 for the SE and
Simulator cases, respectively, the ARMA(10, 0)
damping factor (corresponding to frequencies up
to 2 Hz) is capable of tracing the aircraft-pilot
oscillations onset very quickly. Indeed, the damp-
ing reaches near-zero values around t ∼ 16 sec
for the SE-Case and t ∼ 122 sec for the Simulator
Case. The onset of oscillations is formally detected
by the composite hypothesis testing procedure of
Equation (9). This is illustrated in the bottom
parts of the figures, where the evolution of the test
statistic δζ̂/

√
δσ2 is presented. The test statistic

becomes smaller than the threshold Zα = −1.645
at t = 19.32 sec for the SE-Case and t = 121.6
sec for the Simulator Case; hence high amplitude
oscillations are detected (the H0 hypothesis is
rejected at these instants).

3. ANOMALOUS INCIDENT CONTROL

Once the beginning of an APC incident is de-
tected, a properly designed stability augmentation
system may be used to provide the necessary extra
damping. A simple solution to this effect is to
include a PD or phase-lead controller in the pilot
aircraft loop (Cook, 1997).

This approach is presently followed, as it has been
confirmed (via the estimated models) that there
exists a dominant pair of poles to which the oscil-
lations may be effectively attributed. At the time
intervals that adverse oscillations are observed,
this pair is either marginally stable or unstable.
Therefore, a properly designed PD controller may
substantially augment the stability margins by
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and composite hypothesis test for the detec-
tion of oscillations (bottom) [the horizontal
dashed line designates the limit below which
an APC incident is detected; the vertical
dashed line designates the APC detection
time].

“pushing” this set of poles to the left on the
complex plane. Note that since the augmentation
device affects solely the pilot input (i.e. modifies
the actual input fed to the aircraft – see the top
part of Figure 6), the aircraft characteristics (sat-
uration limits, rate limiters etc) remain unaltered.

The stability augmentation system is designed as
an inner feedback loop, with the PD controller ac-
tivated only during the critical time periods where
the pilot-aircraft system stability is marginal. In
the SE-Case presently considered, this period is
for t ∈ [19.32, 35] sec. The selected continuous-
time PD controller transfer function is C(s) =
Kp

s
1+TDs , with Kp = 2000 and TD = 0.01.

The closed-loop system is indicated in Figure 6
(top), while its effectiveness is illustrated through
a comparison of the two roll attitudes: that of the
system using stability augmentation and that of
the standard (unaugmented) system (bottom part
of the figure).
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Fig. 5. Simulator Case recursive ARMA(10, 0)
based damping factor and interval estimates
(top) and composite hypothesis test for the
detection of oscillations (bottom) [the hori-
zontal dashed line designates the limit below
which an APC incident is detected; the verti-
cal dashed line designates the APC detection
time].

During the critical time intervals, the actual input
u∗(t) fed into the aircraft thus is:

u∗(t) = u(t)−Kp · s

1 + TDs
· φ(t) (10)

instead of the actual pilot input u(t). Note that
once the oscillations are over, the feedback is
gradually reduced to zero, thus avoiding abrupt
system transitions. The beneficial effects of using
this simple system are quite clear. The oscillations
have almost disappeared, while the general form
of the two roll signals is similar. Furthermore, the
entire procedure of oscillations statistical detec-
tion and stability augmentation is rapid and easy
to implement.
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4. CONCLUSIONS

A method for the on-board detection and control
of undesirable pilot–aircraft interactions has been
introduced. The stochastic modelling framework
employed accounts for inherent uncertainties in
the measured signals and the pilot-aircraft inter-
action. Unlike previous detection procedures, the
proposed design does not require expert knowl-
edge for its tuning.

The detection of low system stability margins is
based upon monitoring of the system damping
factors via recursively estimated linear models.
Statistical limits for the damping factor values are
established, and potential oscillations are formally
detected via a statistical composite hypothesis
test. Finally, a simple stability augmentation sys-
tem, which provides extra damping during the
critical periods of marginal pilot–aircraft system
stability, is used for oscillation suppression. Sim-
ulation tests, carried out using flight data from
a flight simulator facility and a highly non-linear
aircraft model, have indicated that the method is
effective, and that the detection of stability loss
preceding the onset of oscillations is both rapid
and reliable.
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