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Abstract: In this paper, a model-free cross-coupled controller is proposed for position 
synchronization of multi-axis motions. The position synchronization error of each axis 
is defined as the differential position error between this axis and its two adjacent axes, 
which is then coupled with the position error to form a coupled position error. A PD-
type synchronization controller with feedback of this coupled position error has been 
proven to guarantee asymptotic convergence to zero of both position and 
synchronization errors in a set-point motion control. A trajectory tracking controller is 
further developed by adding feedforward control terms and a saturation function to the 
PD synchronization controller. The proposed method is easy to implement in practice 
since it is model free and the control gains are not time-varying. Experiments are 
performed to verify effectiveness of the proposed approach. Copyright © 2005 IFAC 
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1.  INTRODUCTION 
 
With the ever increasing demand for greater 
productivity and lower cost, there is tremendous 
pressure to achieve rapid development with high 
performance in modern manufacturing. Those 
manufacturing devices such as surface mounting 
technology (SMT) machines or Complex Numerical 
Control (CNC) machine tools are accordingly 
required to have all machine axes move 
simultaneously or synchronously for either reducing 
work-in-progress or complex part machining. Poor 
synchronization of relevant motion control axes 
results in diminished dimensional accuracy of the 
work-piece or even in unusable products. 
 
The existing cross-coupling technology (Koren, et al., 
1980; Tomizuha, et al., 1992) provides advantages 
and opportunities to improve synchronization 
performance. Recently, the cross-coupling concept 
was incorporated into adaptive control architecture to 
solve position synchronization of multiple axes (Sun, 
2003). The cross-coupling technology has been used 
in robotics, such as mobile robot control (Feng, 1993) 
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and coordination of robot manipulators (Sun and 
Mills, 2002). The solutions for contour tracking 
problem can be found in the work by Chiu, et al., 
(2001) and McNab, et al., (1994). It is noted that 
most of the proposed synchronous controllers rely on 
modeling dynamics, while the significant demand in 
practice is to use the model free control algorithm 
without heavy computation online. A model free 
variable-gain cross-coupling controller was 
introduced for a general class of contours (Koren, et 
al., 1991), but the effect of a time-varying gain in the 
cross-coupling controller to system stability and the 
cross-coupling effect on overall system dynamics are 
yet to be examined (Chiu, et al., 2001). Another 
effort to examine the stability and robustness of the 
cross-coupled control system was reported in the 
work by Yeh, et al.,(1997). 
 
In this paper, a simple model free cross-coupled 
controller is proposed to stabilize multi-axis motions 
while synchronizing positions of these axes. Unlike  
the work by Sun (2003), the synchronization error is 
defined as the differential position error between 
each axis and its two adjacent axes, and such 
synchronization error is linearly coupled with the 
position error to form a coupled position error. It has 
been shown that a PD-type synchronization 
controller with feedback of this coupled position 
error can guarantee asymptotic convergence to zero 
of  both  position and synchronization errors for a 



 
 

set-point motion control. This controller differs from 
the standard PD control in that not only the 
convergence of position errors to zero is guaranteed, 
but also the relationship amongst position errors of 
all motion axes is regulated. The feedforward control 
terms and a saturation function can be further added 
to the PD-type synchronization controller to solve 
asymptotic trajectory tracking problem. Compared to 
the existing synchronous control algorithms, the 
proposed method is very simple since it is model free 
and the control gains are not time-varying. 
Experimental results demonstrate the effectiveness of 
the proposed approaches. 
 
2.     POSITION SYNCHRONIZATION ERRORS 

 
Consider the dynamics of a motion system with n 
axes in the matrix format: 

τ=+ xCxH &&&                                      (1) 
where )}({)( ii xHxH =  is the inertia of the system, 

)},({),( iii xxCxxC && =  denotes the Coriolis and 

centripetal forces, ),(2)( xxCxH && −  is skew-
symmetric, }{ ixx = denotes the position coordinate, 
and }{ iττ =  denotes the input torque. Define a 
position error as xxe d −= , where dx  denotes the 
desired position. 
 
The position synchronization error seeks the 
difference amongst the position errors of the multiple 
axes, and is determined based on the synchronization 
function that actually defines the task (Sun and Mills, 
2002). As in the work by Sun (2003), the 
synchronization goal neee === L21  is used in this 
paper, where ie  denotes the position error of each 
axis-i. Moreover, it might be more convenient or 
convincing that the synchronization errors are 
defined as differential position errors between each 
axis and its two adjacent axes in both directions, 
namely: 
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where iε  denotes the synchronization error of each 
axis-i. If all synchronization errors in (2) are zero, 
the synchronization goal neee === L21 is achieved 
automatically. Compared to the work by Sun (2003), 
such definitions are more strict because the 
differential position errors in two directions are 
considered. Rewrite (2) in the matrix format: 
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Te=ε                                   (3) 
 
where T

n ],,,[ 21 εεεε K= , T
neeee ],,,[ 21 K= , and T 

denotes the synchronization transformation matrix 
and satisfies TTT = . Our focus is to design the 
controller to guarantee asymptotic convergence to 
zero of both the position error e and the 
synchronization error ε .  
 
Introduce a concept named coupled position error, 
defined by 

αε+= eE              (4) 
where α  is a control gain that is diagonal and 
positive definite. Substituting (3) into (4) yields 

eTIE )( α+=               (5) 
where I is an unit matrix. Since T is symmetric, 

)( TI α+  is symmetric as well. If α is small enough, 
)( TI α+  is positive definite and has full rank. On the 

other hand, α  relates to the effect of the 
synchronization control. The higher the gain α , the 
more enhanced the synchronization control, which 
can be shown in the following experiments. 
Therefore, it should take balance in selection ofα .  
 
Obviously, 0→E  implies 0→e  and 0→ε . Note 
that in the work by Sun (2003), the position and 
synchronization errors are not linearly coupled in the 
definition of the coupled position error, because of 
the use of integration of the synchronization error 

dt∫ ε . As a result, convergence to zero of the coupled 
position error does not necessarily lead to 
convergence to zero of the synchronization error in 
the work by Sun (2003). 
 
 

3.      SET-POINT POSITION CONTROL 
 

Firstly, a set-point position control is considered, in 
which the following conclusions hold: 

xe && −= , xTeT &&& −==ε                        (6) 
 
Design a PD-type synchronization control law in the 
following format: 

eKTIEKEK eDP && 1)( −+++= ατ          (7) 
where PK , DK , and eK  are positive control gains. 
Substituting (7) into (1) yields: 

eKTIEKEKxxxCxxH eDP &&&&&& 1)(),()( −+++=+ α  (8) 
 

Theorem 1. The proposed controller (7) guarantees 
0→e  and 0→ε  as time ∞→t , under the 

condition that the control gain eK  is large enough to 

satisfy ⎟
⎠
⎞

⎜
⎝
⎛ −≥ ),()(

2
1}{min xxCxHTK e

&&αλ , where  

}{min eKλ  is the minimum eigenvalue of the gain 
matrix eK . 
 
Proof.  Define a Lyapunov function candidate as 

EKEexHTIeV P
TT

2
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2
1

++= && α           (9) 



 
 

Here )()( xHTI α+ is positive definite since 
)( TI α+  is positive definite when the control gain 

α  is selected small enough, and )}({)( ii xHxH =  is 
a diagonal positive definite matrix. Differentiating V 
with respect to time yields 

EKEeHTIeexHTIeV P
TTT &&&&&&&& ++++= )(

2
1)()( αα  

        (10) 
Multiplying both sides of (8) by TE&  yields 
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Utilizing (5) and (6), rewrite (11) as 
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Substituting (12) into (10) yields 
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Note that 0),()(
2
1
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1 xxCxH &&  is skew symmetric. If the 

control gain eK  is large enough to satisfy 

⎟
⎠
⎞

⎜
⎝
⎛ −≥ ),()(

2
1}{min xxCxHTK e &&αλ , then 0≤V& .  

 

Therefore, E&  and e& are bounded in term of  2L  

norm since they appear in V& . From (6) and (8), 
further conclude that E&&  and e&&  are bounded as well. 
Consequently, E&  and e&  are uniformly continuous, 
and thus from Barbalat’s lemma, 0→E&  and 0→e&  
as time ∞→t . From (6), have 0→x&  and 0→x&&  as 
time ∞→t .  From the error dynamics (8), there 
exists an invariant set 

}0,0,0,0:),{( =====Ψ εeExxx && . Therefore, 
LaSalle’ theorem directly implies asymptotic 
stability of the system, i.e., 0→E , 0→e  and 

0→ε  as ∞→t .  
 
Theorem 1 holds provided that the condition 

⎟
⎠
⎞

⎜
⎝
⎛ −≥ ),()(

2
1}{min xxCxHTK e

&&αλ  is satisfied. In 

practical implementation, it is not necessary to know 
H  and C exactly to select eK . Instead, the control 
gain eK  can be chosen highly enough (or α  is small 
enough), so that the condition in Theorem 1 holds.  
 
Although the control law (7) can be expressed as a 
PD error feedback control, i.e.,  

eKeK

eKTITIKeTIK

DP
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&

&
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+++++= − ])()([)( 1ααατ
 (14) 

it differs from the standard PD control in that the 
controller employs feedbacks of both position error 
e  and coupled position error E  to guarantee 0→E  
and 0→e simultaneously, and thus convergence of 
the synchronization error ε  to zero is enhanced. As 
a result, satisfactory transient performance of 
synchronization can be ensured. 
 

4. TRAJECTORY TRACKING CONTROL 
 

The trajectory tracking control is considered now by 
adding feedforward control terms and a saturation 
function to the control law (7), namely, 

N
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where HK  and CK  are positive feedforward control 
gains, and NK  is a parameter that satisfies 

|||||||| d
C

d
HN xxK &&& ∆+∆=   (16) 

in which H∆  and C∆  are scalars. 
 
Two assumptions are introduced: i) dx  is bounded 
up to its second time derivative; and ii) )(xH  and 

),( xxC &  are bounded if their arguments are bounded. 
When )(xH is time-varying, the second assumption 
holds locally, i.e., Coriolis and centripetal forces are 
bounded by the square of the velocity norm. 
Substituting (15) into (1) yields the closed-loop 
dynamics: 

0)(

)(),()( 1

=++

+++++ −

N

eDP

KEsignN

eKTIEKEKexxCexH
&

&&&&&& α
 (17) 

where ( ) ( ) d
c

d
H xxxCKxxHKN &&&& ),()( −+−= , which 

is bounded. 
 
Theorem 2. Considering a trajectory tracking 
problem from an initial position to a final position, 
the tracking controller (15) leads to 0→e  and 

0→ε  as time ∞→t , under the conditions: 
1. The control gain eK  is large enough to satisfy 

⎟
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⎜
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⎛ −≥ ),()(

2
1}{min xxCxHTK e &&αλ ; 

2. The scalars H∆  and C∆   are large enough to 
satisfy )(xHK HH −≥∆  and ),( xxCKCC &−≥∆ . 
 
Proof.  Define the same Lyapunov function 
candidate as in (9). Multiplying both sides of (17) by 

TE&  yields 
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Substituting (5) into (17) and then the resulting 
equation into (10) yields (19). 
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Therefore, 0≤V& , and 0→E& , 0→e&  as time 
∞→t . The error dynamics (17) then becomes 

 
0=+ NEK P                       (21) 

 
Since the desired velocity at the final position must 
be zero, have 0=dx&  and 0=N  at the desired final 
position. Then have 0=E  from (21), and finally 

0=e  and 0=ε . Using LaSalle’s theorem, Theorem 
2 can be finally proven.  
 
 

5.  EXPERIMENTS 
 
A 4-axis experimental setup used to test the 
synchronization algorithms has been established as 
shown in Figure 1. A 4-axis motion control and 
driving integrated system (model no. DCT0040), 
supplied by DynaCity Technology (HK) Ltd, is used 
to control and amplify four DC brushless motors. 
The control application code is written in C and 
ASM language. A window utility program developed 
by Visual C++, enables us to quickly set up, 
configure, and troubleshoot controllers. The 
frequency of the position control loop is 4kHz. 
 

 
 

1-Axis 1, 2- Axis 2, 3-Axis 3, 4-Axis 4, 5-Motion Control  
& Driving System, 6- Power Supply 
 
Figure 1: Experimental setup 
 

Firstly, the set-point position control was tested in 
driving four motors to rotate respectively one 
revolution (10000 counts) in a synchronous manner. 
The control gains are }1.1{diagK p = , 

}1.0{diagK D = , }1{diag=α , and }1.0{diagK e = . 
Figure 2 illustrates position and synchronization 
errors, respectively. It can be seen that besides good 
convergence of the position errors, there appears 
satisfactory performance in position synchronization. 
Figure 3 illustrates experimental results with the 
standard PD feedback control without 
synchronization, for comparison. Although position 
errors converge to zero eventually under the standard 
PD control, there appears worse transient 
performance of synchronization compared to that in 
Figure 2. 
 
Secondly, the synchronous trajectory tracking 
controller was tested in controlling four motors to 
rotate respectively one revolution (10000 counts) in a 
synchronous manner along a trajectory specified as a 
cubic polynomial. The control gains for the trajectory 
tracking control are }6.1,1.1,7.1,1.1{diagK p = , 

}1.0{diagK D = , }1{diag=α , and 
}1.0{diagK e = , }1.0{diagK H = , }1.0{diagK C = , 

}1{diagCH =∆=∆ . Figures 4 and 5 illustrate the 
experimental results with the proposed synchronous 
tracking control and the standard PD control, 
respectively. Obviously, the synchronous control 
exhibits better synchronization performance.  
 
The coupling parameter α  plays important role in 
the synchronization. As α  increases, the 
synchronization error decreases, but too large a value 
of α  may affect the convergence speed of position 
errors. Figure 6 illustrates position and 
synchronization errors with different 
α ( }5.0{diag=α ). Compared to Figure 4 where 

}1{diag=α , it is seen that the use of smaller 
coupling parameter α  results in smaller position 
errors but higher synchronization errors. 
 
The robustness of the control law (15) to the 
unexpected disturbances in the motion is also tested, 
by adding a force disturbance to axis 3 at the time 
40ms. Figure 7 shows that the added force 
disturbance does not produce large effect to the 
motion synchronization under the proposed 
synchronous control, since there is no obvious 
difference in the position synchronization compared 
to Figure 4. In contrast, under the standard PD 
control, the force disturbance degrades the 
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synchronization performance significantly, as can be 
seen in Figure 8. 
 

6.  CONCLUSIONS 
 

In this paper, a model free cross-coupling controller 
is proposed for position synchronization of multi-
axis motions. A PD-type cross-coupled controller is 
developed to asymptotically stabilize multi-axis 
motions while synchronizing positions of all axes in 
the set-point position control. The feedforward 
control terms and a saturation function can be further 
added to solve asymptotic trajectory tracking 
problem. The major advantage of the proposed 
method lies in its simplicity in implementation since 
it is model free and the control gains are not time-
varying. Experimental results verify effectiveness of 
the proposed approaches. 
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APPENDIX: FIGURE 2~FIGURE 8 

 
Figure 2: Results of the PD-based synchronization control in set-point control 

 
Figure 3: Results of standard PD control in set-point motion 



 
 

 

Figure 4: Results of synchronous tracking control  

 

Figure 5: Results of standard PD control in trajectory tracking 

 
Figure 6: Results of synchronous tracking control ( }5.0{diag=α ) 

 
Figure 7: Results of synchronous tracking control with disturbance 

 
Figure 8: Results of the standard PD control with disturbance 


