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Abstract: The fuzzy neuron hybrid control method is proposed for mold level control of the 
continuous steel casting in this paper. The dynamic characteristics of the continuous steel 
casting process is described. To the plant with big uncertainties and grave nonlinearities, the 
fuzzy neuron hybrid control system is set up and the new model-free controller is designed.  
In this control system, the fuzzy neuron hybrid controller is constructed by the fuzzy PI 
controller and the neuron controller, the gain of the neuron controller is tuned by using a 
fuzzy algorithm. The simulation tests of mold level control are made under various conditions 
with different casting speeds, new gate valve and old gate valve, changing in the valve 
position loop gain. The results demonstrate that the new controller has good performance, 
very strong robustness and adaptability.    Copyright © 2005 IFAC 
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1.  INTRODUCTION 

 
Today the mold level control of the continuous 
casting has attracted much attention from iron and 
steel producers, because the performance of mold 
level control and the surface quality of the final 
product are highly correlated ( Barron, et al. 1998). 
However, to obtain an accurate level control of the 
mold level is not an easy task for the control system 
design since there exist grave nonlinearities and big 
uncertainties in this process. 

To deal with the problem of mold level control, 
conventional control approaches have been 
investigated for improving performance of mold level 
controller. Kiupel, et al. (1994) proposed a parallel 
control structure with a complementary fuzzy logic 
controller to improve the performance of 
conventional PI mold-level control. Graebe, et al. 
(1995) discussed the careful modeling of a 
continuous steel casting process, implemented and 
evaluated three control strategies that consist of a PI 
controller with high frequency dither, a linear and a 
nonlinear cascade controller. Barron, et al. (1998) 

developed a discrete feedback control laws under 
model uncertainties. Kong, et al. (1992) dealt with 
the adaptation of the gain of a PID controller 
according to casting parameters such as slab width or 
extraction speed. The main drawbacks of these 
controllers are that they work only for one particular 
type of static nonlinearity and rely on the exactly 
mathematical modeling of the plant. The common 
feature of those control methods is to compensate a 
particular characteristic of the continuous casting 
process such as time variations, nonlinearities, 
disturbances, etc. Therefore, they are difficult to 
obtain satisfactory performance. 

In addition to conventional control methods, many 
researchers have paid attention to using fuzzy system 
technique and neural networks to tackle the problem 
of mold level control. Being simple to design and 
implement, the former is more practical than the latter. 
Dussnd, et al. (1998) designed a fuzzy controller 
using the expert knowledge for controlling the 
process during disturbed phases. Joo, et al. (2002) 
developed a fuzzy control scheme to regulate the 
molten steel level in the strip casting process where 



the parameters of the fuzzy control were stably 
adapted by using the Lyapunov-stability theory. Bedi, 
et al. (1999) presented a method to the fuzzy sliding 
mode control for mold level, in which fuzzy rules 
were used to change the slope of a sliding hyperplane 
to obtain faster reaching time of the system trajectory. 
Having the parallel processing and learning 
capabilities, neural networks may be a better way to 
design control systems for nonlinear processes. 
However, the weaknesses of neural networks, such as 
complex training algorithm, slow convergence and 
local minima, limit their applications in mold level 
control. Hence, Wang, et al. (1991) proposed the 
adaptive neuron model and its learning strategy for 
control. The neuron model-free control method is 
very simple and can give good performance. Being 
used in hydraulic turbine generators and some 
industrial processes (Wang, et al. 1993; Wang, et al. 
1994), the neuron control has reached its success. By 
combining a fuzzy controller with the neuron 
controller, the fuzzy neuron hybrid control method is 
proposed for mold level control of the continuous 
steel casting process in this paper. 

This paper is organized as follows. Section 2 
describes the continuous steel casting process and 
modeling. Section 3 designs the fuzzy neuron hybrid 
control system for mold level control, the hybrid 
controller is constructed by the fuzzy PI controller 
and the neuron controller, and the gain of the neuron 
controller is tuned by a fuzzy algorithm. The 
simulation test results are given in section 4. The 
conclusions are summary at section 5. 
 

2. THE PROCESS DESCRIPTION AND 
MODELING 

 
The continuous steel casting is the process of 
molding molten metal into solid blooms. A schematic 
diagram of the process is shown in Fig.1 (Graebe, et 
al., 1995 ), where the ladle [a] is acting as a reservoir 
for the molten metal and the valve [c] regulating its 
flow into the mold [d]. The tundish [b] acts as an 
intermediate reservoir that retains a constant supply 
to mold when an emptied ladle is being replaced by a 
full one. The cast metal undergoes two cooling 
processes. Primary cooling occurs in the mold and 
produces a supporting shell around the still liquid 
center [e]. This semi-elastic strand is then 
continuously withdrawn from the mold through a 
series of supporting rolls containing the secondary 
cooling stage [f, g], after which the newly strand is 
cut into blooms by torch cutters. [i] is the mold level, 
it can be measured by a mold level sensor. 

Being complex, with big uncertainties, nonlinearities 
and running under a high temperature condition, it is 
hard to model the continuous steel casting process. 
This caster mainly consists of hydraulic actuators, a 
slide gate valve and a mold. 

The hydraulic actuators are prone to nonsmooth 
nonlinearities such as slip-stick friction and backlash. 

[a]Ladle

[b]Tundish

Molten steel

Casting speed

[e]Molten steel center

[d]Mold and primary cooling

[f]Partially
solidified strand

[g]Solidification during
secondary cooling

[c]Slide gate valve

 Mold level
[i]

 

Fig.1  Simplified continuous steel caster 

The nonsmooth nonlinearities can be compensated by 
a high bandwidth controller (Graebe, et al., 1995). 
Thus, the approximate transfer function of the valve 
position loop is k sv ( )β +1 , where kv ,β  are the 
parameters of the loop. 

The slide gate valve consists of three identical plates, 
with the outer two fixed and the center one sliding in 
between (in Fig.2). All plates contain an orifice of 
radius , so that the effective flow area of matter 
into the mold is determined by the overlapping orifice 
areas. When the center plate is at position , 
elementary trigonometric considerations show that 
the effective flow area is given by 
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The process also has smooth nonlinearities due to the 
flow dynamics and valve geometry. The nonlinear 
model is given by (Graebe, et al., 1995) 
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where Am is the casting cross sectional area,  is a 
velocity coefficient dependent on the viscosity of the 
steel grade being cast, c is a coefficient of 
contraction with value 0.6 for a new valve with sharp 
edges and 0.95 for worn valve with rounded edges, 
and h the height of matter in the tundish. Therefore, 
this plant has time variations. 
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Fig. 2.  Slide gate valve 
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Fig.3.  Mold level control system for the continuous steel casting 
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Fig.4  fuzzy neuron hybrid control system for continuous steel casting 

 
By analysising the continuous steel casting, the 
approximate model is given (Graebe, et al., 1995) 
and the mold level control system is shown in Fig.3, 
where, r(t) is the setpoint, y(t) is the mold level, u(t) 
is the control signal, FNHC is the fuzzy neuron 
hybrid controller, u1 is the casting speed. 

 
3.  FUZZY NEURON HYBRID CONTROL 

 
Control of the mold level is a challenging problem by 
using conventional control or fuzzy control method, 
because of the grave nonlinearities and big 
uncertainties of the continuous steel casting process. 
If the neuron model-free control method is directly 
used to control this process, it is also difficult to have 
satisfactory performance. Considering the dynamic 
characteristics of the continuous steel casting process 
in Fig.3, the fuzzy neuron hybrid control system for 
this process is set up in Fig.4.  

In Fig.4, the controller is designed based on the 
hybrid structure consisting of the fuzzy PI controller 
and the neuron controller. In the hybrid structure, the 
gain of the neuron controller is tuned by the fuzzy 
algorithm, the sum of the outputs of the fuzzy PI 
controller and neuron controller is the output of the 
hybrid controller.  is the control signal 
produced by the hybrid controller. is the system 
output.  is the setpoint.  is the inputs of 
the neuron.  is the control action produced by 
the neuron.  is the output of the fuzzy PD 
controller, which is used to update the neuron gain 

.  is the control action of the fuzzy PI 
controller. 

)(tu
)(ty

)(tr )(txi

)(tu NC

)(tu f

)(tK )(tu FC

 

 
3.1 Fuzzy PI Control 
 
When a basic fuzzy system is designed, the following 
three problems should be solved. 
(1) fuzzify the input variables 
(2) design a fuzzy rule base for the inference engine 
(3) defuzzify the output U of the inference engine 

The key to have good performance of a fuzzy control 
system is the regulation of the fuzzy rule base 
according to the plant. A method for regulating fuzzy 
control rule base is presented by Long and Wang 
(1982), which can express the fuzzy control inference 
process by a simple formula as follows 

>−+=< ECEU )1( λλ             (4) 
where  are supposed to be the fuzzy input 
variables of a control system error  and its 
change 

E EC,
e t( )

∆e t( )  respectively, λ is the factor regulating 
the fuzzy rule base. < >x  denotes the inference 
engine to have the nearest whole number of x.  By 
changing the factor λ , the control rule base can be 
regulated, therefore, the fuzzy control system 
performance can be changed conveniently.  is the 
output of the inference engine. It has been proved that 
formula (4) has the same functions as a conventional 
fuzzy rule base. 

U

Thus, the fuzzy system can be written as 
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Fig.5  Fuzzy-PI controller  

 
defuzzification factor of the fuzzy inference engine 
output,  is the fuzzy system output. Obviously, 
the fuzzy controller given above is a PD type 
controller according to Eqs. (5), (6) and (7). 
According to the description as above, the fuzzy PI 
controller is constructed shown in Fig.5. In Fig.5, the 
output of fuzzy PI controller is 
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Substituting Eqs. (5) (6) and (7) into Eq. (8) leads to 
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Hence the simple fuzzy controller becomes a fuzzy PI 
type controller. 
 
3.2 The Neuron Model, the Learning Strategy For 

Control and Neuron Control 
 
The adaptive neuron model (in Fig.6) for model-free 
control is proposed by Wang (the author), et al. 
(1991). In Fig.6, E is the surroundings of the neuron. 
The neuron output u(t) can be written as 
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where, K>0 is the neuron proportional coefficient; 
 ( i=1, 2, ⋯, n ) denote the neuron inputs; 
are the connection weights of and they 

are determined by some learning rule. It is widely 
believed that a neuron self organizes by modifying its 
synaptic weights. According to the wellknown 
hypothesis proposed by D. O. Hebb, the learning rule 
of a neuron is hence formulated as 

x ti ( )
w ti ( ) x ti ( )

)()()1( tdptwtw iii +=+      (11) 

where, d>0 is the learning rate; denote 
learning strategy. 

p ti ( )

There are two simple learning strategies as follows 
(1) Hebbian learning, i.e. 

)()()( txtutp ii =         (12) 

It expresses that an adaptive neuron depending on its 
adaptability makes actions and reflections to the 
unknown surroundings. 
(2) Supervised learning, i.e. 

p t z t x ti ( ) ( ) ( )i=         (13)  

It expresses that an adaptive neuron, which does 
forced learning under supervising of the teacher's 
signal z(t), makes actions and reflections to the 
unknown surroundings.  
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Fig. 6. The neuron model for control 

 
The associative learning strategy is suggested for 
control purposes as follows by Wang, et al. (1991). 
(3) Associative learning, i.e. 

)()()()( txtutztp ii =         (14) 

It expresses that an adaptive neuron, which uses the 
learning way integrating Hebbian learning and 
Supervised learning, makes actions and reflections to 
the unknown outsides with the associative search. It 
means that the neuron self-organizes the surrounding 
information under supervising of the teacher's signal 
z(t) and gives the control signal. It also implies a 
critic on the neuron actions. 

According to the neuron model and its learning 
strategy described as above, the neuron model-free 
control method is proposed as follows (Wang, et al., 
1991) 
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where ,  are the input and output of the 
plant respectively, and u t  is the control signal 
produced by the neuron.  is the setpoint, and the 
neuron inputs can be selected by the demands 
for the control  system designs. Used in hydraulic 
turbine generators and some industrial processes, the 
neuron model-free controller has reached its success 
(Wang, et al., 1993; Wang, et al., 1994). 
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3.3 The Fuzzy Neuron Hybrid Control Method 
 
According to the section 3.1 to 3.2 and Fig.4, the 
fuzzy neuron hybrid control method is proposed as 
following formula. 

)()()( tututu FCNC +=            (17) 

where  is the output of the neuron 
model-free controller.  
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)(tK is the gain of the neuron model-free controller, 
which is regulated by 

)()1()( tutKtK f+−=         (19) 

where is obtained by Eq.(7). , 
where  is a constant to be chosen. Considering 
the demands of different casting speeds, the neuron 
inputs are chosen as follows 
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where the casting speed u  is included in the 
formula. 

1

In Eq.(17),  is the output of the Fuzzy PI 
controller, it is given by 
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Hence, the fuzzy neuron hybrid control method for 
mold level control is proposed as  
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where , , , are the parameters of the hybrid 
controller. 
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Fig.8  Tracking setpoint under the standard case 
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Fig.9  Tuning the neuron gain  under the 

standard case  
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Fig.10  Tracking setpoint when or 0.3 6.01 =u
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Fig.11  Tracking setpoint when =0.6 or 0.95. cc
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Fig. 12  Tracking setpoint when the valve position 

loop gain =1.2 or 0.8 vk
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4.  SIMULATION TESTS AND RESULTS 
 
To verify the effectiveness of the proposed control 
method Eq.(22). The simulation tests of mold level 
control for the continuous steel casting process are 
made. The parameters of the plant are supposed as: 

, , , , g = 9 8. h = 0 9. Am = 1 cv = 0 24. 74.0=cc , 
, 8.0=R 1=β , . All experiments are carried 

out to track the setpoint using the same controller 
parameters which are fetched roughly under the case 
of , =0.74, =1. The parameters of the 
fuzzy hybrid controller are selected as: 

, , , 

1=vk

11 =u cc vk

ke = 8 kec = 8 006.0=uk 8.0=λ , d1 100= , 
, , . The sample period is 

chosen as 
d2 25= d3 100= 31 =k

T = 0 6. sec.  In order to examine the 
performance of the proposed model-free control 
method, the robust tests are also made under the 
conditions of different casting speeds, both new slide 
gate valve and old gate valve, and the changing of the 
valve position loop gain. The simulation results are 
shown as from Fig.8 to Fig.13. Fig.8 shows the 
control result of tracking setpoint under the standard 
case. Fig.9 is the result of fuzzy tuning the neuron 
gain  under the same case as Fig.8. Figs 10 to 
13 are the robust tests using the proposed controller. 
Fig.10 illustrates the control results of tracking 
setpoint under the case of or 0.3. Fig.11 
demonstrates the control results of tracking setpoint 
under the case of =0.6 (for new valve) or = 
0.95 (for old valve). Fig.12 is the control results of 

=1.2 or 0.8. Fig.13 displays the control results of 
=0.6, =1.2 or =0.8, =0.8. 
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The simulation results illustrate that good 
performance is obtained in all test cases and high 
precision mold level control is reached. The control 
system responds quickly, smoothly and almost 
without overshoot. Even if the dynamic 
characteristics of the nonlinear plant changes greatly, 
the proposed model-free controller still has very 
strong robustness and adaptability. 

5. CONCLUSIONS 

In this paper, the fuzzy neuron hybrid control method 
is proposed to mold level control of the continuous 
steel caster. In this control system, the hybrid 
controller is constructed by the fuzzy PI controller 
and the neuron controller, the gain of the neuron 
controller is tuned online by a fuzzy algorithm. The 
simulation tests under various conditions are made. 
The results illustrate high precision mold level 
control is reached and the proposed control method 
can efficiently control mold level for the plant with 
big uncertainties and grave nonlinearities. This 
model-free controller has good performance, very 
strong robustness and adaptability. The controller is 
very simple and of great value in practice. 
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