
  
 

 
 
 
 
 
 
 
 

CASE STUDIES OF COEFFICIEANT DIAGRAM METHOD 
- PRACTICAL POLYNOMIAL DESIGN APPROACHES - 

 
 

Shunji Manabe 
 
 

1-8-12 Kataseyama, Fujisawa, Kanagawa 251-0033, Japan 
 
 
 
 

Abstract: Coefficient Diagram Method (CDM) is one of polynomial methods in control 
design. Its design effectiveness mainly stems from the usage of a diagram called 
Coefficient Diagram. Coefficient diagram shows the coefficients of characteristics 
polynomial and those of numerator polynomials corresponding to sensitivity and 
auxiliary sensitivity function in logarithmic scale, where the abscissa is the order for the 
coefficients. From the shape, designer can visualize the stability, response, and 
robustness. A well-known difficult benchmark problem is solved to demonstrate the 
effectiveness of CDM. Copyright © 2005 IFAC 
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1. INTRODUCTION 
 
Coefficient Diagram Method (CDM) is an algebraic 
design approach based on polynomials and 
polynomial matrices (Manabe, 1998b, 2002). It has 
five features as follows; 
(1) Polynomials and polynomial matrices are used 
  for system representation. 
(2) Characteristic polynomial and controller are 

simultaneously designed. 
(3) Coefficient diagram is effectively utilized. 
(4) The sufficient condition for stability by Lipatov  
  constitutes the theoretical basis of CDM 
  (Lipatov and Sokolov, 1978; Manabe, 1999).  
(5) Kessler standard form (Kessler, 1960) is  
  improved and used as the standard form of CDM. 
 
CDM design is based on the stability index and 
equivalent time constant. Thus for the specified 
settling time, a controller of the lowest order with the 
narrowest bandwidth and of no-overshoot can be 
easily designed. CDM can be considered as 
“Generalized PID”, because the controller can be 
more complex than PID, and more reliable parameter 
selection rules are provided. Also CDM can be 
considered as “Improved LQG”, because the order of 

controller is smaller and weight selection rules are 
also given (Manabe, 1998a). 
 
Ordinary design problems are effectively solved and 
were reported in various literatures (Hori, 1994; 
Manabe, 1994b, 2002). Also some more difficult 
problems have been solved, too. Manabe (1994a) 
designed the controller for a single-sensor inverted 
pendulum, and demonstrated its robust operation by a 
small toy car model with the pendulum, which was 
run by an inexpensive hand-made controller. Manabe 
(1997) worked on the ACC benchmark problem (Wie 
and Bernstein, 1992; Thompson, 1995). This problem 
requires attaining a specified settling time under the 
actuator input limitation for various robustness 
conditions. Effective trade-off was important at such 
problem and CDM was found to be very effective in 
that respect. 
 
However, the true power of CDM will be 
demonstrated in the design of most difficult problems, 
which defy the most advanced robust control theory. 
There is no practical importance in designing 
controllers for such academic problems. But by 
comparing the results by advanced robust control 
theory and ones by CDM, the robust control theory 
itself will be tested and evaluated. 



  
 

The purpose of this paper is to design controllers for 
the well-known difficult problem; the plant with a 
non-minimum phase zero and an unstable pole. In the 
design process, the relation between the robustness 
and the controller order will be clarified. Also the 
mechanism of stability-robustness trade-off, which is 
not well treated in robust control theory, will be 
explained. 
 
Section 2 is an introduction to CDM for tutorial 
purpose. Section3 is the main results of this paper. 
Various orders of controllers are designed for 
different robustness specifications.  
 
 

2. BASICS OF CDM 
 
 
2.1 Mathematical Model 
 
The standard block diagram of the CDM design for a 
single-input-single-output system is shown in Fig. 1. 
The extension to multi-input-multi-output can be 
made with proper interpretation, but it is not 
discussed here for simplicity. The plant equation is 
given as 
   ( )pA s x u d= + ,   xsBy p )(= ,         (1) 
where u, y, and d are input, output, and disturbance. 
The symbol x is called the basic state variable.  Ap(s) 
and Bp(s) are the denominator and numerator 
polynomial of the plant transfer function Gp(s).  It 
will be easily seen that this expression has a direct 
correspondence with the control canonical form of 
the state-space expression, and x corresponds to the 
state variable of the lowest order.  All the other states 
are expressed as the derivatives of x of high order.  
Controller equation is given as 
   ))(()()( nysBysBusA crac +−= ,       (2) 
where yr and n are reference input and noise on the 
output. Ac(s) is the denominator of the controller 
transfer function. Ba(s) and Bc(s) are called the 
reference numerator and feedback numerator of the 
controller transfer function. Because the controller 
transfer function has two numerators, it is called two-
degree-of-freedom system. This expression 
corresponds to the observer canonical form of the 
state-space expression.  Elimination of y and u from 
Eq. (2) by Eq. (1) gives 
   nsBdsAysBxsP ccra )()()()( −+= ,      (3) 
where P(s) is the characteristic polynomial and given 
as 
   )()()()()( sBsBsAsAsP pcpc += .      (4) 
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 Fig. 1.  Mathematical model 

By Eq. (1), y and u are expressed in x  as follows; 
   ( )py B s x= , ( )pu A s d= −         (5) 
 
 
2.2 Mathematical Relations 
 
Some mathematical relations extensively used in 
CDM will be introduced hereafter. The characteristic 
polynomial is given in the following form. 
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The stability index γi , the equivalent time constant τ, 
and stability limit γi

* are defined as follows. 
   )(/ 11

2
1 −+= iii aaaγ ,    1~1 −= ni ,        (7) 

   01 / aa=τ ,                                      (8) 

   11
* /1/1 −+ += iii γγγ ,   

         ∞==−= 0,1~1 γγ nni .         (9) 
Also the equivalent time constant of the i-th order τi 
is defined as follows; 
   iii aa /1+=τ ,      1~1 −= ni .            (10) 
Then the following relations are derived. 
   )/(/ 121 γγγτγττ iiii == − ,                      (11) 
   1 2 1 0...i ia aτ τ τ τ−= ,         (12) 
     2 2 1

0 1 2 2 1/ ( )i i i
i ia τ γ γ γ γ− −
− −= .                          (13) 

The characteristic polynomial will be expressed by a0, 
τ, and γi as follows. 
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In CDM standard form, 1 2.5γ =  and the rest of iγ s 
are all 2. Then ( )P s  is expressed in a simple form. 
   ( 1) ( 1)( 6) / 2

0( ) [10 2 ( )n n n nP s a sτ− − − − −= × +  
       6 5 40.00001( ) 0.0004( ) 0.008( )s s sτ τ τ+ + +  
       3 20.08( ) 0.4( ) 1]s s sτ τ τ+ + + +          (15) 
 
 
2.3 Coefficient Diagram 
 
When the plant/controller polynomials are given as 
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the characteristic polynomial is expressed as 
    2.02225.0)( 2345 +++++= ssssssP .   (17) 
Then 
   ][ 125 aaaai = = [0.25  1  2  2  1  0.2],        (18) 
   ][ 124 γγγγ =i  =[2  2  2  2.5],                    (19) 
   τ= 5,                       (20) 
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* γγγγ =i = [0.5  1  0.9  0.5].             (21) 



  
 

0123

10

1

0.1

0.01

0.001

1

0.1

,

*

i

i

γ τ

γ

i

B

A

C

3a
2a

1a
0a

2γ 1γ

*
1γ*

2γ

τ

3 2( ) 0.5 2 4 3.2P s s s s= + + +

ia

0.001
01234

10

1

0.1

0.01 1

0.1

,

*

i

i

γ τ

γ

ia

i
4 3 2( ) 0.0625 0.5 2 4 3.2P s s s s s= + + + +

τ

0a1a
2a

3a

4a

A
B

3γ 2γ 1γ

*
3γ

*
2γ *

1γ

 
   Fig. 4a.  3rd order     b.  4th order 

012345

10

1

0.1

0.01

0.001

1

0.1

,

*

i

i

γ τ

γ

ia

iγ

*
iγ

5τ =

0.25

1
2 2 1

0.2

2 2 2 2.5

0.5
1 0.9

0.5

1l
2k

1k
0k

ia

i

0
( )

n
i

i
i

P s a s
=

= ∑
Fig. 2.  Coefficient diagram 

 
The coefficient diagram is shown as in Fig. 2, where 
coefficient ai is read by the left side scale, and 
stability index γi , equivalent time constant τ , and 
stability limit γi

* are read by the right side scale. The 
τ is expressed by a line connecting 1 to τ. The 
stability index γi can be graphically obtained (Fig. 3a).  
If the curvature of the ai becomes larger (Fig. 3a), the 
system becomes more stable, corresponding to larger 
stability index γi. If the ai curve is left-end down (Fig. 
3b), the equivalent time constant τ is small and 
response is fast. The equivalent time constant 
τ  specifies the response speed. 
 
The coefficient diagram is also used for parameter 
sensitivity analysis and robustness analysis. In this 
example, the characteristic polynomial P(s) is 
composed of two component polynomials; 
denominator polynomial 1( )lP s  and numerator 
polynomial ( )kP s . 
   1( ) ( ) ( )l kP s P s P s= + ,                     (22) 
   5 4 3 2

1 1( ) (0.25 2 0.5 )lP s l s s s s= + + + ,               (23) 
   2

2 1 0( )kP s k s k s k= + + .                     (24) 
The auxiliary sensitivity function T(s) is expressed as 
   ( ) ( ) / ( )kT s P s P s=                     (25) 
Eq. (23) is shown in Fig. 2 with small circles and 
dash-dot lines. Eq. (24) is shown with small squares 
and dotted lines. Designer can visually assess the 
deformation of the coefficient diagram due to the 
parameter change of k2, k1, and k0. Then he can 
visualize the variation of stability and response. Also 
from Eq. (25), it is clear that robustness can be 
analyzed by comparison of coefficients ai and ki at 
the coefficient diagram. 

Thus the coefficient diagram indicates stability, 
response, and robustness (three major properties in 
control design) in a single diagram, enabling the 
designer to grasp the total picture of control system. 
At present, Bode diagram is used for this purpose. 
However coefficient diagram is more accurate and 
easy to use in actual design. 
 
 
2.4 Stability Condition 
 
From the Routh-Hurwitz stability criterion, the 
stability condition for the 3rd order is given as 
   0312 aaaa > .                     (26) 
If it is expressed by stability index, 
   112 >γγ .                          (27) 
The stability condition for the fourth order is given as 
   0134312 )/()/( aaaaaaa +>                   (28) 

   *
22 γγ > .                   (29) 

For the system higher than or including 5th degree, 
Lipatov (1978) gave the sufficient condition for 
stability and instability in several different forms. 
The conditions most suitable to CDM can be stated 
as follows; 
 
"The system is stable, if all the partial 4th order 
polynomials are stable with the margin of 1.12. The 
system is unstable if some partial 3rd order 
polynomial is unstable." 
 
Thus the sufficient condition for stability is given as     

   1 1
2 2

1 1

1.12 [ ]i i
i i i

i i

a aa a a
a a

− +
+ −

+ −

> + ,                  (30) 

   *12.1 ii γγ > ,  for all 2 ~ 2i n= − .             (31) 
The sufficient condition for instability is given as 
   121 −++ ≤ iiii aaaa ,                    (32) 
   11 ≤+ ii γγ ,   for some 1 ~ 2i n= − .           (33) 
 
These conditions can be graphically expressed in the 
coefficient diagram. Fig. 4a is a 3rd-order example. 
Point A is (a2 a1)0.5 and point B is (a3 a0)0.5. Thus if A 
is above B, the system is stable. Point C is (γ2 γ1)0.5. If 
it is above 1, the system is stable. Fig. 4b is a 4th-
order example. Point A is obtained by drawing a line 
from a4 in parallel with line a3 a1. Similarly point B is  
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obtained by drawing a line from a0 in parallel with 
line a3 a1. The stability condition is a2 > (A + B). The 
other condition is γ2 > γ2

*. 
 
 
2.5 Design Condition  
 
In CDM, the following stability index is 
recommended as the standard form. 
   1 3 2 12, 2.5nγ γ γ γ− = = = = = .       (34) 
When trade-off issue comes up, this is relaxed as 
follows to give the designer more design freedom. 
   1 2 12, 2.5,nγ γ γ− = = =   

   *5.1 ii γγ > ,   1 ~ 3i n= − .        (35) 
Usually stability index is chosen in the following 
range. 
   1.5 ~ 4iγ = .          (36) 
If all 1.5iγ ≥ , stability is guaranteed by Eq. (31). 
Lipatov (1978) proved that all poles are negative real, 
if all 4iγ > . Then the system is overly stable. The 
equivalent time constant is chosen as follows; 
   (1/ 3)τ of settling time.        (37) 
 
 
3. CONTROLLER DESIGN OF NON-MINIMUM 

PHASE UNSTABLE PLANT 
 
 
3.1 Problem Statement 
 
The design of controller for non-minimum phase 
unstable plant is a cherished topic for control 
theorists. Although such problem is of little practical 
importance, it is a very good testing stone for the 
control theory. The following example is presented 
by (Henrion, et al., 2003a). He took the example 
from (Doyle, et al., 1992, Section 11.3). 
 
Quote: We consider the problem of robustly 
stabilizing the plant 

   ( , ) ( 1)
( , ) ( 1)( 2)

b s q q s
a s q s s

−
=

+ −
.          (38) 

for all real gain q in the interval [1, k1]. The uncertain 
plant polytope is therefore made of 2 vertices. In 
(Doyle, et al., 1992), it is shown that a robustly 
stabilizing controller (of arbitrarily high order) exists 
if and only if k1 < 4. The design method proposed 
there is based on coprime factorisation and H-inf 
model matching. it is solved with the help of 
Navanlinna-Pick interpolation, which has the 
drawback of producing high-order controllers. In 
(Doyle, et al., 1992), a controller of eighth orders is 
computed for k1 = 3.5. Unquote. 
 
The problem is restated in CDM notations. The plant 
is given as follows; 
   ( ) , ( )p pA s x u y B s x= = ,      (39) 
   ( ) ( 1)( 2), ( ) ( 1)p pA s s s B s q s= + − = − . 

the problem is to design a controller, which robustly 
stabilize for all real gains q in the interval [1, qmax]. 
The notation k1 is changed to qmax in order to 
conform to CDM notation. In this problem, stability 
and robustness are of utmost importance, and 
performance is considered of secondary importance. 
The CDM design will proceeds from a simple 
controller to more sophisticated ones. 
 
 
3.2 First Order Controller 
 
The simplest controller, which stabilizes the plant, is 
first order. More precisely, it is a 1/1 order controller, 
where the numerator/denominator orders are 1/1. The 
controller is given as follows; 
   ( ) ( )( )c c rA s u B s y y= − ,       (40) 
   1 0( )cA s l s l= + , 
   1 1 0 2( ) ( ) ( ), ( ) , ( ) 1c c c c cB s B s B s B s k B s s= = = + . 
Bc2(s) is used to cancel the stable pole of the plant. 
Then the characteristic polynomial P(s) becomes as 
follows; 
   1 2( ) ( ) ( )cP s P s B s= ,       (41) 
   1 1 0 0( ) ( )( 2) ( 1)P s l s l s k q s= + − + − . 
For stability, only P1(s) is important, and it will be 
treated as the characteristic polynomial hereafter. The 
coefficients are given as follows; 
   2 1a l= ,        (42) 
   1 1 0 02a l l k q= − + + , 
   0 0 02a l k q= − − . 
The stability condition for the second order system is 
that all coefficients are positive. In an ideal case, l1 is 
almost 0.  l0= -1 is chosen arbitrarily. Then the 
system is stable for k0 = 1 and qmax = 2. For relaxed 
condition, qmax = 1.99, the following parameters are 
selected. 
   1 0 00.001, 1, 1.004l l k= = − = .      (43) 
The stability is confirmed, because the coefficients 
fall in the following interval and are all positive.  
   2 0.001a = ,        (44) 
   1 1.002 1.004 [0.002, 0.99596]a q= − + = , 
   0 2 1.004 [0.996, 0.00204]a q= − = . 
The coefficient diagrams for q =1, 1.99, and 1.4 are 
shown in Fig. 5a, b, c. Fig. 5a suggests that the 
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Fig. 5.  Coefficient diagram, 1/1 order controller 



  
 

 
system is very oscillatory for q =1, because of small 
γ1. Fig. 5b suggests that the system is very slow, 
because of extremely large τ. Fig. 5c suggests that 
the system is fairly reasonable: a natural consequence 
that q is at the mid point. These figures show that a1 
and a0 are the differences of two component 
polynomials related to l0 and k0. For this reason, qmax 
is limited to 2 in this design. The final form of the 
controller transfer function Gc(s) is as follows; 

   1.004( 1)( )
0.001 1c

sG s
s

+
=

−
       (65) 

Henrion (2003b) obtained the similar results by LMI. 
  
 
3.3 Second Order Controller    
 
By adopting a 2/2 order controller, range of q will be 
extended to almost 4. The controller is assumed as 
follows; 
   ( ) ( )( )c c rA s u B s y y= − ,       (66) 
   1 0 1 0( ) ( )( 2 ), 1cA s l s l s lε= + + − = − , 
   1( ) ( ) ( )c c cB s B s B s= ,   
   1 0 2 2( ) ( 1 ), ( ) 1c cB s k s B s sε= + − = + . 
Then the characteristic polynomial P(s) becomes as 
follows; 
   1 2( ) ( ) ( )cP s P s B s= ,       (67) 

   1 1 1 0 2
2 2

1 1 1 0 2 2

( ) ( 1)( 2 )( 2) ( 1 )( 1)

( 1)[ (4 2 )] [ (1 )] .

P s l s s s k q s s

l s s s k q s s

ε ε

ε ε ε ε

= − + − − + + − −

= − − − − + − − −
 

As in the previous section, P1(s) will be treated as the 
characteristic polynomial hereafter. The coefficients 
are given as follows; 
   3 1a l= ,       (68) 
   2 1 1 01a l k qε= − − + , 
   1 1 1 1 0 2(4 2 )a l k qε ε ε= − − −  
   0 1 0 2(4 2 ) (1 )a k qε ε= − − − . 
In an ideal case, l1 is close to 0. Then k0 is almost 1 
for a2 to be marginally positive at q = 1. From the 
condition that a1 and a0 are marginally positive at q = 
qmax, the following relation is derived. 
   1 max 2 1 max4 , /q qε ε ε= − = .     (69) 
Thus any effort to make qmax close to 4, naturally 
makes ε1 and ε2 small. As the result, a1 becomes very 
small, and the system becomes oscillatory with small 
γ1. This deterioration is the necessary cost for larger 
qmax. For qmax = 3.99, the following parameters are 
chosen.  
   7

1 2 1 00.001, 0, 2 10 , 1.002l kε ε −= = = × = .  (70) 
The coefficients fall into the following intervals. 
   7

3 2 10a −= × ,         (71) 
   2 1 1.002 [0.002, 2.9980]a q= − + = , 
   1 0.00099920a = , 
   0 3.998 1.002 [2.996, 0.00002]a q= − = . 
Because the system is 3-rd order, the stability 
condition must be satisfied in addition to the 
condition that all coefficients are positive. 

   2 1 2 1 3 0/( ) 1a a a aγ γ = > .      (72) 
From Eq. (71), γ2γ1 is minimum at q = 1, and 
increases as q increases. Thus γ2γ1 falls into the 
following interval. 
   8

2 1 [3.3351, 7.4888 10 ]γ γ = × .     (73) 
Thus stability for qmax = 3.99 is confirmed. The 
coefficient diagrams for q =1, 3.99, and 2 are shown 
in Fig. 6a, b, c. Now a3 and a1 are constant, and a2 
and a0 vary by q. Compared with 1/1 order controller, 
a0 allows larger variation of q and qmax becomes 
larger. The strategy taken here is to make a3 and a1 
constant, and let a2 and a0 vary by q. The final form 
of the controller transfer function Gc(s) is as follows; 

   
2

7

1.002( 1)( )
(2 10 1)( 1.999)c

sG s
s s−

+
=

× − +
 .    (74) 

The designed controller is not a good controller at all, 
as easily seen from the peculiar shape of the 
coefficient diagram. It is designed only to show qmax 
can be almost 4. Thus a second order controller with 
qmax = 3.99 is designed by CDM. Henrion, et al. 
(2003a) designed a 3-rd order controller with qmax = 
3.5 by positive polynomial technique. The controller 
is more reasonable, because qmax is smaller. 
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         a. q = 1            b. q = 3.99          c. q = 2 
Fig. 6.  Coefficient diagram, 2/2 order controller 
 
 
3.4 Optimised First Order Controller 
 
When ε1 is chosen as 1 in Eq. (66), the 2/2 order 
controller degenerates to a 1/1 order controller. 
   ( ) ( )( )c c rA s u B s y y= − ,         (75) 
   1 0 0( ) , 1cA s l s l l= + = − , 
   1 0( )cB s k s k= + ,   0 1 2/ 1k k ε= − . 
The characteristic polynomial P(s) becomes as 
follows; 
   1 1 0( ) ( 1)( 1)( 2) ( )( 1)P s l s s s q k s k s= − + − + + − ,  (76) 
   2 2

1 1 1 0 0( 1)( 2) [ ( ) ]l s s s q k s k k s k= − − − + + − + − . 
The coefficients are given as follows; 
   3 1a l= ,           (77) 
   2 1 11a l k q= − − + , 
   1 1 1 02 1 ( )a l q k k= − + + − + , 
   0 02a qk= − . 
For the ideal case that l1 is almost 0, k1 = 1 and k0 = 
2/3, because ε1 = 1 gives qmax = 3 and ε2 = 1/3 by Eq. 



  
 

(69). In order to make the system stable for qmax = 
2.99, following parameters are selected. 
   1 1 00.0001, 1.001, 0.668l k k= = = .    (78) 
The coefficients fall into the following intervals. 
   3 0.0001a = ,       (79) 
   2 1.0001 1.001 [0.0009, 1.9929]a q= − + = , 
   1 0.9998 0.333 [0.6668, 0.00413]a q= − = , 
   0 2 0.668 [1.332, 0.00268]a q= − = . 
From Eq. (77), γ2γ1 is minimum at q = 1, and 
increases as q increases. Actually a1/a0 increases with 
increase of q. The same is true for a2/a3. Thus γ2γ1 
falls into the following interval. 
   2 1 [4.5056, 30711]γ γ = .      (80) 
The coefficient diagrams for q =1, 2.99, and 1.7 are 
shown in Fig. 7a, b, c. The final form of the 
controller transfer function Gc(s) is as follows; 

   1.001 0.668( )
(0.0001 1)c

sG s
s

+
=

−
 .     (81) 

Henrion, et al. (2003a) reported that a first order 
controller achieved qmax = 2.59. Their controller is 
very similar to this controller. 
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Fig. 7.  Coefficient diagram,  
           optimised 1/1 order controller 
 
 

4. CONCLUSIONS 
 
Major conclusions in his paper are as follows;  
(1) Three robustly stabilizing controllers are designed  
  for a non-minimum phase and unstable plant. The  
  design is made on the parameter space with clear  
  logic and simple mathematics. 
(2) The trade-off between stability and robustness is 
  clearly expressed in a simple equation as Eq. (69). 
  This relation will clarify the nature of the problem  
  quite eloquently. 
(3) The figurative representation of coefficient  
  diagram and explicit formula for trade-off are the 
  most important asset of CDM.  
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