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Abstract: We study observer design for sampled-data nonlinear systems using two
approaches: (i) the observer is designed via an approximate discrete-time model
of the plant; (ii) the observer is designed based on the continuous-time plant
model and then discretized for sampled-data implementation (emulation). In each
case we present Lyapunov conditions under which the observer design guarantees
semiglobal practical convergence for the unknown exact discrete-time model. The
semiglobal region of attraction is expanded by decreasing the sampling period.
The practical convergence set is shrunk by decreasing either the sampling period,
or a modelling parameter which refines the accuracy of the approximate model.
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1. INTRODUCTION

A shortcoming of the existing sampled-data ob-
server theory is that the availability of exact
discrete-time models is assumed, which is usually
unrealistic. A more practical approach pursued in
this paper is to employ approximate discrete-time
models for design, and to study how robust such
approximate designs would be when implemented
on the exact model. This approach may be advan-
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tageous even when an exact model is available,
because the very few constructive tools for non-
linear observer design may be applicable only to
an approximate model which preserves structural
properties of the continuous-time model.

Most results on discrete-time observer design in
the literature rely on an exact model. Several of
them, such as (Boutayeb and Darouach 2000),
present examples where the models are obtained
from Euler approximations, but do not discuss
the effect of the exact-approximate mismatch.
For a class of state-affine systems, (Nadri and
Hammouri 2003) pursue a mixed continuous- and
discrete-time design which circumvents the need



for an explicit exact model with the help of
continuous-time updates.

In (Arcak and Nešić 2003) we have shown with
examples that a design based on an approximate
model may fail to produce a stable observer for the
exact discrete-time model regardless of how small
the sampling period is. We have then given suffi-
cient Lyapunov conditions which rule out this pos-
sibility, and guarantee convergence for the exact
model in a semiglobal practical sense. In this paper
we extend this results in two directions: First,
we introduce a “modelling parameter” which im-
proves the accuracy of the approximate model for
a constant sampling period, and show that we can
achieve practical convergence by tuning this pa-
rameter instead of the sampling period. Next, we
address emulation design of observers, not studied
in (Arcak and Nešić 2003), in which the discrete-
time observer is obtained from a continuous-time
design via an approximate discretization. With
appropriate conditions on the approximation, and
on the underlying continuous-time observer, we
again achieve semiglobal practical convergence. A
distinction of the emulation design, however, is
that we cannot achieve practical convergence by
decreasing the modelling parameter alone. Indeed,
as we show with an example, decreasing this pa-
rameter does not reduce the size of the practical
convergence set arbitrarily, but to a level dictated
by the sampling period. Due to space limitations
we omit the proofs and present them in the report
(Arcak and Nešić 2004).

2. PRELIMINARIES AND PROBLEM
STATEMENT

We consider the system

ẋ = f(x, u), y = h(x), (1)

where x ∈ IRn, u ∈ IRm, y ∈ IRp, and f(x, u) is
locally Lipschitz. Given a sampling period T > 0,
we assume that the control u is constant during
sampling intervals [kT, (k + 1)T ) and that the
output y is measured at sampling instants kT ;
that is, y(k) := y(kT ). The family of exact
discrete-time models of (1) is:

x(k + 1) = F e
T (x(k), u(k)), y(k) = h(x(k)),

(2)
where F e

T (x, u) is the solution of (1) at time T
starting at x, with the constant input u. This
model is well-defined when the continuous model
(1) does not exhibit finite-escape time. When
there is finite escape time, (2) is valid on compact
sets which can be rendered arbitrarily large by
reducing T .

To compute (2) we need a closed-form solution
to (1) over one sampling interval [kT, (k + 1)T ),
which is impossible to obtain in general. It is

realistic, however, to assume that a family of
approximate discrete-time models is available:

x(k + 1) = F a
T, δ(x(k), u(k)), y(k) = h(x(k)).

(3)
This family is parameterized by the sampling pe-
riod T , and a “modelling parameter” δ which will
be used to refine the approximate model when T
is fixed. It can be interpreted as the integration
period in numerical schemes for solving differential
equations. The case where δ = T is of separate in-
terest because several approximations of this type
(such as Euler approximation) preserve the struc-
ture and types of nonlinearities of the continuous-
time system and, hence, may be preferable to the
designer. When δ = T we use the short-hand
notation

F a
T (x, u) := F a

T,T (x, u). (4)

For the linear system ẋ = Ax, the forward Euler
numerical scheme x(t + δ) = (I + δA)x(t) can
be used to generate an approximate model by
dividing the sampling period T into N integration
periods δ = T/N , and by applying (I + δA) for
each integration period; that is, F a

T, δ = (I +
δA)T/δx. As δ → 0, this F a

T, δ converges to the
exact model F e

T = exp(AT )x. If δ = T , then we
obtain F a

T = (I + TA)x.

Throughout the paper we assume that the ap-
proximate model (3) is consistent with the exact
model, as defined in (Nešić et al. 1999), and (Nešić
and Teel 2004):

Definition 1.
a) When δ = T the family F a

T (x, u) is said to be
consistent with F e

T (x, u) if for each compact set
Ω ⊂ Rn×Rm, there exists a class-K function ρ(·)
and a constant T0 > 0 such that, for all (x, u) ∈ Ω
and all T ∈ (0, T0],

|F e
T (x, u)− F a

T (x, u)| ≤ Tρ(T ). (5)

b) When δ is independent of T , F a
T,δ(x, u) is said

to be consistent with F e
T (x, u) if, for each compact

set Ω ⊂ Rn × Rm, there exists a class-K function
ρ(·) and a constant T0 > 0, and for each fixed
T ∈ (0, T0] there exists δ0 ∈ (0, T ] such that, for
all (x, u) ∈ Ω and δ ∈ (0, δ0],

|F e
T (x, u)− F a

T,δ(x, u)| ≤ Tρ(δ). (6)

It is not necessary to know the exact model
F e

T (x, u) to verify the consistency property. Veri-
fiable conditions to check (5) and (6) are given in
(Nešić et al. 1999) and (Nešić and Teel 2004). For
the approximate model (3), we design a family of
observers (depending on T and δ) of the form

x̂(k+1) = F a
T, δ(x̂(k), u(k))+`T, δ(x̂(k), y(k), u(k)),

(7)
and analyze under what conditions, and in what
sense, this design guarantees convergence when



applied to the exact model (2). Due to the mis-
match of the exact and approximate models,
the observer error system is now driven by the
plant trajectories x(t) and controls u(t), which
act as disturbance inputs. When these inputs
are bounded, we want the observer to guarantee
semiglobal practical convergence, as defined next:

Definition 2.
a) When δ = T we say that the convergence of the
observer (7) is semiglobal practical in T , if there
exists a class-KL function β(·, ·) such that for any
D > d > 0 and compact sets X ⊂ IRn,U ⊂ IRm,
we can find a T ∗ > 0 with the property that for
all T ∈ (0, T ∗],

|x̂(0)− x(0)| ≤ D, and x(k) ∈ X , u(k) ∈ U ,
(8)

∀k ≥ 0, imply

|x̂(k)− x(k)| ≤ β(|x̂(0)− x(0)|, kT ) + d. (9)

b) When δ is independent of T we say that the
convergence of the observer (7) is semiglobal in
T and practical in δ, if there exists a class-KL
function β(·, ·) such that for any given real number
D > 0, and compact sets X ⊂ IRn,U ⊂ IRm, we
can find and a T ∗ > 0, and for any T ∈ (0, T ∗]
and d ∈ (0, D), we can find δ∗ > 0 such that for
all δ ∈ (0, δ∗], (8) implies (9).

c) We say that the convergence of the observer (7)
is semiglobal in T and practical in T and δ, if there
exists a class-KL function β(·, ·) such that for any
D > d1 > 0, and compact sets X ⊂ IRn,U ⊂ IRm,
we can find a T ∗ > 0, and for any T ∈ (0, T ∗] and
d2 ∈ (0, D − d1), we can find δ∗ > 0 such that for
all δ ∈ (0, δ∗], (8) implies

|x̂(k)−x(k)| ≤ β(|x̂(0)−x(0)|, kT )+d1+d2. (10)

Unlike Definition 2(b) where we can arbitrarily
reduce the residual observer error d in (9) by
decreasing δ, in Definition 2(c) we can only reduce
d2 with δ, while d1 is dictated by the sampling
period T . As we shall see in Section 4, this situa-
tion arises in emulation design where, decreasing δ
can reduce the residual observer error, but cannot
eliminate it completely if T is held constant.

3. OBSERVER DESIGN VIA APPROXIMATE
DISCRETE-TIME MODELS

We now derive conditions which guarantee semiglobal
practical observer convergence for the exact model.
For our analysis we first note from (2) and (7) that
the observer error e := x̂− x satisfies

e(k + 1) = F a
T, δ(x̂(k), u(k)) + `T, δ(x̂(k), y(k), u(k))

−F e
T (x(k), u(k)). (11)

Adding and subtracting the approximate model
F a

T, δ(x(k), u(k)), we rewrite (11) as

e(k + 1) = ET, δ(e(k), x(k), u(k)) + F a
T, δ(x(k), u(k))

−F e
T (x(k), u(k)), (12)

where

ET, δ(e, x, u) := F a
T, δ(x̂, u) + `T, δ(x̂, y, u)

−F a
T, δ(x, u) (13)

represents the nominal observer error dynamics
for the approximate design, and F a

T, δ(x(k), u(k))−
F e

T (x(k), u(k)) is the mismatch between the ap-
proximate and exact plant models.

In Theorem 1 below, we address the situation δ =
T , which was studied in (Arcak and Nešić 2003).
We repeat this result here for comparison with the
subsequent theorems:

Theorem 1. (δ = T ) The observer (7) is semiglobal
practical in T as in Definition 2(a) if the following
conditions hold:

(i) δ = T .

(ii) F a
T is consistent with F e

T as in Definition 1(a).

(iii) There exists a family of Lyapunov functions
VT (x, x̂), class-K∞ functions α1(·), α2(·), α3(·),
ρ0(·), and nondecreasing functions γ0(·), γ1(·),
γ2(·), with the following property:

For any compact sets X ⊂ IRn, X̂ ⊂ IRn, U ⊂
IRm, there exist constants T ∗ > 0 and M > 0,
such that, for all x, x1, x2 ∈ X , x̂ ∈ X̂ , u ∈ U ,
and T ∈ (0, T ∗],

|VT (x1, x̂)− VT (x2, x̂)| ≤ M |x1 − x2| (14)

α1(|e|) ≤ VT (x, x̂) ≤ α2(|e|) (15)
VT (F a

T (x, u), F a
T (x̂, u) + `T (x̂, y, u))− VT (x, x̂)

T
≤ −α3(|e|)+ρ0(T )[γ0(|e|)+γ1(|x|)+γ2(|u|)].

(16)
2

Theorem 1 establishes semiglobal practical con-
vergence by reducing the sampling period T .
When T is fixed and cannot be reduced, it is
still possible to achieve practical convergence by,
instead, refining the accuracy of the approximate
models with the parameter δ:

Theorem 2. (δ independent of T ) The observer
(7) is semiglobal in T and practical in δ as in
Definition 2(b) if the following conditions hold:

(i) δ can be adjusted independently of T .

(ii) F a
T, δ(x, u) is consistent with the exact model

F e
T (x, u) as in Definition 1(b).



(iii) There exists a family of Lyapunov functions
VT, δ(x, x̂), class-K∞ functions α1(·), α2(·), α3(·),
ρ0(·), and nondecreasing functions γ0(·), γ1(·),
γ2(·), with the following property:

For any compact sets X ⊂ IRn, X̂ ⊂ IRn, U ⊂
IRm, there exists a constant T ∗ > 0, and for any
fixed T ∈ (0, T ∗] there exists δ∗ > 0, and for
any ε1 > 0 there exists c > 0, such that, for all
x, x1, x2 ∈ X , x̂ ∈ X̂ , u ∈ U , and δ ∈ (0, δ∗],

|x1−x2| ≤ c ⇒ |VT, δ(x1, x̂)−VT, δ(x2, x̂)| ≤ ε1

(17)
α1(|e|) ≤ VT, δ(x, x̂) ≤ α2(|e|) (18)

VT, δ(F a
T, δ(x, u), F a

T, δ(x̂, u) + `T, δ(x̂, y, u))
T

− VT, δ(x, x̂)
T

≤−α3(|e|) + (19)

ρ0(δ)[γ0(|e|) + γ1(|x|) + γ2(|u|)].
2

Example 1. Theorems 1-2 are also applicable to
reduced-order observers when e is interpreted as
the difference between the unmeasured compo-
nents of x, and their observer estimates. We now
design such a reduced-order observer for the Duff-
ing oscillator

ẋ1 = x2, ẋ2 = −x1 − x3
1, (20)

from sampled measurements of its output y = x1.
For our first design we use the Euler approxima-
tion with δ = T :

x1(k + 1) = x1(k) + Tx2(k)

x2(k + 1) = x2(k) + T (−x1(k)− x1(k)3).(21)

Observer design for this model is straightforward
because the nonlinearity depends only on the
output y = x1. Defining the new variable χ :=
x2 − y, which is governed by

χ(k+1) = (1−T )χ(k)+T [−2y(k)−y(k)3], (22)

we employ the observer

χ̂(k + 1) = (1− T )χ̂(k) + T [−2y(k)− y(k)3](23)

x̂2 = χ̂ + y, (24)

and note that the error variable e2 = x̂2−x2 = χ̂−
χ satisfies

e(k + 1) = (1− T )e(k). (25)

The assumptions of Theorem 1 hold because the
Lyapunov function

VT (e) =
1
2
e2 (26)

satisfies, along the trajectories of the approximate
error model (25),

VT (e(k + 1))− VT (e(k))
T

= −e(k)2 +
T

2
e(k)2,

(27)

which is as in (16). Since the trajectories of the
Duffing oscillator are bounded, we conclude from
Theorem 1 that the observer (23)-(24) achieves
semiglobal practical convergence for the unknown
exact model. This is illustrated with numerical
simulations in Figure 1 below, where the resid-
ual error between the solid trajectories and the
dashed observer estimates becomes smaller as the
sampling period T is reduced.

We next investigate the effect of refining the ap-
proximate models as in Theorem 2. A disadvan-
tage of this approach is that, unlike the Euler ap-
proximation with δ = T above, the refined models
do not preserve the structure of the continuous
model (20), where the nonlinearity depends only
on the output. In fact, an application of (Chung
and Grizzle 1990, Theorem 7) to (20) shows that,
even its exact discrete-time model does not pos-
sess this structure. Instead, we pursue a less am-
bitious design where we modify the observer to
account for the O(T 2) nonlinear terms in the
higher-order approximation

χ(k + 1) = (1− T )χ(k) + T [−2y(k)− y(k)3]

+T 2

[
−y(k)3 − 3

2
y(k)2χ(k)− 1

2
χ(k)

]

+O(T 3). (28)

Because the first of the bracketed O(T 2) terms
only depends on the output, and the latter two
have negative signs, we incorporate them in the
observer (23)-(24):

χ̂(k + 1) = (1− T )χ̂(k) + T [−2y(k)− y(k)3]

+T 2

[
−y(k)3 − 3

2
y(k)2χ̂(k)− 1

2
χ̂(k)

]
.(29)

With this modification the O(T ) terms in the ex-
act Lyapunov difference equation are unchanged,
while the sign-indefinite O(T 2) terms are now
negative definite. Thus, it is plausible to expect
a reduction in the size of the residual observer
error. Simulations with the modified observer (29)
in Figure 2 indeed show such an improvement over
the original design in Figure 1.

4. OBSERVER DESIGN VIA EMULATION

A common method for digital implementation
of controllers and observers, known as “emula-
tion”, is to discretize continuous-time designs us-
ing approximate techniques. We assume that a
continuous-time observer of the form

˙̂x = g(x̂, y, u) (30)

is available, and implement it with the approxi-
mate discrete-time equation:



x2(t) (solid) and x̂2(t) (dashed)
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Fig. 1. Simulation results for x2(t) (solid) from
the Duffing oscillator (20), and x̂2(t) (dashed)
from the observer (23)-(24). As predicted
by Theorem 1, the residual observer error
diminishes as T is decreased.
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Fig. 2. Simulation results for x2(t) (solid) from
the Duffing oscillator (20), and x̂2(t) (dashed)
from the modified observer (29). The residual
errors are smaller than those with the original
observer in Figure 1.

x̂(k + 1) = Ga
T, δ(x̂(k), y(k), u(k)). (31)

We assume in this section that functions f(·, ·)
and g(·, h(·), ·) are locally Lipschitz in all their
arguments.

When δ = T we establish semiglobal practical
convergence in T under a Lyapunov condition on
the continuous-time observer (30), and a consis-
tency property of the approximate discretization
in (31):

Theorem 3. (δ = T ) The observer (31) is semiglobal
practical in T as in Definition 2(a) if the following
conditions hold:

(i) δ = T .

(ii) Ga
T is consistent with Ge

T as in Definition 1(a),
with (y, u) interpreted as constant inputs during
sampling intervals.

(iii) The continuous-time observer (30) ensures
convergence with a C1 function V (x, x̂) satisfying,
for all x, x̂ ∈ IRn and for all u ∈ IRm,

α1(|e|) ≤ V (x, x̂) ≤ α2(|e|) (32)
∂V

∂x
f(x, u) +

∂V

∂x̂
g(x̂, y, u) ≤ −α3(|e|). (33)

2

Finally we study the situation where δ can be
tuned independently of T . Theorem 4 below shows
that by tuning δ we can reduce d in (9) not
arbitrarily, but to a level dictated by T as in
Definition 2(c):

Theorem 4. (δ independent of T ) The observer
(31) is semiglobal in T , and practical in T and δ
as in Definition 2(c), if the following conditions
hold:

(i) δ can be adjusted independently of T .

(ii) Ga
T, δ is consistent with Ge

T as in Definition
1(b), with (y, u) interpreted as constant inputs
during sampling intervals.

(iii) The continuous-time observer (30) satisfies
condition (iii) of Theorem 3. 2

Example 2. For the Duffing oscillator (20) in Ex-
ample 1, a continuous-time reduced-order ob-
server is

x̂2 = χ + y χ̇ = −χ− 2y − y3. (34)

Because the observer error e := x̂2 − x2 satisfies
ė = −e, condition (iii) of Theorems 3 and 4 holds
with the Lyapunov function

V (x, x̂) =
1
2
(x2 − x̂2)2 =

1
2
e2. (35)

To discretize (34) we first use the Euler approxi-
mation with δ = T :

χ(k+1) = χ(k)+T [−χ(k)−2y(k)−y(k)3], (36)

which coincides with our design (23)-(24) in Ex-
ample 1. Thus, the simulation results in Figure 1
also illustrate Theorem 3. We next study the sit-
uation where T is fixed as in Theorem 4. Instead,
we refine the discretization for (34) by dividing
the sampling period into N steps of size δ = T/N ,
and by applying an Euler approximation for each
step. As N → ∞, this approximation converges
to the exact zero-order-hold equivalent of the
continuous-time observer (34):

χ(k + 1) = exp(−T )χ(k) (37)

+(1− exp(−T ))[−2y(k)− y3(k)]



which is computable in this example because the
only nonlinearity in (34) is in the output-injection
term [−2y − y3]. Simulation results in Figure 3
show that the residual observer error is smaller for
N = 3 in the middle plot, than for N = 1 (δ = T )
in the top plot. However, as predicted by Theorem
4, increasing N (that is, decreasing δ) does not
reduce this residual error arbitrarily. Even with
the exact zero-order-hold equivalent (37) in the
bottom plot of Figure 3, we note that an observer
error remains because the sampling period T is
fixed.

x2(t) (solid) and x̂2(t) (dashed)
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Fig. 3. Simulation results for x2(t) (solid)
from the Duffing oscillator (20), and x̂2(t)
(dashed) from the Euler approximation of
the continuous-time observer (36), when the
sampling period is held constant at T = 0.67
sec. and the integration period δ is reduced.

5. CONCLUSIONS

We have specified conditions on the approximate
model, continuous-time model, and the observer,
guaranteeing that the observer that performs well
on an approximate discrete-time model will also
perform well on the exact discrete-time model.
We have further discussed the effect of refining
the approximate models with a modelling pa-
rameter δ, independently of the sampling period
T . Although practical convergence is in principle
achievable with a design based on approximate-
models refined with smaller integration periods
δ (Theorem 2), the complexity of such models
grow significantly as δ is reduced and, thus, it
may be infeasible to develop a family of observers
for them. Because sampling periods cannot be
arbitrarily reduced in applications, the question
of how to reduce the residual observer error sys-
tematically for a prescribed T deserves further
investigation.
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Nešić, D. and A.R. Teel (2004). A framework for
stabilization of nonlinear sampled-data sys-
tems based on their approximate discrete-
time models. IEEE Transactions on Auto-
matic Control 49, 1103–1122.

Nešić, D., A.R. Teel and P.V. Kokotović (1999).
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