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Abstract: We define the notion of Dynamic Discrete-Event Systems, a class of time-
varying systems, and present a simple approach to optimal control of such systems.
More specifically, we use limited-lookahead online control and an algorithm which
tries to maximize the benefit of the executed sequences of events, while at the same
time ensuring that unwanted (illegal) sequences are avoided. We use examples to
illustrate the different types of problems that can arise if such control is used, for
example, overspecialization and failure to take advantage of available resources.
These issues are used to formulate a list of desirable properties for a new algorithm
that optimizes the control of dynamic systems. Copyright c©2005 IFAC
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1. INTRODUCTION

One of the accepted ways to model real-world
systems is using a set of states and transitions
between them. This is used mainly when a system,
such as a factory robot or a communication proto-
col, can be suitably described as a discrete-event
system (DES). One possible approach to the con-
trol of such systems is the Standard Supervisory
Control of DES paradigm (Ramadge and Won-
ham, 1989). Despite the numerous advantages of
this theory, its applications to real-world problems
is very limited due to the daunting computational
requirements. Another approach to the control
of DES is found in (Chung et al., 1992; Chung
et al., 1994; Kumar et al., 1998), describing the
limited lookahead control policy, or online super-
visory control. At the expense of worse reliability,
it brings the advantages of reduced computational
costs and applicability to a broader range of real-

world systems, including systems which can vary
with time. While many modifications of online
control are proposed, little attention has been
devoted to the study of online control of time-
varying discrete-event systems.

In the aforementioned theories, control is con-
cerned mainly with the acceptability of the re-
sulting system behavior (or the “legality” of the
executed sequences of transitions between states).
Other works propose modifications to the control
algorithms so that control becomes not only ac-
ceptable, but also optimal with respect to some
selected criteria (Sengupta and Lafortune, 1998;
Kumar and Garg, 1995). Unfortunately, these
approaches are designed only for standard con-
trol, using stable (static) systems. Cost is asso-
ciated with transitions between states and the
algorithms avoids sequences of transitions which
will result in high accumulated costs. In (Chen



and Lin, 2001), a method which can be used
to construct an optimal online controller which
maximizes the performance of the system while
minimizing the associated cost is presented. Even
though this and similar methods are immediately
applicable to time-varying DESs, there are some
issues which arise from their time-varying nature
and which are not considered in these works.

When time-varying systems are considered, using
marked languages rarely makes sense: due to the
limited lookahead window and due to the dynam-
ics of the system, the controller may frequently
get into a position when the system cannot be
guided to execute a marked string. However, it
is not desirable to immediately terminate control
with an error message: in the next time period the
system may alter and the controller may be able
to lead the system to a desired state. Instead of
using marked languages, a desirability measure on
strings can be used to indicate what behavior of
the system is most beneficial.

The limit which is chosen for the lookahead cal-
culations of a control action might have crucial
impact on the optimality of the control. When
static systems are taken into account, the greater
the depth of the lookahead tree, the better are
the predictions of the controller and the control is
more optimal. However, when time-varying sys-
tems are considered, a deep lookahead window
may lead to overspecialization of the prediction
and the resulting control becomes unrealistic.

Closely related to the above is the problem of
greediness vs. long-term planning in control op-
timization. For static systems, long-term plan-
ning is better. However, for dynamic systems the
greedy approach may produce better results, since
it utilizes the available resources promptly before
the system has the opportunity to evolve to a
point where a resource is no longer available.

In this paper we define a class of time-varying
discrete-event systems and we present a simple
online algorithm for optimal control of such sys-
tems. Then, we give examples which illustrate the
problems that may arise if this algorithm is used.
Finally, we present specifications that should be
met by an algorithm which optimizes the control
of dynamic discrete-event systems.

2. PRELIMINARIES

We assume that the reader is acquainted with
(Ramadge and Wonham, 1989) and related work,
where discrete-event systems are modeled as
finite-state automata. Standard notation is used
in the paper: G is the finite-state automaton for
the system, Σ is the set of events, Σc and Σuc

are the subsets of controllable and uncontrollable

events, respectively, L(G) is the language gener-
ated by the system, L is the prefix-closure of the
language L, K ⊆ L(G) is the legal language, and
the elements of Σ∗ are usually denoted by the
lowercase letters s, t, u. . .

Supervision of DES consists of ensuring that only
legal sequences occur in the system, i.e., that
whatever s is executed, s ∈ K. The online con-
troller (Chung et al., 1994) can be defined as
a function which returns the subset of events
which should be enabled (all other events will
be disabled) after a given string so that the sys-
tem behavior is restricted to strings in K. Note
that Σuc will always be contained in this subset.
The limited-lookahead controller operates by con-
structing a tree of all the possible continuations of
the executed prefix, up to a certain depth. Then
it recursively explores the branches of this tree
to determine which nodes correspond to illegal
sequences. The algorithm propagates the informa-
tion back to the root and determines which events
need to be disabled to prevent the occurrence of
illegal strings. However, because the tree depth
is limited, the controller might not have the infor-
mation needed to make the correct decisions. This
problem is discussed in (Chung et al., 1992; Chung
et al., 1994) and related work.

There are many ways that one can model time-
varying systems. Here we present a discrete-time
module-based approach which can be used with
a wide range of systems and which, at the same
time, is suitable for the purposes of control. We
call systems modeled using this approach dynamic
discrete-event systems (DDESs). Time is consid-
ered to be discrete—it increases by one after each
occurrence of an event. At each time period the
system may consist of the composition of a dif-
ferent set of modules which are combined using
synchronous product (see (Cassandras and Lafor-
tune, 1999)). Thus, the system varies in time in
that old modules may disappear and new ones
may appear.

Formally, a DDES can be modeled as follows. Let
Mi = {M1i,M2i, . . . ,Mni} be some set of DES
modules and let ‖Mi denote the composition of all
elements of Mi. Then DDES G = {(‖Mi, i) | i ∈
{0, 1, . . .}} and the system at time i is Gi = ‖Mi.

3. SIMPLE OPTIMAL CONTROL
ALGORITHM

In this work we will discuss issues which arise
when optimization of the control of DDES is
considered. We understand optimization as the
attempt by the controller to guide the execution of
events so that the resulting strings have minimal
cost or maximal benefit to the user or owner of



the system. Thus we can define a value function
v : L(G) → R which will return the value of a
particular string (and the function, of course, can
be defined to return the cost of strings instead).
This function can be as complex as necessary,
however, for our purposes we will consider a very
simple form:

v(s) = −∞ if s /∈ K,

v(s) =
∑

s=σ1σ2...σn

c(σi) otherwise, (1)

where c(σi) is the single-event value of elements
of Σ. The single-event values can be negative for
costs and positive for payoffs. The online con-
troller will explore the branches of the lookahead
tree and compute the value function for each pos-
sible continuation. The values will be propagated
back to the root using a simple approach: if all
events leading from a node are controllable, the
maximal value from the children is taken (since
the controller will be able to disable the unwanted
events). Otherwise, if there are uncontrollable
events leading from the node, the minimal of the
values of the children via the uncontrollable events
will be taken (since the controller will not be
able to prevent the most costly behavior through
uncontrollable events). As well, the controller will
not explore branches further on if they have in-
finite costs. The algorithm, shown in Fig. 1, is a
slight modification of the algorithm proposed in
(Chung et al., 1994).

benefit-to-go(x,h) {
/* h is the string generated so far */
Σout = events going out of x

if(Σout ∩ Σuc = ∅) {
forall(σ ∈ Σout) {

y = stateVia(σ)
if(hσ is illegal)

vσ = −∞
elseif(y hits boundary)

vσ = v(hσ)
else

vσ = benefit-to-go(y, hσ) }
return maxσ∈Σout

(vσ) }
else {

forall(σ ∈ (Σout ∩ Σuc)) {
y = stateVia(σ)
if(hσ is illegal)

vσ = −∞
elseif(y hits boundary)

vσ = v(hσ)
else

vσ = benefit-to-go(y, hσ) }
return minσ∈(Σout∩Σuc)(vσ) }

}

Fig. 1. Simple optimal control algorithm

This algorithm is very simple and it would work
for stable systems, since it retrieves as much op-
timality information as possible from the limited
lookahead tree. Unfortunately, some issues arise

when it is used with DDESs. We proceed by giving
examples of these issues.

4. EXAMPLE SYSTEM DESCRIPTION

Before we present the examples, we will provide
a brief description of the system which we will
explore. Let us consider that we have a com-
pany which needs supplies, for example wooden
logs. The company uses the logistic services of a
provider and the contract is such that we can rent
one truck at a time. The provider has two types
of trucks available—a small truck (see Fig. 2(a))
and a big truck (see Fig. 2(b))—which can bring
ten logs or either ten or twenty logs, respectively.

goS
i

fetch10i

(a) small truck STi

goB
i

fetch10i, fetch20i

(b) big truck BTi

Fig. 2. DES models of trucks

The system consists of the synchronous product
of these modules. The number and type of trucks
available at any given time is not known in ad-
vance. Thus the system is inherently dynamic. Let
us consider that our company needs a resupply of
exactly forty logs and we would like to have a
controller which will guide the system so that we
achieve our goal.

The legality specification for the system is given
by the following two rules:

(1) After one truck goes to fetch supplies, we
cannot send another truck (Fig. 3).

goS
i
, goB

i

fetch10i, fetch20i

Fig. 3. First restriction of the legal language,
where i ∈ {1, 2, . . .}.

(2) The number of logs fetched is forty: ∀s ∈ K,

#fetch10(s) × 10 + #fetch20(s) × 20 = 40,

where #σ(s) denotes the number of occur-
rences of σ in s.

The values of single events are as follows:

• c(goS
i
) = −100

(we pay $100 to rent the small truck)
• c(goB

i
) = −150

(we pay $150 to rent the big truck)
• c(fetch10i) = 500

(the revenue we get from every log is $50)
• c(fetch20i) = 1000



and the value function v will be computed as
described previously by (1).

All events in the system are controllable. Even
though the proposed algorithm allows for uncon-
trollable events, the exclusive use of controllable
events renders the illustrative examples clearer.

5. EXAMPLES

Example 1

In this example we will illustrate the effect of an
overly limited lookahead capability. For this pur-
pose, let us limit the prediction of the controller
to just one step ahead. At the start the system
will have a small truck and a big truck available.

0

1 v = −100
goS

1

2 v = −150goB
2

Fig. 4. Time 0 (one small truck, one big truck)

Since the prediction capability is very limited,
the tree is very shallow and simple. The cost of
renting a big truck is greater than the cost of
renting a small truck. Thus, at time 0 (Fig. 4), the
controller, whose task is to optimize the behavior
of the system, chooses to disable the event goB

2

and leave only the less costly goS
1
.

Since our company needs forty logs, and since
sending a small truck four times to bring the logs
is more expensive than sending a big truck twice
for the same number of logs, one would correctly
observe that it is preferable to send the big truck.
This judgment is based on the knowledge of what
one expects to happen after a type of truck is
dispatched. Unfortunately, the controller is much
more limited—it can only foresee one step ahead.
The fundamental problem illustrated here is that
an online controller cannot provide optimal con-
trol if it cannot observe far enough along event
sequences to compute both the relevant costs and
the relevant payoffs.

Example 2

In this example we will illustrate the effect of
overly lenient lookahead capability. For this pur-
pose, the controller will be able to predict four
steps ahead. The system will be similar to the one
in the previous example. At the beginning there
will be a small and a big truck available. At time 2

(after one round-trip) there will be only a small
truck available. At time 4 (after two round-trips)
there will be only a big truck available.

In this example the trees are much deeper and
more complex because the prediction capability
is stronger (Fig. 5). At time 0 (Fig. 5(a)), the

controllerrecognizes that sending the big truck is
preferable, since it is cheaper to bring twenty logs
at a time (the value function v examines suffi-
ciently long portions of the event sequences). Thus
goS

1
is disabled and the big truck is dispatched.

At time 2 (Fig. 5(c)), after one round-trip, only
the small truck is available (for example, someone
else might have rented the big truck). After the
small truck fetches ten logs, the only available
truck is the big truck (for example, the small
truck might need maintenance). Thus at time 4

(Fig. 5(e)), the controller has to enable goB
2

even
though the truck will be used to fetch only ten
logs.

After bringing the last ten logs, the goal is accom-
plished. As one can observe, however, the system
ended up incurring a greater cost than necessary.
Had we used the small truck at time 0, the payoff
of fetching forty logs would have been

v(goS1fetch101goS1fetch101goB2fetch202) = 1650,

while the payoff in this example is

v(goB2fetch202goS1fetch101goB2fetch102) = 1600.

In other words, the solution produced by the
controller is not optimal. Unlike the situation in
example 1, the problem is not caused by the lack
of information: the controller has sufficient looka-
head capability. This time the cause is the avail-
ability of incorrect information. Since the system
is dynamic, basing control decisions on predictions
of a too distant future will most likely result in
incorrect assumptions. In this example, at time 0

the system assumes the big truck will be available
at time 2 and the computations of string values
are based on this. The fundamental problem il-
lustrated here is that the lack of a good model
of the changes of a system renders far-reaching
predictions inherently unreliable.

Example 3

In this example we will illustrate why an opti-
mization approach with long-term planning may
not be suitable for the control of dynamic systems.
Let us assume that the system will have a sched-
uler which can postpone the sending of a truck
using a wait event, where c(wait) = 0. There is a
small truck available at time 0 and it will not be
available at time 1 if it is not used.

In this setting, at time 0 (Fig. 6) the strings
“goS

1
fetch101wait” and “wait goS

1
fetch101” have

the same value and thus the controller will choose
randomly between them. As a result, once out of
two tries the system will miss the chance to utilize
the available equipment. The fundamental prob-
lem illustrated here is that, due to the unreliability
of dynamic systems, a greedy approach where the
systems attempts to execute short valuable strings



0

1 v = 1250

goS
1

3 v = 1250
fetch101

8 v = 800
goS

1

14 v = 800
fetch101

15 v = −∞goB
2

9

v = 1250

goB
2

16 v = −∞goS
1

17 v = 750fetch102

18 v = 1250fetch202

4

v = −∞

goB
2

2 v = 1700

goB
2

5 v = −∞

goS
1

6 v = 1200

fetch102

10 v = 750
goS

1

19 v = 750
fetch101

20 v = −∞goB
2

11

v = 1200

goB
2

21 v = −∞goS
1

22 v = 700fetch102

23 v = 1200fetch202

7 v = 1700

fetch202

12 v = 1250
goS

1

24 v = 1250
fetch101

25 v = −∞goB
2

13

v = 1700

goB
2

26 v = −∞goS
1

27 v = 1200fetch102

28 v = 1700fetch202

(a) Time 0 (one small truck, one big truck)

0 2

goB
2

5 v = −∞

goS
1

6 v = 1100

fetch102

10 v = 650
goS

1

19 v = 650
fetch101

29 v = 650
goS

1

30 v = 600goB
2

20 v = −∞goB
2

11

v = 1100

goB
2

21 v = −∞
goS

1

22 v = 600

fetch102

31 v = 600
goS

1

32 v = 550goB
2

23 v = 1100
fetch202

33 v = 1100
goS

1

34 v = 1050goB
2

7 v = 1700

fetch202

12 v = 1150
goS

1

24 v = 1150
fetch101

35 v = 1150
goS

1

36 v = 1100goB
2

25 v = −∞goB
2

13

v = 1700

goB
2

26 v = −∞goS
1

27 v = 1100fetch102

37 v = 1100
goS

1

38 v = 1050goB
2

28 v = 1700fetch202

(b) Time 1 (one small truck, one big truck)

0 2

goB
2

7
fetch202

39

v = 1650

goS
1

40

v = 1650

fetch101

41

v = 1650

goS
1

42

v = 1650

fetch101

(c) Time 2 (one small truck)

0 2

goB
2

7
fetch202

39

goS
1

40

v = 1650

fetch101

41

v = 1650

goS
1

42

v = 1650

fetch101

(d) Time 3 (one small truck)

0 2

goB
2

7
fetch202

39

goS
1

40
fetch101

43 v = 1600
goB

2

44

v = 1600

fetch102

45

v = −∞

fetch202

(e) Time 4 (one big truck)

Fig. 5. Lookahead trees for Example 2



0

1

v = 400goS
1

3 v = 400
fetch101

6 v = 300
goS

1

7 v = 400wait

2 v = 400
wait

4

v = 400

goS
1

8 v = 400
fetch101

5 v = 0wait

9 v = −100
goS

1

10 v = 0wait

Fig. 6. Time 0 (one small truck)

may be preferable over well-planned strategies
that reach far in the future.

6. SPECIFICATIONS FOR AN OPTIMIZING
CONTROLLER OF DDES

When designing an algorithm for the optimizing
online control of dynamic discrete-event systems,
the following specifications should be met:

• Legality constraints should be observed and
the system should avoid executing illegal
strings;

• From all legal strings, the controller should
choose to execute the string that would have
the most value to the user of the system;

• The controller should be conservative with
risk-taking (i.e., worst-case should be as-
sumed when uncontrollable strings are eval-
uated);

• The controller should be optimistic when
there is no risk (i.e., the best case should be
pursued when the strings are controllable);

• Exploration of subtrees of the lookahead tree
should be limited only to nodes which may
influence the control decision.

The above are standard requirements also for
controllers of static systems. However, as shown
in the examples from Section 5, there is a need
to introduce new specifications for the optimizing
control of dynamic systems:

• The controller should account for the vari-
ability of dynamic systems and should put
less emphasis on strings too far in the future;

• The controller should attempt to utilize the
available resources: it should prefer strings
that benefit the user sooner rather than later.

7. CONCLUSION

In this paper we defined the notion of Dynamic
Discrete-Event Systems and presented a simple al-
gorithm for optimal online control. We used exam-
ples to illustrate the issues which may arise when

this algorithm is applied to the control of time-
varying systems. Since the system can change
as time progresses, a very deep lookahead tree
may become a disadvantage due to the overspe-
cialization of the control decision. Furthermore,
long-term planning may be a worse choice than
assuming a greedy attitude. We conclude the dis-
cussion with a list of properties that an algorithm
optimizing the control of dynamic systems should
have.

Our current research includes the development
of an algorithm which satisfies the specifications
listed in Section 6. The algorithm takes into ac-
count the unreliability of DDESs and it uses a
normalization on the string values, depending on
how deep the lookahead tree is explored. Further-
more, it uses estimation of future node values to
minimize the number of nodes that need to be
explored.
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