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Abstract: This paper proposes an adaptive zooming genetic algorithm (AZGA) for 
continuous optimisation problems. Other than gradually reducing the search space with 
a fixed reduction rate during the evolution process, the upper and lower boundaries for 
variables in the objective function are dynamically adjusted based on the distribution 
information of variables in the whole population. This technique is evaluated on a suite 
of benchmark test functions to confirm its effectiveness over existing techniques in 
terms of convergence speed and robustness. Copyright © 2005 IFAC 
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1. INTRODUCTION 
 
Continuous optimisation problems widely exist in 
industrial applications, such as in system design, in 
dynamic system modelling and identification, and in 
plant operation and control, etc (Man, Tang and 
Kwong, 1999; Sabatini, 2000; Peng, Thompson, & 
Li, 2002). A typical continuous function optimisation 
problem is formulated as follows: given a set of n 
independent variables x={ }, and a 
real-valued objective function , where 
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,  - the search space, and nR⊆Ω Ω :f Ω  
some real-valued continuous function, then an 
optimisation problem is to find the point  in ∗x Ω  
such that is optimal for all .  )f(x∗ Ω∈x
 
Conventional methods for multivariable continuous 
optimisation problems include calculus-based 
techniques and the dynamic programming technique. 
Calculus-based techniques require a smooth 
objective function and compactness of the search 

space Ω . Dynamic programming technique is 
severely restricted by its exponential increase of 
dimensionality in accordance with the number of 
generators. As stochastic global search methods, 
genetic algorithms (GAs) have been successfully 
applied to a number of optimisation problems 
(Goldberg, 1989).  
 
Generally speaking, simple GAs need no auxiliary 
information like the first-order or second-order 
information of the objective functions, and they also 
do not need any initial estimates of the variables. 
However, due to the stochastic discrete sampling 
nature, simple GAs suffer the problem of slow 
convergence and the precision of solutions is limited 
especially when the search space is of high 
dimension. To speed up the convergence, a number 
of techniques have been proposed, among which the 
Successive Zooming Genetic Algorithm (SZGA) 
gradually reduce the search space along the 
evolution process (Kwon, Kwon, Jin, and Kim, 



2003). As the search space is gradually narrowed, 
GA operations can then gradually focus on the 
neighbourhood of the optimal solution in the end, 
hence speeding up the convergence and improving 
the precision of solutions. 
 
For continuous optimisation problems, the search 
space is normally represented as 
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i and ui are the upper 
and lower boundaries for xi. In SZGA, update of 
variable boundaries is performed after every Nsub 
(say, Nsub=100) generations and it is based on the 
candidate optimum point (the current best solution 
after Nsub generations) with the new boundaries set as 

, where X]/2α k+ k,opt is the 
candidate optimum point at the kth boundary 
updating instant, a is a fixed zooming factor. Within 
the reduced search space, a new population is 
initiated and another round of GA searching is 
performed for Nsub generations. Obviously, micro-
genetic algorithms (MGAs) technique is applied in 
SZGA. In SZGA, the reduction rate for the search 
space is set ‘a priori’. However, this may cause GA 
operation fail to adapt to the dynamics of GA 
population in the evolution process. Moreover, each 
variable in the function normally has different 
convergence speed due to its varied sensitivity 
therefore to reduce the intervals for every variable in 
the same pre-defined rate obviously is not optimal.  
 
In this paper a new search space zooming technique 
will be proposed. Other than setting the variable 
interval reduction rate ‘a priori’, update of the 
boundaries for each variable is based on its 
distribution characteristics over the whole population 
during the evolution process. Using this distribution 
based adaptive zooming method the search space can 
be updated dynamically in accordance with 
convergence speed of the GA population, therefore 
named adaptive zooming technique for genetic 
algorithms (AZGA). 
 

 
2. THE NEW ADAPTIVE ZOOMING 

TECHNIQUE FOR GENETIC ALGORITHMS 
 
In AZGA, the new interval for each variable is 
updated according to its distribution over the current 
population, 
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where  and denote the upper and 
lower boundaries of variable g at the k

)k(gu

g

)k(gl
th generation 

respectively,  denotes the mean value of the 

variable g over the whole population at the k
)k(µ

th 
generation, b>1 is some pre-determined positive 

constant referred to as the zooming factor, b is used 
to control the reduction rate of the interval and to 
reduce the risk of missing the true optimal point. 

1]  0,(∈β  is referred to as the zooming  fraction, 
say if it is set to be 0.95, then 95 percent of the 
values for variable g on the whole population should 
be contained within the new boundaries.  

and  are determined by:  
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where  is the population size, 

contains all the values for 

variable g in the whole population in increasing 
order.  is the rounded integer of 

. Obviously  is the 

shortest interval containing  values for variable 

g, or 
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 values for variable g in current 
whole population, therefore the most densely 
distributed interval for variable g. 
 
According to (2), only (  values for 

variable g at the two ends of the sorted array are left 
out. 

)1NNPop +− β

 is always set close to 1, it is therefore 
unnecessary to sort all the values in the whole 
population as this is computationally expensive 
when the population size is large. Instead only the 

 largest values and the )1

)1  smallest values for variable g over 

the whole population need to be identified, this will 
therefore significantly reduce the computation effort. 
 
Statistically speaking, the interval 

 identified in (2) is the greatest 
distribution density region for variable g over the 
whole population, and therefore the larger the 
variable variance, the larger the 
interval . According to (1), the 
centre 
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For a successful GA searching, if all the variables 
converge to their optimum as the evolution proceeds, 
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 when k is large enough, then, 

according to (3), we have 
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and . This implies that the 
update of boundaries is in synchronisation with the 
converging speed of GA population. This 
encourages the GA search to focus around the true 
optimum point in the search space at the late stage of 
evolution process. Another technique used in this 
algorithm is the introduction of the zooming factor b 
(>1) in (1), which helps to reduce the risk of missing 
the true optimal point at early stage of evolution 
process due to gradual narrowing of the search 
space, or inappropriate initial setting of boundaries.  
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Similar to SZGA, in AZGA update of the variable 
intervals is only triggered after a certain number of 
generations say ng0 after start, and then performed 
for every ng generations afterwards, under the 
consideration that update of the boundaries taking 
place immediately after each generation may lead to 
a premature of the GA searching.  
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Among these functions f1, f2, f4,and f5 are multi-
modal and have many local minima, for example f1 
has 60n (where n is the dimension) local minima in 
the search space which is most challenging. Function 
f7 is an ellipsoid with different eigenvalues on each 
axis, and f8 is also an ellipsoid in which all but one 
eigenvalue are the same. 

 
Table 1 The test functions  

 
index Name Search 

space 
Dimension 
(n) tested 

Global 
minimum 

f1 F15n [-10, 10]n 100 0 at xi = 1 
f2 F5n [-10, 10]n 100 0 at xi = -1
f3 Brown3 [-1, 4]n 20 0 at xi = 0 
f4  [-10, 10]n 100 0 at xi = 0 
f5 Griewank [-600, 

600]n 
30 0 at xi = 0 

f6  [-10, 10]n 30 0 at xi = 0 
f7 Ellipsoid [-10,  10]n 30 0 at xi = 0 
f8 Cigar [-10, 10]n 30 0 at xi = 0 

 
 
3.2 Selection and tuning of GA parameters 
 
In this study, AZGA together with the SZGA and a 
simple GA (SGA) were tested and their 
performances were compared. Each algorithm had a 
set of parameters to be determined, and SGA was the 
simplest and has the least number of parameters. All 
other algorithms employed additional operations, but 
all were based on SGA, therefore it is necessary to 
first describe the SGA operations and how the 
parameters in SGA were selected. 

 
 

3. TESTS 
 
3.1 The test functions  

  
In SGA real encoding scheme was employed, that is, 
for the continuous optimisation problems, each 
variable appeared in the chromosome representation 
as a floating-point code segment. SGA employed 
one population, with the initial random population 
uniformly generated within the search space. Linear 
ranking was employed to map the objective function 
value to the chromosome fitness. Selection was 
performed using the Stochastic Universal Sampling 
(SUS). The selected chromosomes were then 
collected into a mating pool, on which genetic 
crossover operation was performed. Intermediate 
recombination was employed as the genetic 
crossover operation, by which offspring are 
produced as: 

To evaluate the performance of the proposed 
adaptive zooming technique, a suit of benchmark test 
functions have been used which are listed table 1. 
These functions have been widely used in the 
literature, and the reported results can be directly 
used for comparison.  
 
These functions are defined as follows. 
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where a, referred to as the blending factor, is a 
randomly generated number with a uniform 
distribution within an interval . The 
crossover rate was set to be . After 
crossover, the original population was replaced with 
the new chromosomes in the mating pool. No 
mutation operation was performed, i.e. the mutation 
rate P

]a,a[ UL
0.1Pc =

m = 0. In addition, to prevent the best 
chromosomes in the current population failing to 
survive to the next generation, an elitist strategy was 
adopted. One or a few of the best chromosomes, say 
Ne, were reserved and copied directly into the next 
generation, and Ne was set at 1 in this paper. 
 

Table 2  Success-rate of SGA with different 
parameter settings over function f1 (%) 

 

Distribution interval  for the 
blending factor 

]a,a[ UL

[-0.4, 1.4] [-0.5, 1.5] [-0.6, 1.6] 
Pop 
size 

(NPop) Ps=
1.8 

Ps=
2.0 

Ps=
1.8 

Ps=
2.0 

Ps=
1.8 

Ps=
2.0 

200 75 80 93 95 0 0 
240 86 85 97 92 0 0 
280 90 90 96 99 0 0 
320 86 91 95 99 0 0 
360 94 90 77 100 0 0 
400 95 95 75 100 0 0 

 
Except for the parameters described above, other 
parameters in SGA including the blending factor 
interval , population size N]a,a[ UL Pop and 
selection pressure Ps were tuned against function f1 
as f1 has the largest number of local minima among 
all the functions and is most difficult to be optimised 
among all functions. To tune these parameters, a 
number of settings of values for GA parameters were 
tested. For each setting of parameters, SGA was 
tested for 100 times of run over f1 in searching the 
global optimum. It should be noted that each of the 
100 runs was driven by different random number 
series and each run terminated after 400 generations 
of evolution. The best chromosome in the population 
after 400 generations of evolution in each run was 
examined and if the solution was within area [1+1/6, 
1-1/6]100, then the search was regarded as a 
successful run (note that within area [1+1/6, 1-1/6]100 
function f1 has only one minimum which is the 
global one). The success-rate (the number of 
successful runs out of 100) for each parameter 
setting was recorded and listed in Table 2.  
 
In tuning of GA parameters, the success-rate and the 
population size NPop were the two important factors 
to consider. If the number of generations in GA 
searching were fixed in all runs, then the 

computation complexity depends on the population 
size. The larger the population size, the more time-
consuming the GA searching is. Therefore, among 
all sets of GA parameters it was desirable to select 
the one that had the minimum population size with 
success-rate 100%. According to Table 2, the best 
set of parameters for SGA are the population size 
Npop=360, the distribution interval  for the 
blending factor [-0.5, 1.5], and the selection pressure 
P

]a,a[ UL

s = 2.0. Along with other parameters (the number of 
generations Ngen = 400, the mutation rate Pm = 0, the 
crossover rate Pc = 1 and the elitist number Ne = 1), 
all the 100 runs using SGA succeed in locating the 
global minimum of function f1. Therefore these 
parameters were used throughout for SGA in the 
following tests. Except for the population size, all 
other parameters selected for SGA were applied to 
the SZGA and AZGA. Only the parameters special 
to each of the three algorithms were tuned.  
 
For SZGA, similar tests were performed over 
function f1 with different settings of the population 
size NPop, the sub-generation number NSub, and the 
zooming factor a. These parameters were chosen as: 
NSub = 250, a = 0.02, NPop = 120.  
 
For AZGA, similar tuning method was applied and 
the parameters were: the population size NPop = 240, 
the zooming fraction 97.0=β , the zooming factor b 
= 1.15, and variable interval update frequency 

4ng =  (i.e. interval update every 4 generations). 
 
All algorithms used in this paper have the 
mechanism to generate new individuals outside the 
current search space, which helps to reduce the risk 
of missing the global optimum when it is located far 
away from the centre of the search space.  
 
Table 3 Average minimum values of the 100 runs for 

each function when each algorithm is applied 
 

 SGA SZGA AZGA 
f1 1.66E-04 7.88E-07 6.74E-07 
f2 6.18E-06 2.80E-03 2.59E-08 
f3 9.15E-24 1.44E-18 1.71E-24 
f4 5.98E-04 2.29E-02 2.01E-06 
f5 3.61E-14 1.13E-03 1.42E-15 
f6 1.18E-09 8.05E-08 2.95E-10 
f7 1.83E-15 2.18E-12 1.06E-16 
f8 1.12E-11 1.06E-08 6.03E-13 

 
 
3.3 Test case 1 
 
In this test case, the three algorithms, namely the 
SGA, SZGA, and AZGA were used to optimise the 8 
test functions. Like most tests used in the literature, 
the initial search space in this case was set in a way 
that the true minimum of the test function was quite 
close to the centre of the search space. For each 
algorithm, 100 runs were performed over each test 



function. The average minimum values of the 100 
runs for each algorithm are summarised in Table 3. 
Note that in this test case, the global minimums for 
the test functions are all 0s, and each algorithm was 
performed for 200 generations in each run.  
 
 
3.4 Computation complexity  
 
The computation complexity in GA based 
optimisation is dominated by the objective function 
evaluation in the evolution process. The computation 
complexity of the three algorithms therefore can be 
roughly estimated using the total number of function 
evaluations in each search, i.e. the production of 
population size NPop and generations NGen. For the 
three algorithms, the average time for each of the 
100 runs over function f1 was measured. The 
computation costs of the three algorithms are listed 
in Table 4. The algorithms were programmed in C++ 
and the objective functions were written in Matlab, 
and the run times were measured on a desktop PC 
(P4 2.8GHz, 512M RAM) with Microsoft Windows 
XP operating system.  
 

Table 4 Comparison of computation complexity  
 

 NPop NGen Number of 
evaluations 

Average run 
time over f1 
(second) 

SGA 360 400 144000 5.13 
SZGA 120 1000 120000 4.80 
AZGA 240 400 96000 5.04 

 
For SZGA, an update operation of the boundaries for 
each variable and generation of a new random 
population were performed at each 250 generations. 
In addition, more generation means more selection 
operations. For AZGA, an update operation of the 
boundaries for each variable was performed at each 
4 generations. This mainly included operations like 
sorting the whole population in order to identify the 
8 (1 plus 3% of 240) maximal and minimal values 
and the search for the minimum distribution interval.  

 
 

3.5 Test case 2 
 
In test case 1, the initial search spaces were set in 
such that the global minimum was close to the centre 
of the initial intervals. This search space setting 
method was adopted in most literatures. It can make 
GAs easily converge to the true minimum, as the 
initial population is uniformly generated within the 
initial search space and the mean values of the whole 
population are quite close to the centre of the search 
space. Therefore for the first test case, the precision 
of algorithms over 100 tests is mainly concerned. 
 
In practice, the optimal solution is not necessarily 
close to centre of the initial search space, the ability 
of algorithms in adapting to different initial search 

space settings other than that used in case 1 need to 
be assessed. Two initial search space settings 
(referred to as settings I, and II respectively) were 
used. In initial search space setting I, the global 
minimum is half way from the centre of the initial 
search space. In initial search space setting II, the 
global minimum is quite close to the edge of the 
initial search space. For this two settings, the 
algorithms can not always locate the right region of 
the global optimum, therefore the success-rate of the 
algorithms are mainly concerned in this test case. 
Table 5 compares success-rate of the three 
algorithms over functions f1 and f2 with the two 
different initial search space settings. The global 
minimum for function f1 is at xi = 1, i=1,…,100, and 
for f2 the global minimum is at xi = -1, i = 1,…,100.  
 

Table 5  Success rates (%) of the three algorithms 
 

Function f1                      Function f2 
Algorithm I: 

[-14, 6]n
II: 

[-18, 2]n 
I: 

[-6, 14]n 
II: 

[-2, 18]n 
SGA 99 99 100 100 

SZGA 96 98 94 88 
AZGA 99 99 100 99 

 
 
3.6 Dynamics of the algorithms 
 
To investigate dynamics of the whole population in 
the evolution process, statistic information such as 
the mean values of variables, boundaries and centres 
of variable intervals, and the best variable values in 
the whole population, are plotted. Fig.1~ Fig. 3 are 
typical curves taken from one of the 100 runs when 
the three algorithms were applied to test function f1 
with initial search space setting II. The average in 
the figures is the mean value of variable x1 over the 
whole population in each generation. Boundaries in 
the figures refer to the upper and lower boundaries 
for variable x1, and the centre refers to the interval 
centre of variable x1 in each generation. The global 
minimum value for variable x1 in function f1 is also 
displayed in the figures.  
 
For SZGA, the centre of variable intervals was 
always close to the best value, and the interval 
reduced at a constant rate in the whole evolution 
process (Fig. 2). In SZGA, update of variable 
boundaries was based on the best value after Nsub 
(say, Nsub=100) generations. However as shown in 
Fig.1 ~ Fig. 3 that the curve of the best values for a 
variable was rather erratic, this means that the 
variable boundaries along the whole evolution 
process formed a zigzag route which make lead the 
SZGA miss the true optimum.  
 
For AZGA, the variable boundaries were updated 
dynamically based on the statistic distribution of 
values for the specific variable over the whole 
population (Fig. 3). Unlike SZGA, the variable 
interval in AZGA was not constantly decreasing, and 



an increase in the variable interval implied an 
increase of the distribution density of values for the 
specific variable in the whole population, and this 
often happened when the GA searching jumped out 
of a local minimum. 

 

 
Finally, the convergence speed of the three 
algorithms over function f1 is graphically illustrated 
in Fig. 4, for which the y-axis represents the distance 
of the solution to the true minimum, and the x axis is 
the number of objective evaluations (× 1000). 
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Fig. 4. Convergence speed of the four algorithms 

over f1 with   100]10,10[−∈x
 
 

4. CONCLUSION 
 
A new search-space-update technique has been 
proposed to improve the performance of GAs for 
continuous optimisation problems. Other than setting 
a constant reduction rate ‘a priori’, the proposed 
technique dynamically adjusts the search space based 
on the statistic information of the population. Test 
results have shown that the proposed technique 
could effectively speed up the convergence thus 
improve the solution accuracy, and can also adapt to 
different initial search space settings effectively. 

 
Fig. 1. Convergence curve for SGA when applied to 

f1 with variable intervals [-18,2] 
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