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Abstract: This paper presents a stochastic subspace identification algorithm to compute
stable, minimum phase models from a stationary time-series data. The algorithm is based
on spectral factorization techniques and a stochastic subspace identification method via
a block LQ decomposition (Tanaka and Katayama, 2003c). Two Riccati equations are
solved to ensure both stability and minimum phase property of resulting Markov models.
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1. INTRODUCTION

Stochastic subspace identification algorithms compute
stochastic state space systems from a finite string of a
time-series data (Van Overschee and De Moor (1993;
1996)), where the numerical operations include not
only the singular value decomposition (SVD) and QR
decomposition, but also computation of a stabilizing
solution of an associated Riccati equation.

Lindquist and Picci pointed out that stochastic sub-
space identification algorithms (Aoki, 1990; Van Over-
schee and De Moor, 1993) may fail in solving the Ric-
cati equation, since the failure is related to a non-trivial
problem of positivity in the stochastic realization the-
ory, where an essential part of the problem is equiv-
alent to the covariance extension problem (Lindquist
and Picci, 1996a). Some stochastic subspace identi-
fication methods therefore have been developed tak-
ing positive realness into account (Van Overschee
and De Moor, 1996; Mari et al., 2000; Goethals et
al., 2003).

In order to review the use of Riccati equation in the
context of the stochastic realization theory, we have
re-visited stochastic realization theory (Tanaka and

Katayama, 2003a), and obtained a finite-interval re-
alization method based on a block LQ decomposition
(Tanaka and Katayama, 2003b). Furthermore, we have
proved that an approximate innovation representation
due to (Maciejowski, 1996) is of minimum phase un-
der the idealized assumption that a finite complete co-
variance data is given (Tanaka and Katayama, 2004b).
It should be noted that this fact implies that a mini-
mum phase model is obtained without solving Riccati
equations in the idealized case.

Adapting the finite-interval realization method via
a block LQ decomposition (Tanaka and Katayama,
2003b) to a finite time-series data, we have presented
a stochastic subspace identification algorithm (Tanaka
and Katayama, 2003c). The algorithm, however, does
not guarantee that the identified forward innovation
representation is stable and of minimum phase. Based
on a spectral factorization technique (SFT), we have
developed a prototype algorithm to obtain a minimum
phase model (Tanaka and Katayama, 2004a).

In this paper, using Riccati equations for Kalman
filters, we give an explicit algorithm to obtain a stable,



minimum phase model. A numerical simulation result
is also shown.

2. PROBLEM SETTING

2.1 Problem statement

Consider a second-order stationary process {y t, t =
0, ±1, ±2, . . .}, where yt is a p-dimensional non-
deterministic process with mean zero and covariance
matrices

Λk = E
{
yt+kyT

t

}
, k = 0,±1,±2, . . . (1)

where a set of covariance matrices {Λk | k = 0, ±1,
. . .} is a positive real sequence:

∑
i,j uT

i Λi−juj >
0, ui �≡ 0. We assume that there exists a finite dimen-
sional realization for yt, so that the covariance matrix
has a decomposition Λk = HF k−1Γ, k = 1, 2, . . .,
where (F , Γ , H) is a minimal realization with F ∈
R

n×n stable. The spectral density of the stationary
time series yt is given by Υ (z) =

∑∞
j=−∞ Λjz

−j ,
and it has a canonical spectral factorization,

Υ (z) = Ŵ (z)ŴT (z−1),

where Ŵ (z) is stable and of minimum phase.

Given a finite time series data {y0, y1, . . ., yν+2τ−2}
(τ > n), our problem is to estimate a forward innova-
tion representation of yt or estimate Ŵ (z), where the
model must be stable and of minimum phase.

2.2 Innovation representation

Define a vector space as

Y :=
{∑

aT
k ytk

| ak ∈ R
p, k = 0, ±1, ±2, . . .

}
,

which is a linear space spanned by all finite linear
combinations of row vector of yt. Define a bilinear
form (inner product) as

〈aT yi, b
T yj〉 := aT E {yiy

T
j }b = aT Λi−jb. (2)

By completing the vector space Y with the norm
induced by the inner product (2), we get a Hilbert
space (Lindquist and Picci (1996a; 1996b)), which
is also written as Y . For U ⊆ Y and z ∈ Y ,
Ê (z | U) expresses an orthogonal projection of z onto
U . The notation Ê(z | U) is also used for a vector
z =

[
z1 z2 · · ·

]T , the symbol will then just denote

the vector with components Ê(zj | U).

Define the past and future matrices, Y −
t and Y +

t ,
respectively as

Y −
t =

⎡
⎢⎢⎢⎣

yt−1

yt−2

yt−3

...

⎤
⎥⎥⎥⎦ , Y +

t =

⎡
⎢⎢⎢⎣

yt

yt+1

yt+2

...

⎤
⎥⎥⎥⎦ .

We also define matrices Φ := E{(Y −
t )(Y −

t )T }, Ψ :=
E{(Y +

t )(Y +
t )T } and H := E{(Y +

t )(Y −
t )T }. The

block Hankel matrix H has a decomposition H = OC
such that CΦ−1CT = OT Ψ−1O (Desai et al., 1985).

The matrices O ∈ R
∞×n and C ∈ R

∞×n are ex-
tended observability and reachability matrices, respec-
tively, which are described as

O =
[
CT (CA)T (CA2)T · · · ]T

,

C =
[
G AG A2G A3G · · · ] ,

using stochastically balanced matrices A ∈ R
n×n,

G ∈ R
n×p and C ∈ R

p×n (Desai et al., 1985), where
Λk = CAk−1G holds.

Consider the following Riccati equation (Faurre, 1976)

P = APAT + (G − APCT )

× (Λ0 − CPCT )−1(G − APCT )T . (3)

Using the stabilizing solution of (3), define

K̂ = (G − APCT )(Λ0 − CPCT )−1, (4)

R̂ = Λ0 − CPCT . (5)

Defining x̂t = CΦ−1Y −
t , we have Ê (Y +

t |Y −
t ) =

Ox̂t, where Ê (Y +
t |Y −

t ) := Ê (Y +
t | span(Y −

t )), and
span(Y −

t ) is a subspace of Y spanned by row vectors
of Y −

t .

Proposition 1. (Desai et al., 1985) The forward inno-
vation representation of yt is given by

x̂t+1 = Ax̂t + K̂v̂t, (6a)

yt = Cx̂t + v̂t, (6b)

where v̂t is stationary Gaussian defined as v̂t := yt −
Cx̂t, and its variance R̂ = E{v̂tv̂

T
t }.

From (6), we have a whitening filter of yt,

x̂t+1 = (A − K̂C)x̂t + K̂yt, (7)

v̂t = −Cx̂t + yt. (8)

It should be noted that v̂t is obtained from yt via a
stable whitening filter, since A − K̂C is stable.

3. STOCHASTIC SUBSPACE IDENTIFICATION
METHOD

We review a subspace identification method (Tanaka
and Katayama (2003c; 2004a)).

3.1 Assumptions

Define a vector space spanned by all finite linear
combinations of vectors η ∈ R

1×ν as Yν . For α
and β ∈ Yν , define an inner product as 〈α, β〉 I

ν
:=

1
ν αβT . The vector space equipped with the norm
induced by the inner product 〈·, ·〉 I

ν
is an inner product

space, which is also written as Yν . We extend Yν to
Y•×ν so that matrices are included as its elements.



Define a matrix

ỹt :=
[
yt yt+1 · · · yt+ν−1

] ∈ Yp×ν

for t = 0, 1, . . ., 2τ − 1, and define matrices as

Ỹ −
t =

⎡
⎢⎢⎢⎢⎢⎣

ỹt−1

ỹt−2

...
ỹ1

ỹ0

⎤
⎥⎥⎥⎥⎥⎦ , Ỹ +

s =

⎡
⎢⎢⎢⎢⎢⎣

ỹs

ỹs+1

...
ỹ2τ−2

ỹ2τ−1

⎤
⎥⎥⎥⎥⎥⎦ (9)

for t = 1, . . ., 2τ , and for s = 0, . . ., 2τ − 1. Define
also incomplete covariance matrices as

Φ̃τ := 〈Ỹ −
τ , Ỹ −

τ 〉 I
ν
, Ψ̃−τ := 〈Ỹ +

τ , Ỹ +
τ 〉 I

ν

and also define H̃τ := 〈Ỹ +
τ , Ỹ −

τ 〉 I
ν

. We assume

〈Ỹ +
0 , Ỹ +

0 〉 I
ν

> 0 and rank H̃τ = ñ < τ .

3.2 Identification algorithm

Compute the standard LQ decomposition
1√
ν

Ỹ +
0 = LQT , (10)

where Ỹ +
0 is defined in (9). Partition L as

L =

⎡
⎣ L0,0 0

...
. . .

L2τ−1,0 · · · L2τ−1,2τ−1

⎤
⎦ =

[
Lpp 0
Lfp Lff

]
,

where Li,j ∈ R
p×p and Lpp, Lfp, Lff ∈ R

pτ×pτ .
Define a matrix as

DL := block-diag(L0,0, . . . , L2τ−1,2τ−1),

where DL is non-singular from assumptions.

Define matrices as

Ĺ+
0 := LD−1

L , (11)

Ŕ+
0 := DLDT

L . (12)

The following equations are then obtained

Ψ̃−τ = LfpL
T
fp + LffLT

ff , (13)

Ŕ+
0 = block-diag(Ŕ0, . . . , Ŕ2τ−1), (14)

Ĺ+
0 =

⎡
⎣ Ĺ0,0 0

...
. . .

Ĺ2τ−1,0 · · · Ĺ2τ−1,2τ−1

⎤
⎦, (15)

where Ŕt ∈ R
p×p, Ĺi,j = Li,jL

−1
j,j and Ĺi,i = Ip.

We summarize a stochastic subspace identification
algorithm (Tanaka and Katayama, 2004a).

A stochastic subspace identification algorithm
Step 1: Compute the standard LQ decomposition

(10) and define Ĺ+
0 , Ŕ+

0 and Ψ̃−τ as (11), (12) and
(13), respectively.

Step 2: Calculate the SVD

(Ψ̃−τ )−
1
2 Lfp = Ũτ Σ̃τ Ṽ T

J , Σ̃τ ∈ R
ñ×ñ, (16)

where ŨT
τ Ũτ = I , Ṽ T

J ṼJ = I and rank Σ̃τ = ñ.
Based on the SVD (16), define Õτ as

Õτ =
(
Ψ̃−τ

) 1
2

Ũτ Σ̃
1
2
τ . (17)

Step 3: Compute C̃ and Á by

C̃ = Õτ (1 : p, :),

Á = Õ†
τ−1Õτ (p + 1 : pτ, :),

where Õτ−1 := Õτ (1 : p(τ − 1), :), and (·)†
denotes the Moore-Penrose pseudo-inverse.

Step 4: Define Ŕτ from (14), and compute Ḱτ from

Ḱτ = Õ†
τ−1

[
ĹT

τ+1,τ ĹT
τ+2,τ · · · ĹT

2τ−1,τ

]T
,

where Ĺτ+1,τ , Ĺτ+2,τ , . . ., Ĺ2τ−1,τ are found in the
matrix Ĺ+

0 in (15).

Define transfer functions

Ύτ (z) := Ẃτ (z)ẂT
τ (z−1), (18)

Ẃτ (z) := (C̃(zI − Á)−1Ḱτ + I)Ŕ
1
2
τ . (19)

It can be shown that the transfer function Ύτ (z) is
positive real, and is a good approximation to the
true spectral density Υ (z) for large ν and τ (Tanaka
and Katayama (2003c; 2004a)). It is however not
guaranteed that Ẃτ (z) is stable and of minimum
phase.

4. SPECTRAL FACTORIZATION TECHNIQUE

In this section, we summarize an SFT based on Riccati
equations for Kalman filters.

Consider the following linear stochastic system

xt+1 = Axt + wt, (20a)

yt = Cxt + vt, (20b)

where A ∈ R
n×n, and variables wt and vt are

stationary Gaussian with zero mean and variance

E

{[
ws

vs

] [
wt

vt

]T
}

=
[

Q S
ST R

]
δst

with R > 0. We assume that covariance matrices of
the system (20) is also given by E {yt+ky

T
t } = Λk,

and this assumption implies that Λk = CAk−1G
holds, where G = E {xt+1y

T
t }, and that the spec-

tral density function of yt is given by Υ (z) =∑∞
j=−∞ Λjz

−j , which is positive real.

Assume that we can observe yt, and consider the
problem of estimating xt which minimize E{‖xt −
x̂t‖2}, where x̂t is an estimate of xt based on {yt−1,
yt−2, yt−3, . . .}. It is well known that such a ”x̂t”
is given by the Kalman filter. Associated with this
problem, consider the following Riccati equation for
the Kalman filter

Ξ = AΞAT − (AΞCT + S)

× (CΞCT + R)−1(AΞCT + S)T + Q. (21)

Assume here that Q, S and R satisfies Q = SR−1ST .
This implies that Ξ = 0 is a solution of (21), and that
there exists K such that[

Q S
ST R

]
=

[
K
I

]
R

[
K
I

]T

.



We also assume that there are no eigenvalues λi of
A − KC, such that λiλj = 1 (i �= j) or λi = 0.

In order to solve the Riccati equation (21), define M
and N as

M :=
[

(A − SR−1C)T 0
SR−1ST − Q In

]
,

N :=
[

In CT R−1C
0 A − SR−1C

]
.

Proposition 2. Consider an eigenvalue problem

λNx = Mx. (22)

Assume that (C, A) is observable, and that (A, Q) is
stabilizable. If λ satisfies (22), then there exists z such
that

λMz = Nz (23)
holds. This implies that 1/λ is also an eigenvalue of
(22).

Proposition 3. (Arnold and Laub, 1984) Consider a
generalized eigenvalue problem:

M

[
W1

W2

]
= N

[
W1

W2

]
Λ, (24)

where Λ ∈ R
n×n has a Jordan form. Then, the

solution of Riccati equation (21) is given by W2W
−1
1 .

From Proposition 2 and assumptions, there exists Λ
whose every diagonal element satisfies |λi| < 1, and
we define it as Λ̂. Using Λ̂ in (24), we define a solution
Ξ̂ , from Proposition 3.

Proposition 4. Define matrices K̂ and R̂ as

K̂ = (AΞ̂CT + S)(CΞ̂CT + R)−1, (25)

R̂ = CΞ̂CT + R. (26)

Then, a set of every eigenvalue of A − K̂C coincides
with the set of diagonal element of Λ̂.

Proposition 4 implies that A − K̂C is stable, and the
matrix Ξ̂ is a stabilizing solution of (21).

Proposition 5. Suppose that Ξ̂ is a stabilizing solu-
tion, and define K̂ as (25). Then, A − K̂C is stable.

Proposition 6. The transfer function Υ (z) satisfies

Υ (z) = W (z)WT (z−1) = Ŵ (z)ŴT (z−1), (27)

where W (z) and Ŵ (z) are given by

W (z) :=
(
C(zI − A)−1K + I

)
R

1
2 , (28)

Ŵ (z) :=
(
C(zI − A)−1K̂ + I

)
R̂

1
2 , (29)

where K̂ and R̂ are given by (25) and (26), respec-
tively.

Proposition 6 implies that a minimum phase factor
Ŵ (z) is obtained from W (z) satisfying (27) based on
the stabilizing solution of the Riccati equation (21).

5. STABLE, MINIMUM PHASE MODEL

We obtain a stable, minimum phase model from
Ẃτ (z) in (19) based on the SFT.

5.1 Enforcing stability

Assume that Á is unstable, (ÁT , ḰT
τ ) is detectable,

and that no eigenvalues of Á are on the unit circle or
on the origin in the complex plane. We derive a stable
spectral factor, using the inverse of Ύτ (z),

Ύ−1
τ (z) = Ẃ−T

τ (z−1)Ẃ−1
τ (z),

where Ẃ−T
τ (z−1) is given by

Ẃ−T
τ (z−1) =

(
−ḰT

τ (zI − F́T )−1C̃T + I
)

Ŕ
−T

2
τ ,

(30)
F́ := Á − Ḱτ C̃.

Since zeros of Ẃ−T
τ (z−1) are eigenvalues of ÁT ,

we can find a stable factor, applying Proposition 6 to
Ẃ−T

τ (z−1) as shown below.

Define matrices as[
Q̃ S̃

S̃T R̃

]
:=

[
C̃T

I

]
Ŕ−1

τ

[
C̃T

I

]T

. (31)

Then, the Riccati equation associated with (30) is
obtained by

Ξ̃ = F́T Ξ̃F́ − (−F́T Ξ̃Ḱτ + S̃)

× (ḰT
τ Ξ̃Ḱτ + R̃)−1(−F́T Ξ̃Ḱτ + S̃)T + Q̃. (32)

Lemma 1. Define matrices C̆ and Ă as

C̆ := (ḰT
τ Ξ̃Ḱτ + R̃)−1(−F́T Ξ̃Ḱτ + S̃)T , (33)

Ă := F́ + Ḱτ C̆, (34)

using a stabilizing solution of Riccati equation (32).
Then, Ă is stable.

Theorem 1. A spectral factorization of Ύτ (z) is given
by

Ύτ (z) = ´̃Wτ (z) ´̃WT
τ (z−1),

where ´̃Wτ (z) is stable and given by

´̃Wτ (z) := (C̆(zI − Ă)−1Ḱτ + I) ´̃R
1
2
τ , (35)

´̃Rτ := ḰT
τ Ξ̃Ḱτ + R̃. (36)

If Á is stable, a stabilizing solution of (32) is given by
Ξ̃ = 0 from C̃ = Ŕτ S̃T , and hence we have

Ă := Á, C̆ := C̃, ´̃Rτ := Ŕτ . (37)

5.2 Enforcing minimum phase

Assume that Ă − Ḱτ C̆ is unstable, and that no eigen-
value of Ă−Ḱτ C̆ is on the unit circle or on the origin.



It should be noted that (Ă, C̆) is detectable, since Ă is
stable. Define matrices as[

´̃Q ´̃S
´̃ST ´̃Rτ

]
:=

[
Ḱτ

I

]
´̃Rτ

[
Ḱτ

I

]T

. (38)

Consider the following Riccati equation

Ξ̆ = ĂΞ̆ĂT − (ĂΞ̆C̆T + ´̃S)

× (C̆Ξ̆C̆T + ´̃Rτ )−1(ĂΞ̆C̆T + ´̃S)T + ´̃Q. (39)

Lemma 2. Define K̆τ as

K̆τ := (ĂΞ̆C̆T + ´̃S)(C̆Ξ̆C̆T + ´̃Rτ )−1, (40)

in terms of a stabilizing solution of Riccati equation
(39). Then, Ă − K̆τ C̆ is stable.

Theorem 2. A spectral factorization of Ύτ (z) is given
by

Ύτ (z) = W̆τ (z)W̆T
τ (z−1),

where W̆τ (z) is defined as

W̆τ (z) := (C̆(zI − Ă)−1K̆τ + I)R̆
1
2
τ , (41)

R̆τ := C̆Ξ̆C̆T + ´̃Rτ . (42)

The transfer function W̆τ (z) is stable and of minimum
phase.

If Ă − Ḱτ C̆ is stable, a stabilizing solution of (39) is

given by ´̃Ξ = 0 from Ḱτ = ´̃S ´̃R−1
τ , and we therefore

have
K̆τ := Ḱτ , R̆τ := ´̃Rτ . (43)

5.3 Stochastic subspace identification algorithm

We summarize a stochastic subspace identification
algorithm which provides a stable, minimum phase
model based on Theorems 1 and 2.

A new subspace identification algorithm
Steps 1-4: Compute Steps 1-4 in the stochastic sub-

space identification algorithm in Section 3.
Step 5: If Á is unstable, find a stabilizing solution of

Riccati equation (32) to define C̆ , Ă and ´̃Rτ as (33),
(34) and (36), respectively. If Á is stable, define C̆,

Ă and ´̃Rτ as (37).
Step 6: If Ă − Ḱτ C̆ is unstable, find a stabilizing

solution of Riccati equation (39) to define K̆τ and
R̆τ as (40) and (42), respectively. If Ă − Ḱτ C̆ is
stable, define K̆τ and R̆τ as (43).

Steps 5 and 6 give a stable, minimum phase model
W̆τ (z), which can be used as an approximation to
Ŵ (z), by solving two Riccati equations (32) and
(39) 1 . It should be noted that Steps 5 and 6 can
be calculated by means of a Matlab function whose

1 We can derive an alternative method for Step 6 based on the
Riccati equation (3).

inputs are (F́ , C̃T , −Ḱτ , Ŕτ ) and (Ă, Ḱτ , C̆, ´̃Rτ ),
respectively

The computational time of the proposed algorithm
compares favorably with former stochastic subspace
identification algorithms (Mari et al., 2000; Goethals
et al., 2003); in fact, the computation tasks needed
to guarantee stability and minimum phase property in
Steps 5 and 6 are only solving Riccati equations, while
the former algorithms (Mari et al., 2000; Goethals
et al., 2003) use numerical optimization methods in
order to take positive realness into account.

6. NUMERICAL SIMULATION

We present a simulation result to explain feasibility
of the subspace identification method proposed in this
paper. Simulated data is generated by a system yt =
Ŵ (z)et, where et is a white noise with zero mean and
unit variance, and Ŵ (z) is given by

Ŵ (z) =WN (z)/WD(z),
WN (z) =1.0 × 10−3 + 0.0090z−1 + 0.0081z−2

+ 0.0073z−3 + 0.0066z−4 + 0.0059z−5,

WD(z) =1 − 2.6908z−1 + 4.3502z−2 − 4.2269z−3

+ 2.5542z−4 − 0.8714z−5.

We estimated the system for 30 simulation runs car-
ried out with different noise realizations where τ =
12, ν = 3, 000 and ñ = 7. We confirmed that W̆τ (z)
computed through Steps 1-6 in Section 5 is stable and
of minimum phase in every simulation, while we ob-
tain only 6 stable, minimum phase models for Ẃτ (z)
based on Steps 1-4 in Section 3.

Figure 1 shows Bode plots of the systems W̆τ (z)
estimated by the present method for 30 simulations.
Bode plots of W̆τ (z) are clustered around Ŵ (z).

Figure 2 shows plots of poles and zeros of Ẃτ (z) and
W̆τ (z) in a sample of 30 simulations. We observe that

Step 6’: Solve Lyapunov equation

X̆ = ĂX̆ĂT + ´̃Q.

Define Λ̆0 and Ğ as

Λ̆0 = C̆X̆C̆T + ´̃Rτ , Ğ = ĂX̆C̆T + ´̃S.

Find a stabilizing solution P̆ of the following Riccati equation:

P̆ = ĂP̆ ĂT + (Ğ − ĂP̆ C̆T )

× (Λ̆0 − C̆P̆ C̆T )−1(Ğ − ĂP̆ C̆T )T (44)

Define K̆τ and R̆τ as

K̆τ = (Ğ − ĂP̆ C̆T )(Λ̆0 − C̆P̆ C̆T )−1, (45)

R̆τ = Λ̆0 − C̆P̆ C̆T . (46)

Riccati equation (44) is always solvable from (38). Moreover,K̆τ

and R̆τ in (45) and (46) coincide with the ones in (40) and (42),
respectively, since stabilizing solutions for (39) and (44),P̆ and Ξ̆ ,
satisfy P̆ = X̆ − Ξ̆ .
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Fig. 1. Bode plots of W (z) and W̆τ (z) where the
dotted line expresses the plots of Ẃj for 30
simulation runs.

only unstable poles and zeros of Ẃτ (z) are reflected
into the unit circle.
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Fig. 2. Poles and zeros of Ẃτ (z) and W̆τ (z), where
”×” and ”+” in (a) express poles of Ẃτ (z)
and W̆τ (z), respectively, and where ”©” and
”◦” in (b) express zeros of Ẃτ (z) and W̆τ (z),
respectively.

7. CONCLUSIONS

We developed a stochastic subspace identification
method which guarantees stability and minimum
phase property. Two Riccati equations are solved to
find a stable, minimum phase model W̆τ (z). A model
Ẃτ (z) is obtained without solving Riccati equations,
though it is not always stable and of minimum phase.
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