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1. INTRODUCTION

One of the control problems is tracking control
systems (i.e. servo systems), where output signal
has to track reference signal or desired output
without steady-state error. Therefore a great deal
of interest has been directed to the design problem
of servomechanisms for linear multivariable sys-
tems (Davison, 1972). Furthermore, design prob-
lems of robust servomechanisms have been exten-
sively studied (Schmitendorf and B.R., 1986).

By the way, it is well known that when the future
information about reference signals is available,
the transient performance can be improved. This
kind of control problem, in which information on
future is utilized, is called the preview control
problem (Tomizuka, 1975) and a large number of
design method of preview control systems have
been proposed (Katayama et al., 1985; Fujisaki

and T., 1997). Also, some robust preview con-
trollers have been derived (Takaba, 1998).

On the other hand in the case that the full state
of systems cannot be measured, some observer-
based quadratic stabilizing controllers (Petersen,
1985) and robust output feedback control sys-
tems (Benton and D., 1999) have been presented.
However, so far the design problem of the robust
preview control system based on observer-based
controllers for uncertain discrete-time systems has
little been discussed as far as we know.

From this viewpoint, we present a design method
of an observer-based robust preview controller
for uncertain discrete-time systems. In order to
derive a simple design method of the observer-
based robust controller, we adopt a similar way to
the design approach derived by Oya et. al. 2004,
i.e. the proposed design method is separated into



two parts. Firstly, an observer gain is designed and
next, a control gain matrix is determined so that
an upper bound on a given performance index is
minimized. In this paper, we show that suÆcient
conditions for the existence of the observer-based
robust preview controller are given in terms of
linear matrix inequalities (LMIs).

2. PROBLEM FORMULATION

We consider a discrete-time system described by

x(t+ 1) = A(�)x(t) +B(�)u(t)
y(t) = C(�)x(t)

(1)

where x(t) 2 <n; u(t) 2 <m and y(t) 2 <l are
the vectors of the state, the control input and the
measured output, respectively and the parameter
� 2 <N (� = (�1; � � � ; �N )

T ) is a constant vector
of uncertainties. Also the matrices A(�); B(�) and
C(�) in eq.(1) depend aÆnely on the parameters
�k for k = 1; � � � ; N . That is

M(�)
4
=

�
A(�) B(�)
C(�) 0

�

=

�
A B

C 0

�
+

NX
k=1

�k

�
Ak Bk

Ck 0

�
(2)

where the unknown parameter �k for k = 1; � � � ; N
ranges between known extremal values ��k � 0
and �+k � 0 (i.e. �k 2

�
��k ; �

+
k

�
). This assumption

means that the parameter � 2 <N belongs to the
following parameter box (Gahinet et al., 1996).

�
4
=
�
� 2 <N

���k 2 ���k ; �+k �
for k = 1; � � � ; Ng (3)

Also the matrices A;B and C in eq.(2) denote the
known nominal values and the matrices Ak; Bk

and Ck for i = 1; � � � ; N represent the structure
of the uncertainties. Additionally we assume that
for 8� 2 � the pairs (A(�); B(�)) and (C(�); A(�))
are controllable and observable, respectively and
for 8� 2 �, the following relation holds.

rank

�
A(�)� In B(�)
C(�) 0

�
= n+ l (4)

Let r(t) 2 <l be the reference signal or the desired
output which is assumed to to be previewable.
That is, we assume that the h future values of
the reference signal r(t) (i.e. r(t+1); � � � ; r(t+h))
are available at each time t as well as the present
and the past values of the reference signal and the
reference signal r(t) satis�es following relation 1 .

r(t + j) = r(t+ h) for j � h+ 1 (5)

1 The relation eq.(5) is a working assumption introduced
to facilitate the mathematical development of the pre-
view tracking controller, so that it is not required that
the assumption is satis�ed by the actual reference signal
(Katayama et al., 1985; Takaba, 1998).

Now in order to estimate the state x(t) for the un-
certain system eq.(1), we introduce the following
full state observer (Hagino and H., 1991).

xe(t+ 1) = Axe(t) +Bu(t)

+Hr(y(t)� Cxe(t)) (6)

where Hr 2 <n�l is the observer gain matrix.
Furthermore we de�ne the estimation error vector

ze(t)
4
=x(t) � xe(t), then we see from eq.(1) and

(6) that the estimation error satis�es

ze(t+ 1) = (A(�) �HrC(�))ze(t)

+ (Ae(�)�HrCe(�))xe(t)

+Be(�)u(t) (7)

where Ae(�); Be(�) and Ce(�) are the matrices
given by Ae(�) = A(�) � A;Be(�) = B(�) � B

and Ce(�) = C(�) � C, respectively.

Let x(t)
4
=x(t+1)�x(t) and u(t)

4
=u(t+1)�u(t)

be the di�erence state vector and the di�erence
control input vector respectively. Additionally, we

introduce the tracking error vector e(t)
4
= r(t) �

y(t) and di�erence vectors xe(t)
4
=xe(t + 1) �

xe(t); r(t)
4
= r(t+1)� r(t) and ze(t)

4
= ze(t+1)�

ze(t). Since � 2 <
N is assumed to be constant, it

follows from eqs.(1), (6) and (7) that

e(t+ 1) = e(t)� C(�)xe(t)� C(�)ze(t)

+ r(t) (8)

Also since h future values of the reference signal
r(t + 1); � � � ; r(t + h) are available at time t, we
de�ne the di�erence vector of the reference signal
described by

rh(t) =
�
rT (t) rT (t+ 1) � � � rT (t+ h)

�T
(9)

From eq.(9), the di�erence vector rh(t) satis�es

rh(t) = Arhrh(t) (10)

Arh =

0
BBBB@

0 Il O

0 0
. . . 0
. . . Il

O 0

1
CCCCA (11)

Furthermore from the de�nition of the di�erence
vector rh(t), r(t) can be written as

r(t) = �rrh(t) (12)

�r =
�
Il 0 � � � 0

�
(13)

Now we introduce an augmented vector �(t) 2

<n+Nh given by �(t)
4
=
�
eT (t) xTe (t) r

T
h (t) z

T
e (t)

�T
where Nh

4
=n+ l(h+ 2). Then we obtain

�(t+ 1) = F(�)�(t) + G(�)u(t) (14)

In eq.(14), F(�) and G(�) are the matrices de-
scribed as



ur(t) = �Kxexe(t)�Ke

t�1X
j=0

e(j)�

hX
j=0

Krh(j)r(t + j) (19)

	�z (�)
4
=��z (�) +

0
@ C(�)

HrC(�)
0

1
A
T

W�z

0
@ C(�)

HrC(�)
0

1
A+QH < 0 for 8� 2 � (26)

	�z (�) = ��z (�) +

0
@ C(�)
V�zC(�)

0

1
A
T

U�1�z

0
@ C(�)
V�zC(�)

0

1
A+QH < 0 for 8� 2 � (27)

F(�) =

�
F11(�) F12(�)
F21(�) F22(�)

�

F11(�) =

0
@ Il �C(�) �r

0 A+HrCe(�) 0
0 0 Arh

1
A

F12(�) =
�
CT (�) CT (�)HT

r 0
�T

F21(�) =
�
0 Ae(�)�HrCe(�) 0

�
F22(�) = A(�) �HrC(�)

(15)

G(�) =
�
GT1 GT2 (�)

�T
G1 =

�
0 BT 0

�T
; G2(�) = Be(�)

(16)

It is well known that the integral action of the
controller is introduced by including the di�erence
control in the performance index (Katayama et
al., 1985). Therefore we de�ne the following per-
formance index.

J =
1X
t=0

�
xTer (t)Qerxer (t) + zTe (t)Qzze(t)

+ uT (t)Rru(t)
	

(17)

where the weighting matrices Qer 2 <Nh�Nh ,
Qz 2 <

n�n and Rr 2 <
m�m are positive de�nite

which can be adjusted by designers and xer (t) is

the vector given by xer (t)
4
=
�
eT (t) xTe (t) r

T
h (t)

�T
.

Now we consider the control given by

u(t)
4
=�Kerxer (t)

=�Kee(t)�Kxexe(t)�Krhrh(t) (18)

where Ker is the control gain matrix given
by Ker =

�
Ke Kxe Krh

�
. From the de�ni-

tion of di�erence signals and the augmented
vector xer (t), we obtain the control input u(t)
eq.(19). Here, we have used the assumption that

Krh

4
= ( Krh(0) Krh(1) � � � Krh(h) ) and xe(j) =

0; u(j) = 0 and r(j) = 0 for any j < 0.

Substituting eq.(18) into eq.(14) yields

�(t+ 1) = FK(�)�(t) (20)

FK(�) =

�
F11(�) � G1Ker F12(�)
F21(�) � G2(�)Ker F22(�)

�
(21)

Therefore our control objective is to ensure robust
stability and tracking without using excessive in-
cremental variation of the control input. That is to
design the observer gain matrix Hr and the con-
trol gain matrix Ker such that the performance
index eq.(17) is satisfactorily small for 8� 2 �.

3. DESIGN OF THE OBSERVER-BASED
ROBUST PREVIEW CONTROLLER

In this section, on the basis of the design approach
derived in (Oya et al., 2004), we consider to design
the observer-based robust controller such that the
performance index eq.(17) is satisfactorily small
for 8� 2 �. Namely �rstly, we design the observer
gain matrix Hr and next, we derive the condition
for the existence of the control gain matrix Ker

minimizing the upper bound on the performance
index eq.(17).

3.1 Design of the Observer Gain Matrix

From eq.(7), the estimation error satis�es

ze(t+ 1) = (A(�) �HrC(�))ze(t)

+ (Ae(�)�HrCe(�))xe(t)

+Be(�)u(t) (22)

In this paper, we consider to design the observer
gain matrix Hr which stabilizes the following
system obtained by ignoring the u(t) and xe(t)
in eq.(21)

�z(t+ 1) = (A(�) �HrC(�))�z(t) (23)

Now we introduce the quadratic function VH(�z ; t)
4
=�Tz (t)Y�z�z(t) as a Lyapunov function candi-
date where the matrix Y�z 2 <

n�n is the symmet-
ric positive de�nite. Then the �rst order di�erence

�VH(�z ; t)
4
=VH(�z ; t + 1) � VH(�z ; t) along the

trajectory of the system eq.(23) satis�es

�VH (�z ; t) = �Tz (t)��z (�)�z(t) (24)

��z (�) = AH(�)
TY�zAH(�)� Y�z

AH(�) = (A(�)�HrC(�))
(25)

Therefore if there exist the matrices Hr and Y�z
satisfying the condition ��z (�) < 0 for 8� 2
�, then the quadratic stability of the system
eq.(23) is ensured. Namely, the quadratic function
VH(�z ; t) becomes a Lyapunov function for the
system eq.(23). However by introducing a sym-
metric positive de�nite matrix W�z 2 <Nh�Nh

and a design parameter QH 2 <n�n which is a
symmetric positive de�nite matrix, we consider
the condition eq.(26) (see Remark 1).

The condition eq.(26) is also written as eq.(27).

In eq.(27), V�z is a matrix satisfying V�z
4
=Y�zHr



0
BBBBBB@

�Y�z +QH AT (�)Y�z � CT (�)VT�z CT (�) CT (�)VT�z 0

Y�zA(�)� V�zC(�) �Y�z 0 0 0

C(�)

V�zC(�)

0

0

0

0

�U�z

1
CCCCCCA
< 0 for 8� 2 �vex (29)

and T�z and U
�1
�z

are the positive de�nite matrices
expressed as

U�1�z

4
=T �1�z

W�zT
�1
�z

T�z
4
= diag

�
Il; Y�z ; In

� (28)

If there exist the matrices Y�z ;U�z and V�z sat-
isfying the condition eq.(27), then quadratic sta-
bility of the system eq.(23) is ensured. We now
de�ne the set of the 2N vertices of the parameter

box � eq.(3) such as �vex
4
=f! 2 <N j !k 2

f��k ; �
+
k g for k = 1; � � � ; Ng. Furthermore using

Schur complement formula, the design problem
of the observer gain matrix Hr is reduced to the
problem of �nding the matrices Y�z ;U�z and V�z
which satisfy the linear matrix inequalities (LMIs)
eq.(29). Thus, if the solution of the linear matrix
inequalities (LMIs) eq.(29) exists, then using the
solution, the observer gain Hr can be obtained as

Hr = Y�1�z
V�z (30)

3.2 Design of the Control Gain Matrix

In the previous section, the observer gain matrix
Hr has been derived. Hence, we consider to design
the control gain matrix Ker minimizing the upper
bound on the performance index eq.(17)

Using the vector u(t) eq.(18), the performance
index eq.(17) is rewritten as

J =

1X
t=0

�T (t)Q��(t) (31)

where Q� is the positive de�nite matrix expressed
as Q� = diag

�
Qez +KT

er
RerKer ; Qz

�
.

Here we shall give a theorem for quadratic stabil-
ity of the augmented system eq.(20) and the upper
bound on the performance index eq.(31).

Theorem 1. If there exist the control gain ma-
trix Ker and symmetric positive de�nite matrix
X� 2 <(n+Nh)�(n+Nh) satisfying the following
inequality, then quadratic stability of the aug-
mented system eq.(20) is ensured.

��(�)
4
= FT

K(�)X�FK(�)�X� +Q�

� 0 for 8� 2 � (32)

Furthermore the upper bound on the performance
index eq.(31), denoted by J �, is given as

J � �T (0)X��(0)
4
=J � for 8� 2 � (33)

Proof: Now we condider the quadratic func-

tion VK(�; t)
4
= �T (t)X��(t) as a Lyapunov func-

tion candidate.Then the �rst order di�erence

�VK(�; t)
4
=VK(�; t+ 1)�VK(�; t) along the tra-

jectory of the system eq.(20) satis�es

�VK(�; t) = �T (t)��(�)�(t) (34)

Thus, if the matrices Ker and X� satisfying
��(�) < 0 for 8� 2 �, then the quadratic stability
of the augmented system eq.(20) is ensured. If
there exist the control gain matrix Ker and the
symmetric positive de�nite matrix X� which sat-
isfy the condition eq.(32), then the quadratic func-
tion VK(�; t) satis�es the following relation and
the quadratic function VK(�; t) becomes a Lya-
punov function for the augmented system eq.(20).

�VK(�; t) � ��T (t)Q��(t) (35)

Furthermore since the augmented system eq.(20)
is quadratically stable, summing up inequality
eq.(35) over the period t = 0!1, we get

1X
t=0

�T (t)Q��(t) � �T (0)X��(0) (36)

It follows that the result of the theorem is true.
The proof of Theorem 1 is completed.

In eq.(33), the upper bound J � depends on the
initial value �(0). Thus we assume that the initial
value �(0) is zero mean random vector satisfy-
ing E

�
�(0)�T (0)

	
= In+Nh

and E
�
�(0)

	
= 0,

because the control gain matrix cannot be de-
signed by using the vector �(0). Then the upper
bound on the performance index eq.(33) is given
as E

�
J �
	
= Tr

�
X�
	
. Therefore we seek to min-

imize Tr
�
X�
	
subject to the constraint eq.(32).

Namely the problem of designing the control gain
matrix to minimize the upper bound on the per-
formance index eq.(33) is reduced to the following
constrained optimization problem.

Minimize
X�;Ker

[Tr
�
X�
	
] subject to

eq:(32) and X� > 0 (37)

Now we introduce a symmetric positive de�nite

matrix S�
4
= diag(Ser ;Sz) = X�1� and consider

the change of variable Wer

4
=KerSer . Then pre-

and post-multiplying eq.(32) by S� and simple
algebraic manipulation, the condition eq.(32) can
be written as eq.(38). Furthermore by using the
Schur complement formula, the inequality eq.(38)



� S� + S�F
T
K (�)S

�1
� FK(�)S� +

0
@ Ser 0

0 Sz
Wer 0

1
A
T 0
@ Qer 0 0

0 Qz 0
0 0 Rer

1
A
0
@ Ser 0

0 Sz
Wer 0

1
A < 0 for 8� 2 �

(38)

(A(�) �HrC(�))
TXz(A(�) �HrC(�)) �Xz +

0
@ C(�)

HrC(�)
0

1
A
T

Xer

0
@ C(�)

HrC(�)
0

1
A+Qz

< 0 for 8� 2 � (45)

Hr =
�
1:2894 0:8150

�T
(46)

Ker =
�
�0:1315 0:9077 1:0249 �0:1315 �0:2161 �0:2031 �0:1390 �0:0786 �0:0381

�
(47)

is reduced to the following condition where Q� is
the matrix given by Q� = diag

�
Qer ; Qz; Rer

�
.

�(�)

4
=

0
BBBBBB@

�S� S�F
T
K (�)

Ser 0 WT
er

0 Sz 0
FK(�)S� �S� 0 0 0

Ser 0
0 Sz
Wer 0

0
0
0

� (Q�)
�1

1
CCCCCCA

< 0 for 8� 2 � (39)

The condition eq.(39) is linear matrix inequality
(LMI) in Ser ;Sz and Wez because the matrix
FK(�)S� is expressed as

FK(�)S�

=

�
F11(�)Ser � G1Wer F12(�)Sz
F21(�)Ser � G2(�)Wer F22(�)Sz

�
(40)

Thus the condition eq.(39) is equivalent to

�(�) � 0 for 8� 2 �vex (41)

Here by introducing a complementary variable
Z� 2 <

(n+Nh)�(n+Nh)�
Z� In+Nh

In+Nh
S�

�
� 0 (42)

the minimization problem of Tr
�
X�
	

can be

transformed into that of Tr
�
Z�
	
. Consequently,

the optimization problem eq.(37) is reduced to the
following constrained convex optimization prob-
lem, because the condition eq.(42) is also the
linear matrix inequality (LMI) in Z� and S�.

Minimize
Z�;Ser ;Sz;Wer

[Tr
�
Z�
	
] subject to

eqs:(41) and (42); Ser > 0 and Sz > 0
(43)

If the solution Z� > 0;Ser > 0;Sz > 0 and Wer

of the optimization problem eq.(43) is obtained,
then the control gain matrix Ker is obtained as

Ker =WerS
�1
er

(44)

Note that, the constrained convex optimization
problem eq.(42) can be solved by using software
such as MATLAB's LMI Control Toolbox, Scilab's
LMITOOL and so on.

As a result, the following theorem is obtained.

Theorem 2. There exists the control gain ma-
trix Ker minimizing the upper bound on the per-
formance index eq.(33), if there exist the optimal
solution Z� > 0;Wer ;Ser > 0 and Sz > 0 of
the optimization problem eq.(43). Also, using the
solution of the linear matrix inequality (LMI)
condition eq.(29), the observer gain matrix He is
designed in advance such as Hr = Y�1�z

V�z .

If the solution Z�;Wer ;Ser and Sz is obtained,
then the control gain matrix Ker is given by

Ker =WerS
�1
er

Remark 1. In this paper, the observer eq.(6) is
designed such that quadratic stability of the sys-
tem eq.(23) is ensured and the condition eq.(29) is
satis�ed, because in order to get the control gain
matrix Ker and the symmetric positive de�nite
matrix X� satisfying the condition eq.(32), (2; 2)-
block of the condition ��(�) � 0 must be negative
semide�nite. Namely, the observer gain matrixHr

has to be determined, making allowance for the
inequality eq.(45). Thus we introduce a symmetric
positive de�nite matrix W�z and a design param-
eter QH and consider the condition eq.(26).

4. NUMERICAL EXAMPLE

Consider the following uncertain system.

x(t+ 1) =

�
1:0 1:0
0:5 0:85 + Æ1

�
x(t)

+

�
1:0
1:0

�
u(t)

y(t) = ( 1:0 + Æ2 0 )x(t)

where the parameters Æ1 and Æ2 are the uncertain-
ties and are assumed to vary within the interval
[�0:15; 0:15] and [�0:10; 0:10], respectively.

By selecting the design parameter QH = I2
and solving the linear matrix inequality (LMI)
condition eq.(28), we get the observer gain matrix
Hr eq.(45). Next, let Qer = I3;Qz = 4:0I2;Rr =
1:0 and h = 5, then by solving the constrained
convex optimization problem eq.(42), we obtain
the control gain matrix Ker eq.(46).
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In this example, we assume that the reference
signal r(t) varies as

r(t) =

�
0:0 for t < 20
10:0 for t � 20

(45)

Also, to examine the robustness of the proposed
controller, we consider the following cases.

� Case 1) : Æ1 = �0:15 and Æ2 = �0:1
� Case 2) : Æ1 = �0:15 and Æ2 = 0:1
� Case 3) : Æ1 = 0:15 and Æ2 = �0:1
� Case 4) : Æ1 = 0:15 and Æ2 = 0:1

The results of the simulation of this example are
shown in �gure 2-4. We see from these �gures that
the proposed robust preview controller achieves
performance robustness.

5. CONCLUSIONS

In this paper for uncertain discrete-time systems,
we present a design method of an observer-based
robust preview controller. The observer-based ro-
bust controller is easily obtained , because adopt-
ing 2-stage design approach, the design problem of
the observer-based controller is reduced to linear
matrix inequalities (LMIs).

In future work, we will examine the controller
design algorithm for the minimization of the up-
per bound on the performance index, because the
observer-based controller derived by our design
method is not optimal.
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