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1. INTRODUCTION

This paper deals with the problem of diagnostic filter
design. By definition, the diagnostic filter is an
observer (or a bank of observers) whose output
(residual) is structured according to the faults arising
in the system under monitoring. Up to now, two
basic approaches to diagnostic filter design were
developed: geometric approach and algebraic one.

In the framework of geometric approach, the solution
of diagnostic filter design was firstly proposed by
Massoumnia  (1986), Massoumnia et al. (1989) for
linear systems. Later, this solution was developed for
nonlinear systems by De Persis and Isidori (1999,
2000); Join et. al (2002a, b).

Algebraic approach (so-called the algebra of
functions) was firstly proposed for fault detection in
nonlinear systems by Zhirabok and Shumsky (1987).
Then, the algebra of functions was developed for
solving different diagnostic tasks (Shumsky, 1988,
1991; Zhirabok, 1997) and for nonlinear systems
research (Zhirabok and Shumsky, 1993a, b).

The goal of this paper is to investigate the relations
that exist between algebraic and geometric
approaches.

2. PROBLEM DESCRIPTION

Consider the system

dx(t)/dt = f(x(t), u(t), ϑ(t))                (1)

   y(t) = h(x(t))                            (2)

where x(t)∈X⊆Rn is the state vector, u(t)∈U⊆Rm is
the vector of control, y(t)∈Y⊆Rl is the measurable
output vector, ϑ(t)∈Rs is the parameters vector, f and
h are nonlinear vector functions assumed to be
smooth for x(t) and ϑ(t). It is also assumed that for
healthy system it holds ϑ(t)=ϑ0 ∀t, where ϑ0 is a
given nominal value of parameters vector.

The set of faults considered for the design of
diagnostic filter is specified by a list of faults {ρ1, ρ2,
…, ρd}, d ≥ s. Single and multiple faults are
distinguished. It is assumed that every single fault ρi,
i=1, …, s, results in unknown time behavior of
appropriate parameter ϑi(t) such that ϑi(t) ≠ ϑi

0. The
multiple fault is considered as a collection of single
faults occurring simultaneously. Notice, that this
representation of faults corresponds not only to
actuator or plant faults but also to sensor faults,
considered as pseudoactuator faults, see, e.g.
(Massoumnia et al., 1989; Park et al., 1994).



To detect and isolate the faults, diagnostic filter in
the form of a bank of reduced-order nonlinear
observers is involved. Every observer generates
appropriate subvector of the residuals  r(i), i=1, …, q,
and the residual vector r is composed from these
subvectors.

Usually, see, e.g. (Gertler and Kunwer, 1993), the
structure properties of the residual vector are
characterized by binary matrix S of fault syndromes
(FS) with element Sij =1 if subvector r(i) is sensitive
to single fault ρj, otherwise (if r(i) is insensitive to ρj)
Sij =0, i=1, …, q, j=1, …, s. Different ways for
choosing FS matrix were discussed in literature
(Gertler and Kunwer, 1993; Chen and Patton, 1994).
It was shown that the diagonal structure of this
matrix guarantees the isolation of multiple faults but
puts strong demands on the system. Also, the matrix
with zeros only on its diagonal allows to isolate only
single faults but gives more possibilities for the
design.

For nonlinear systems, the delay among the first
distortion of system output due to some fault and the
instant of time when subvector r(i) takes nonzero
value depends on control and may be significant (or
even infinite) to prevent making the decision timely.
As result, in nonlinear case, the characteristics of the
residual structure becomes more exhaustive if to use
instead of the term “sensitivity” the term
“detectability” of the fault via residual subvector,
drawing a distinction between weak and strong
detectability. Let t0 be an instant of time when fault
ρj results in distortion of system output.

Definition 1. Fault ρj is called weakly detectable via
residual r(i) if there exist the state x(t0), finite time
interval T=[t0, t] and control u(τ)∈U, τ∈[t0, t], such
that r(i)(t)≠0. Clearly, the notion of weak detectability
is equal to the notion of sensitivity to the fault.

Definition 2. Fault ρj is called strongly detectable via
residual r(i)  if it holds r(i)(t0)≠0.

As soon as the notions of weak and strong
detectability are introduced, the elements of FS
matrix may take three values : Sij =1 if fault ρj is
strongly detectable via residual r(i); Sij =0 if r(i) is
insensitive to fault ρj; Sij = z if fault ρj is weakly
detectable via residual r(i). It makes reasonable to
introduce the definitions of weak and strong fault
distinguishability and isolability.

Definition 3. Faults ρi and ρj are called weakly
(strongly) distinguishable if corresponding to these
faults columns of FS matrix do not coincide under
z=1 (z=0).

Definition 4. Faults ρ1, ρ2, …, ρd  are called weakly
(strongly) isolable if every two columns of FS matrix
do not coincide under z=1 (z=0).

Weak distinguishability (isolability) of the faults
means that these faults (all faults) are distinguishable
(isolable) under some “favorable” control. In contrast

to this, strong distinguishability (isolability) means
that these faults are distinguishable (isolable) under
every control.

The key problem of finding FS matrix for a given
system and the set of faults deals with solving two
tasks : i) full decoupling effects of the faults in output
space of diagnostic filter and ii) analysis of fault
detectability via subvectors of the residual.

An idea of full decoupling is based on the
compensation of fault effects in output space of
observer. If no assumption is made about time
behavior of system parameters affected by the faults,
such compensation is possible only if there exist at
least two different ways (channels) of fault effect
propagation (Petrov’s two channels principle). To
illustrate the way for realization of this principle in
the framework of the problem under consideration,
let us address to the structure interpretation given in
Fig. 1 (Shumsky, 1991).
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Fig.1. Structure interpretation of observer-based
      residual generation involving two channels
      principle

In Fig.1 system (1) is decomposed into subsystems
Σ(i) (the first channel), Σ * and function h*, specified
as follows :

Σ (i) :      dx(i)(t)/dt = f (i)(x(i)(t), y(t), u(t), ϑ(i)(t))        (3)

Σ* :          dx*(t)/dt = f *(x*(t), x(i)(t), u(t), ϑ(t))         (4)

h* :                              h*(x*(t), x(i)(t)) = h(x(t))                   (5)

where ϑ(i) is some subvector of ϑ unaffected by fault
ρi. Assume that

Σ0 :       dx(0)(t)/dt = f (i)(x(0)(t), y(t), u(t),ϑ(i,0)) +

G(x(0)(t), u(t), y(t)) r(i)(t)            (6)

ξ(i), h(i) :      ξ(i) (h*(x*(t), x(i)(t))) = h(i)(x(i)(t))            (7)

r(i) :             r(i) (t) = h(i)(x(0)(t)) - ξ(i) (y(t))                (8)

where G is a gain matrix function and ϑ(i,0) is a
nominal value of subvector ϑ(i). In this description
the subsystem Σ0 plays a role of the second channel.

                                        Observer

                                 System

∑ (i)

∑ *

h*

∑ 0 h(i) - ξ(i)



Consider faulty free case and let x(0)(0) = x(i)(0).
Notice firstly, that from (2), (5), (7), (8) it follows
r(i)(0) = 0. Assuming that r(i)(t) = 0 ∀t, one obtains
from (3), (6) x(0)(t) = x(i)(t). Using again (2), (5), (7),
(8), it is easily to prove that it really holds r(i)(t) = 0
∀t. Then, because ϑ(i)  is unaffected by fault ρi, x

(0)(t)
= x(i)(t) and r(i)(t) = 0 also hold under presence of this
fault. Let now x(0)(0) ≠ x(i)(0). The design of
asymptotically stable observer with property t → ∞
⇒ x(0)(t) - x(i)(t) → 0 (r(i)(t) → 0) involves an
appropriate choice of the gain matrix function.

The problem of finding the gain matrix function has
been extensively studied (see, e.g., survey by
Misawa and Hedrick, 1989; papers by Birk and
Zeitz, 1988; Ding and Frank, 1990; so on). It is a
reason to concentrate below only on the problem of
finding the functions f (i), h (i), ξ (i), i=1, …, q,
assuming that  x(0)(0) = x(i)(0).

According to Shumsky (1991), solution of the last
problem is based on the following assumption : there
exists coordinate transformation given by smooth
vector function α(i) such that for healthy system and
every t it holds

x(i)(t) = α(i)(x(t)).                          (9)

Using (1), (3), (9), one obtains defining equation for
f (i) :

f (i)(α(i) (x), h(x), u, ϑ(i)) = (∂α(i)/∂x) f(x, u, ϑ).   (10)

Because ϑ(i) is unaffected by fault ρi, one has

(∂α(i)/∂x) (∂f(x, u, ϑ)/∂ϑj) = 0             (11)

for every ϑj subjected to distortion by this fault.
Then, from (2), (5), (7), (9) one also obtains defining
equation for h(i) :

h(i)(α(i)(x)) = ξ(i)(h(x)).                     (12)

Thus, the functions f (i) and h(i) are found from (10)
and (12) respectively under known functions α(i), ξ(i).
This is why in the next section an attention is paid to
finding the functions α(i), ξ(i) and studying their
properties, taking into account both solvability
condition for (10) - (12) and the demands imposed
on the structure of FS matrix by the set of faults.

3. ALGEBRAIC APPROACH

In this section, the algebra of functions is basically
used for solving the general problem of finding α(i),
ξ(i) for every i =1, … d and determining FS matrix.

3.1. Algebraic tools

Denote ℑS the set of smooth vector functions with
domain S. For α, β∈ℑS  partial preordering relation ≤
is defined as follows : α ≤ β if and only if there

exists some differentiable function γ, determined on
the set of values of α, such that β = γ ° α, where ° is
the symbol of functions composition. To verify if α ≤
β one can check the equality of ranks for functional
(Jacobian) matrices Jα(s) = ∂α(s)/∂s and Jα×β(s) =
∂(α(s)×β(s))/∂s: α ≤ β ⇔ rank Jα(s) = rank Jα×β(s)
∀s∈S, where the symbol × is given to simplify (but
not only) the writing for composed vector function,
namely, α×β=(αT, βT)T, and T is the symbol of
transposition. If  α ≤ β and β ≤ α then α, β are called
equivalent : α ∼ β. Thus, relation ∼ splits the set ℑS

on equivalent function classes.

Every function α∈ℑS specifies equivalence relation
Eα on S : (s1, s2)∈Eα ⇔ α(s1)=α(s2). Relation Eα
gives appropriate partition of S. One can easily see
that equivalent functions give the same partitions of
S. Moreover, if Eα and Eβ are equivalence relations
corresponding to functions α and β, then

[α ≤ β] ⇔ [(s1, s2)∈Eα ⇒ (s1, s2)∈Eβ ∀s1, s2∈S].

Therefore, there exists the ordering set of partitions
of S, corresponding to functions from ℑS. This set is a
grid with zero, given by arbitrary one to one function
(e.g., identity function i(s) = s ∀s∈S), and unity,
given by arbitrary constant function (c(s) = const
∀s∈S). The problem of finding the maximal bottom
for every pare of partitions of this grid has
constructive solution : if these partitions are specified
by functions α, β then the function α×β corresponds
to maximal bottom partition.  As soon as maximal
bottom of two partitions is their product, operation ×
acquires the definite sense : the product of partitions
given by functions α and β is equal to the partition
given by function α×β. To find minimal top for every
pare of partitions, special operation ⊕ for vector
functions is introduced. Function α⊕β corresponds
to the sum of partitions specified by functions α, β.
Finally, operations ×, ⊕  are defined as follows :

[α×β∈ℑS ] & [ γ ≤α, γ ≤β ⇒ γ ≤α×β]

[α⊕β∈ℑS ] & [ α ≤γ, β ≤γ ⇒  α⊕β≤γ].

For healthy system (1), relation ∆⊂ℑX×ℑX and
operator m : ℑX → ℑX are introduced as follows:

[(α, β)∈∆] ⇔ [πu × α°πx   ≤  Jβ f]

[(α, m(α))∈∆] & [(α, β)∈∆⇒ m(α) ≤ β]

where πu, πu(x, u) = u, and πx, πx (x, u) =  x, are
projections.

3.2. Fault decoupling

Let α(i,0)  be vector function such that

(∂α(i,0)/∂x) (∂f(x, u, ϑ)/∂ϑj) = 0             (13)

for every ϑj subjected to distortion by fault ρi and for



every function α(i), satisfying (10), it holds α(i,0)≤α(i).
Solvability condition for (9) – (11) is given by the
following theorem (Shumsky, 1991).

Theorem 1. Equations (9) – (11) are solvable if and
only if

(h × α(i), α(i))∈∆,        α(i,0)  ≤ α(i)             (14)

α(i) ≤ ξ(i) ° h.                            (15)

The next theorem (Shumsky, 1991) gives a regular
rule for finding minimal function α(i), satisfying (14).
Notice, that minimal function α(i) corresponds to
subsystem Σ(i) of maximally possible dimension.

Theorem 2. Let α(i, j+1) ∼ m (α(i, j)×h)⊕α(i, j), j ≥0, and
there exists natural k such that α(i, k+1) ∼ α(i, k). Then :
(i) the function α(i, k)  satisfies (14);
(ii) for every function α(i), satisfying (14), it holds

α(i, k) ≤ α(i).                            (16)

Corollary 1 (from theorem 2). It holds :

α(i, k) ⊕ h ≤ ξ(i) ° h.                    (17)

Relation (17) follows immediately from (15), (16)
and the definition of operation ⊕.

Theorems 1, 2 result in the following algorithm for
finding functions α(i), ξ(i) such that the residual
subvector r(i) is insensitive to fault ρi.

Algorithm 1.
1. Calculate the function α(i,0) with maximum

number of functional independent components
from equation (13).

2. Calculate the function α(i, k), using the rule of
theorem 2.

3. Calculate the function ξ(i) :

ξ(i) ° h ∼ α(i, k) ⊕ h.                     (18)

Remark 1. Relation (18) gives the minimal function
ξ(i), satisfying (17).

The use of algorithm 1 needs in calculating operation
⊕ and operator m. If necessary, one can find the rules
for their calculation in Shumsky (1989), Zhirabok
and Shumsky (1993a, b). Notice, that in Section 4
these rules are given in geometric terms.

So, using algorithm 1, one obtains the functions α(i),
ξ(i)  for every fault ρi, i =1, … d.

3.3. Detectability analysis and FS matrix
construction

Let for the faults ρi and ρj it holds

ξ(i)  ≥ ξ(j).                               (19)

It means that the residual subvector r(i) is insensitive
not only to fault ρi but also to fault ρj. Indeed,
because of (19) one can write ξ(i)  = γ ° ξ(j), where γ is
some vector function. According to (4) and (6) – (9),
equality r(j)=0 holds if h(j)(α(j))=ξ(j)(h). But from the
last equality it follows γ ° h

(j)(α(j))) = γ ° ξ(j)(h). Then,
according defining equations (11), h(i)(α(i))=ξ(i)(h).
Taking into account equalities written above, one
obtains r(i)=h(i)(α(i))-ξ(i)(h)= γ ° h

(j)(α(j)) - γ ° ξ(j)(h)=0
as soon as r(j)=h(j)(α(j))-ξ(j)(h)=0.

If inequality (19) does not hold, then r(i) is not
insensitive to fault ρj (that follows Remark 1), i.e.
sensitive to this fault. Thus, violation of (19) is a
condition of weak detectability of ρj via residual
subvector r(i).

Remark 2. To check if (19) is violated, it is sufficient
to prove the following rank condition for some y∈Y :

rank ∂(ξ(i) × ξ(j))/∂y > rank ∂ξ(j)/∂y.         (20)

Theorem 3. (Shumsky, 1988). Fault ρi is strongly
detectable via residual r(j),  j≠i, if

ξ(i) × ξ(j) ∼ iY                            (21)

where iY is identity function with domain Y.

Remark 3. To check if (21) holds, it is sufficient to
prove rank condition

rank ∂(ξ(i) × ξ(j))/∂y = l   ∀y∈Y.           (22)

Primary FS matrix of dimension d×d is constructed
as follows. The diagonal elements of this matrix are
taken equal to zero, because residual subvector r(i) is
insensitive to the fault ρi. Then, applying conditions
(20), (22), one fills in nondiagonal elements of this
matrix. Involving primary FS matrix, fault isolability
is investigated. Final FS matrix is obtained by
excluding redundant rows (i.e. rows whose excluding
do not influence on fault isolability).

4. GEOMETRIC INTERPRETATION

In this section, the connection among algebraic and
geometric tools is investigated for nonlinear systems,
whose dynamics is affine in control and fault action:

dx(t)/dt = f(x(t)) + g(x(t)) u(t)+ w(x(t))ϑ(t),    (23)

where g(x) and w(x) are smooth matrix functions of
appropriate dimensions.

4.1. Preliminary remarks

For vector function α∈ℑS the codistribution Ωα is
introduced as follows: Ωα(s) = span{ Jαi(s), 1≤ i ≤ p},
where Jαi(s) is the i-th row of Jacobian matrix Jα(s)
and p is the dimension of vector function α. Let α,
β∈ℑS. It is easily to see that if α≤β then  Ωα ⊇ Ωβ.



Codistribution Ωα×β is the minimal one that contains
both codistributions Ωα and Ωβ, i.e. Ωα×β = Ωα+Ωβ.
Codistribution Ωα⊕β is the maximal one that is
included into intersection of codistributions Ωα and
Ωβ, i.e. Ωα⊕β⊆Ωα∩Ωβ. At a given point s, the
intersection Ωα(s)∩Ωβ(s) can be found by solving the
homogeneous equation

                     pα                           pβ

Σ ai(s) Jαi(s)
T - Σ bi(s) Jβi(s)

T = 0           (24)
                        i=1                                 i=1

for the unknown functions ai(s), 1 ≤ i ≤ pα, and bi(s),
1 ≤ i ≤ pβ, where pα and pβ denote the dimensions of
appropriate vector functions. Because codistribution
Ωα⊕β must correspond to some vector function, the
coefficient matrix (a1(s), a2(s), …, apα(s), b1(s), b2(s),
…, bpβ(s)) must satisfy an additional demand to make
possible integration of Ωα⊕β :

∂(ai(s) Jαi(s)
T)/∂sj = ∂(aj(s) Jαj(s)

T)/∂si         (25)

(the similar equation can be written for coefficients
bi(s), 1≤i≤pβ, and function β). The set of independent
solutions of (24), (25) gives the basis for
codistribution  Ωα⊕β.

Consider the construction β ∼ m(α×h)⊕α that is
similar to one from theorem 2. Notice firstly, that
from definitions of operator m and relation ∆ for
system (23) and every i, 1 ≤ i ≤ pβ, and j, 1 ≤ j ≤ m, it
follows α × h ≤ Jβi f,   α × h ≤ Jβi gj, or, that is the
same, Lϕ Jβi ⊆ Ωα+Ωh,  ϕ∈{ f, g1,…, gm}, where
Lϕ Jβi denotes the Lie derivative of covector field
Jβi(x) along vector field ϕ. Let Λα be distribution
such that Λα

⊥=Ωα where Λα
⊥ is an annihilator of Λα.

Let also ω∈Λα ∩ ker Jh. Clearly, that <Lϕ Jβi, ω> = 0
where the brackets <*,*> denote an inner product.
Because of α≤β, one also has <Jβi,ω>=0. Taking into
account the identity (Isidori, 1989) Lϕ <Jβi, ω> =
< Lϕ Jβi, ω> + < Jβi, [ϕ, ω] > = 0, where [*, *]
denotes the Lie brackets, one obtains <Jβi, [ϕ, ω] > =
0. Let now Φβ be minimal involutive distribution,
containing Λα+ span {[ ϕ, ω], ϕ∈{ f, g1, …, gm},
ω∈Λα ∩ ker Jh}. According to Frobenius theorem
(Isidori, 1989) distribution Φβ is integrable that
means solvability of partial differential equation

Jβi Φβ = 0                                  (27)

for unknown function βi. Under this, all independent
solutions of (27) specify all components of β.

4.2. Realisation of geometric approach

Denote w(i)(x) the matrix containing such (and only
such) columns of the matrix w(x) that correspond to
components of ϑ affected by the fault ρi. Let Φα(i, 0)

be minimal involutive distribution, containing
span {w(i)}. According to written above, the rule for
finding minimal function α(i), satisfying (14), obtains
the following geometric interpretation.

Corollary 2 (from theorem 2). Let Φα(i, j+1) be
minimal involutive distribution, containing Φα(i, j)+
span{[ ϕ, ω], ϕ∈{ f, g1, …, gm}, ω∈Φα(i, j) ∩ ker Jh},
and there exists natural k such that Φα(i, k+1)=Φα(i, k).
Then the function α(i, k) can be found by integration of
Φα(i, k).

Remark 4. Corollary 2 results in the construction for
distribution Φα(i, j+1) calculating that is similar to one
proposed by De Persis and Isidori (1999).

The codistribution Ωξ
(i)

 ° h
  can be found as Ωα(i, k+1)

⊕h

under Ωα(i, k+1) = Φα(i, k+1)⊥ involving equations of the
form (24), (25). From remark 2 (relation (20)) it
follows that fault ρj is weakly detectable via residual
subvector r(i) if

rank (Ωξ
(i)

 ° h
 + Ωξ

(j)
 ° h

 ) > rank Ωξ
(j)

 ° h .         (24)

It also follows from remark 3 (relation (21)) that fault
ρj is strongly detectable via residual subvector r(i) if

rank (Ωξ
(i)

 ° h
 + Ωξ

(j)
 ° h

 ) = l.                (25)

4.3. Example

Consider the system described by (23) and (2) with
matrix functions f(x)=col(x1x4, x3(1-x3), 0, 0), h(x)=
col(x1, x2)

                                                 0   0
                    g(x) =  w(x) =       0   0       .
                                                 0   x1

                                                 1   0

It holds for single faults Φα(1, 0) = span {w(1)}, Φα(2, 0)

= span {w(2)} and for multiple fault Φα(3, 0) = span
{ w(1), w(2)}. Making further calculations, one obtains

                                                            0   x1

      Φα(1, 1)(x) = Φα(1, 2)(x) = span {     0   0      };
                                                            0   0
                                                            1   0

                                                       0          0
    Φα(2, 1)(x) = Φα(2, 2)(x) = span{    0   x1(1-2 x3)    };
                                                        x1     - x1 x4

                                                        0         0

Φα(3, 1)(x) = Φα(3, 2)(x) = Φα(1, 1)(x) + Φα(2, 1)(x);
Ωξ

(1)
 ° h

 (x) = Φα(1, 2)(x)⊥ ∩ span { Jhi(x), i=1, 2}=
span{0,1,0,0}; Ωξ

(2)
 ° h

 (x) = Φα(2, 2)(x)⊥ ∩ span { Jhi(x),
i=1, 2} = span{1,0,0,0}; Ωξ

(3)
 ° h

 (x) = Φα(3, 2)(x)⊥ ∩
span { Jhi(x), i=1,2} = ∅. Appropriate vector
functions are found as follows : α(1) (x) = col(x2, x3);
α(2)(x)=col(x1, x4); α(3)(x)=const; ξ(1)(y)=y2; ξ(2)(y)=y1;
ξ(3)(y)=const.

The results of calculating are applied to isolability
analysis. Because of fulfilling (22) (or, that is the
same, (25)) for i=1, j=2 and i=2, j=1, one concludes
that fault ρ2  is strongly  detectable  via  residual  sub-



Table 1. FS matrix

   Residual                                  Faults
                                ρ1                   ρ2                    ρ3

       r(1)                     0                     1                     z
       r(2)                     1                     0                     z
       r(3)                     0                     0                     0

vector r(1) and, respectively, ρ1 is strongly detectable
via residual subvector r(2). In contrast to this, for i=1,
i=2 and j=3 only (20) (or (24)) holds, i.e. fault ρ3 is
only weakly detectable via residuals r(1), r(2). Then,
because (19) holds for i=3, j=1 and j=2, residual
subvector r(3) is insensitive both to faults ρ1 and ρ2.
Thus, primary FS matrix is as given in Table 1.

Analysis of this matrix shows that single faults ρ1

and ρ2 are strongly distinguishable whereas every
single fault and multiple fault ρ3 are only weakly
distinguishable. Indeed, let fault ρ1 affects on system
output such that y1(t0)=0. In this case y2(t) becomes
insensitive to fault ρ2 for every t ≥ t0 and every con-
trol u(τ)∈U, τ∈[t0, t]. Thus, the system with single
fault ρ1 will have the same behavior as the system
with multiple fault ρ3 at t ≥ t0. Similarly, if fault ρ2

distorts output y2 at t0 and y1(t0)=0 is true, then the
system with single fault ρ2 will have the same
behavior as the system with multiple fault ρ3 at t ≥ t0.

Clearly, final MS matrix is obtained by excluding the
third row.

5. CONCLUSION

This paper considers the problem of diagnostic filter
design. Algebraic and geometric approaches to solve
this problem were investigated. It was shown that
certain relations exist between these approaches. As
evident from models (1) and (23), algebraic approach
can be used for wider class of nonlinear systems than
geometric one. Moreover, algebraic approach is used
to solve different tasks for discrete-time systems
(Zhirabok and Shumsky, 1993a).
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