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1. INTRODUCTION 2. PROBLEM DESCRIPTION

This paper deals with the problem of diagnostic filter Consider the system
design. By definition, the diagnostic filter is an

observer (or a bank of observers) whose output dx(t)/dt = f(x(t), u(t), 9(t)) (1)
(residual) is structured according to the faults arising
in the system under monitoring. Up to now, two y(t) = h(x(t)) (2)

basic approaches to diagnostic filter design were
developed: geometric approach and algebraic one. wherex(t)OXOR" is the state vectoy(t)OUDR™ is

the vector of controly(t)\DYOR is the measurable
In the framework of geometric approach, the solution otput vectorg (t)OR’ is the parameters vectdrand
of diagnostic filter design was firstly proposed by h are nonlinear vector functions assumed to be
Massoumnia (1986), Massoumrea al (1989) for  gmooth forx(t) and 9(t). It is also assumed that for
I|ne?r SyStemSt' Latekr), thss sglutl(_)n Wads ?Ef'(\j’ek_)p(ig ggrhealthy system it hold$(t)=9° Ot, where9° is a
nonlinear systems e Persis and Isidori i .
2000) Joine{ y (2002ya, b, given nominal value of parameters vector.
The set of faults considered for the design of
diagnostic filter is specified by a list of faultp:{ p.,
..., Py d = s Single and multiple faults are

Algebraic approach (so-called the algebra of
functions) was firstly proposed for fault detection in

nonlinear systems by Zhirabok and Shumsky (1987)."; "’ " . :
Then, the algebra of functions was developed fordlstlngwshed. It is assumed that every single fault

solving different diagnostic tasks (Shumsky, 1988, =1, S results in unknown time behoawor of
1991; Zhirabok, 1997) and for nonlinear systems @PPropriate paramete(t) such thaw;(t) # 9". The
research (Zhirabok and Shumsky, 1993a, b). multiple fault.|s conadered as a coIIe_ctlon of smg_le
faults occurring simultaneously. Notice, that this
The goal of this paper is to investigate the relations/€Presentation of faults corresponds not only to
that exist between algebraic and geometric actugtor or plant faults but also to sensor faults,
approaches. considered as pseudoactuator faults, see, e.g.
(Massoumniat al, 1989; Parlet al, 1994).



To detect and isolate the faults, diagnostic filter in to this, strong distinguishability (isolability) means
the form of a bank of reduced-order nonlinear that these faults are distinguishable (isolable) under
observers is involved. Every observer generatesevery control.
appropriate subvector of the residualf$, i=1, ..., q,
and the residual vectar is composed from these The key problem of finding FS matrix for a given
subvectors. system and the set of faults deals with solving two
tasks : i) full decoupling effects of the faults in output
Usually, see, e.g. (Gertler and Kunwer, 1993), thespace of diagnostic filter and ii) analysis of fault
structure properties of the residual vector are detectability via subvectors of the residual.
characterized by binary matr& of fault syndromes
(FS) with element S=1 if subvector® is sensitive ~ An idea of full decoupling is based on the
to single faultp;, otherwise (ifr” is insensitive tq)) compensation of fault effects in output space of
S; =0, i=1, ..., q, j=1, ..., s Different ways for  observer. If no assumption is made about time
choosing FS matrix were discussed in literature behavior of system parameters affected by the faults,
(Gertler and Kunwer, 1993; Chen and Patton, 1994).such compensation is possible only if there exist at
It was shown that the diagonal structure of this least two different ways (channels) of fault effect
matrix guarantees the isolation of multiple faults but propagation (Petrov's two channels principle). To
puts strong demands on the system. Also, the matrixllustrate the way for realization of this principle in
with zeros only on its diagonal allows to isolate only the framework of the problem under consideration,
single faults but gives more possibilities for the let us address to the structure interpretation given in
design. Fig. 1 (Shumsky, 1991).

For nonlinear systems, the delay among the firstu [~ ———" ]
distortion of system output due to some fault and the 777 L
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instant of time when subvectaf’ takes nonzero
value depends on control and may be significant (or
even infinite) to prevent making the decision timely.
As result, in nonlinear case, the characteristics of the
residual structure becomes more exhaustive if to use |
instead of the term “sensitivity” the term { |_)
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“detectability” of the fault via residual subvector, | |
drawing a distinction between weak and strong! “—>- :
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detectability. Letty be an instant of time when fault | ¢
p; results in distortion of system output. ' Observer

—_———— - e o

Def|n|t|on 1 Faultp, is called weakly detectable via \4
residualr® if there exist the stat&(ty), finite time ) ) )
interval T=[to, t] and controlu(t)0U, Tty t], such  Fig.1. Structure interpretation of observer-based

thatr®(t)z0. Clearly, the notion of weak detectability residual generation involving two channels

is equal to the notion of sensitivity to the fault. principle

Definition 2. Faultp; is called strongly detectable via In(i)Fig.l _system (1) is Ejecompose_d irjto sub_s_ystems

residualr® if it holds r®(t;)=0. 2% (the first channel)z = and functionh, specified
as follows :

As soon as the notions of weak and strong 5 0. NG e () 0

detectability are introduced, the elements of FSZ & @ (O/dt=F70<(D), y(®), u(®), 97(1) (3)

matrix may take three values j; S1 if fault p |s . . ek )

strongly detectable via reS|due(| S =0 if 0 2! dx (yde="£ (x (1), X(), u(t), 3(1)) 4)

insensitive to faultp; §; = z if fault p; is weakly - N Y

detectable via residuaf’. It makes reasonable to I : h (x (1), x7(1)) = h(x(V) (5)

introduce the definitions of weak and strong fault 0

distinguishability and isolability. whered" is some subvector df unaffected by fault

p;i- Assume that

Definition 3. Faultsp; and p; are called weakly 0 D7 l0) i0
(strongly) distinguishable if corresponding to these = dXP(t)/dt=fO(x), y(v), u(®),8"%) +
faults columns of FS matrix do not coincide under

=1 (z=0). GO, u(t), y(1) rO) (6)
Definition 4. Faultspy, ps, ..., pg are called weakly & »h": &2 (X0, xX"(®) = hO(x(t)) (7
(strongly) isolable if every two columns of FS matrix 0 0 0re(0) 0

do not coincide unde=1 (z=0). re: r (1) =h7(x™(1) - &7 (Y1) (8)

Weak distinguishability (isolability) of the faults Wwhere G is a gain matrix function and"? is a
means that these faults (all faults) are distinguishablenominal value of subvecta®. In this description
(isolable) under some “favorable” control. In contrast the subsystera® plays a role of the second channel.



Consider faulty free case and EP0) = x?(0).
Notice firstly, that from (2), (5), (7), (8) it follows
r(0) = 0. Assuming that®(t) = 0 [t, one obtains
from (3), (6)xX°(t) = xXO(t). Using again (2), (5), (7),
(8), it is easily to prove that it really hold8(t) = 0
Ot. Then, becausg” is unaffected byault p;, xX°(t)

= x9(t) andr(t) = 0 also hold under presence of this
fault. Let now xX%0) # x"(0). The design of
asymptotically stable observer with property. o
O X9 - X% - 0 ¢“¢t) - 0) involves an
appropriate choice of the gain matrix function.

The problem of finding the gain matrix function has
been extensively studied (see, e.g.,

finding the functionsf @, h @ & O i=1 ... q,
assuming that®(0) =x(0).

According to Shumsky (1991), solution of the last
problem is based on the following assumption : there
exists coordinate transformation given by smooth

vector functiona® such that for healthy system and
everyt it holds

X)) = a®(x(). )

Uging (1), (3), (9), one obtains defining equation for
fo

f O (x), h(x), u, 99) = EaV/ax) f(x, u, 9). (10)
Becaused" is unaffected byault p;, one has
(@aV9x) (9f(x, u, 9)/09;) =0 (11)

for every §; subjected to distortion by this fault.

survey by
Misawa and Hedrick, 1989; papers by Birk and
Zeitz, 1988; Ding and Frank, 1990; so on). It is a
reason to concentrate below only on the problem o

exists some differentiable function determined on
the set of values ad, such thaP =y - a, where-is
the symbol of functions composition. To verifyoif<

B one can check the equality of ranks for functional
(Jacobian) matricedy(s) = da(s)/os and Juxp(S) =
o(a(9)xB(s))/os: a < B = rank J(s) = rank Juxp(s)
OsOS, where the symbok is given to simplify (but
not only) the writing for composed vector function,
namely, axp=(a’, B")", and " is the symbol of
transposition. Ifa < 3 andp < a thena, B are called
equivalent :a 0. Thus, relatior] splits the seflg
on equivalent function classes.

Every functionaOOs specifies equivalence relation
E, on S: (s, HUE, = a(s)=a(s). Relation E,

fgives appropriate partition @& One can easily see

that equivalent functions give the same partitions of
S Moreover, ifE, and Eg are equivalence relations
corresponding to functiors andf3, then

[a<B] = [(s' HOE, O (s, HOE 08", SOS.

Therefore, there exists the ordering set of partitions
of S corresponding to functions fros. This set is a
grid with zero, given by arbitrary one to one function
(e.g., identity functioni(s) = s 0s0S), and unity,
given by arbitrary constant functiort(§) = const
0sd9). The problem of finding the maximal bottom
for every pare of partitions of this grid has
constructive solution : if these partitions are specified
by functionsa, B then the functiomx3 corresponds

to maximal bottom partition. As soon as maximal
bottom of two partitions is their product, operation
acquires the definite sense : the product of partitions
given by functionsa and 3 is equal to the partition
given by functioroxp. To find minimal top for every
pare of partitions, special operatidn for vector

Then, from (2), (5), (7), (9) one also obtains defining functions is introduced. Functiomp corresponds

equation foh® :
hO@®(x)) = EO(h(x)).

Thus, the functions © andh® are found from (10)
and (12) respectively under known functiarf¥, £%.

(12)

This is why in the next section an attention is paid to

finding the functionsa®, &Y and studying their
properties, taking into account both solvability

condition for (10) - (12) and the demands imposed

on the structure of FS matrix by the set of faults.

3. ALGEBRAIC APPROACH

to the sum of partitions specified by functioms.
Finally, operations, O are defined as follows :

[oxBO0s] & [y<a, y<B O y<axp]
[aO0B0O0s] & [a <y, B<syD alpsy.

For healthy system (1), relatioAOOxx[x and
operatom : [y - Oy are introduced as follows:

[(a, B)DA] < [myx 0-Tg < Jg f]
[(a, m(@))0A] & [(a, B)UAD m(a) < @]

where 1y, (X, U) = u, and g, T, (X, U) = X, are

In this section, the algebra of functions is basically projections.

used for solving the general problem of findind,
&9 for everyi =1, ...d and determining FS matrix.

3.1. Algebraic tools
Denote s the set of smooth vector functions with

domainS Fora, B00s partial preordering relatiog
is defined as follows o < B if and only if there

3.2.Fault decoupling
Leta®® be vector function such that
(@a“%ax) (9f(x, u, 9)/09;) = 0 (13)

for everyd; subjected to distortion by faydf and for



every functiona®, satisfying (10), it holdsi%<a®.
Solvability condition for (9) — (11) is given by the
following theorem (Shumsky, 1991).

Theoreml. Equations (9) — (11) are solvable if and
only if
a9 < O

(hxa®, a® o, (14)

al<gWen, (15)

It means that the residual subvectBris insensitive
not only to faultp; but also to faultp;. Indeed,
because of (19) one can wrg@ =y.&0 whereyis
some vector function. According to (4) and (6) — (9),
equalityr%=0 holds ifh®(a®)=¢9(h). But from the
last equality it followsy - hO(a®)) =y . £9(h). Then,
according defining equations (110"(a®)=¢"(h).
Taking into account equalities written above, one
obtainsr”=h®(a®)-£0(h)= y - h9@?) - y . £€0(h)=0

as soon ag’=hO(a®)-£0(h)=0.

The next theorem (Shumsky, 1991) gives a regulan inequality (19) does not hold, therf) is not

rule for finding minimal functiora”, satisfying (14).
Notice, that minimal functiona® corresponds to
subsystent® of maximally possible dimension.

Theorem2. Leta™*Y Om @ )xh)0a®?, j 20, and
there exists natur&such than®“?0a"¥. Then :
(i) the functiona™¥ satisfies (14);

(ii) for every functiona®, satisfying (14), it holds

al¥<a® (16)
Corollary 1 (from theorem 2). It holds :
a®¥0h<Eleh, (17)

Relation (17) follows immediately from (15), (16)
and the definition of operatidn.

Theorems 1, 2 result in the following algorithm for
finding functions a®, & such that the residual
subvector® is insensitive to faulp;.

Algorithm1.

1. Calculate the functiona®® with maximum
number of functional independent components
from equation (13).

2. Calculate the functiom®™ ¥, using the rule of
theorem 2.

3. Calculate the functiog®:

E0°hga®¥Oh. (18)

Remarkl. Relation (18) gives the minimal function
&0, satisfying (17).

insensitive to faulip; (that follows Remark 1), i.e.
sensitive to this fault. Thus, violation of (19) is a
condition of weak detectability of; via residual
subvector®.

Remark2. To check if (19) is violated, it is sufficient
to prove the following rank condition for sopgy :

rank (€ x £9)/ay > rank 9£¥/ay. (20)
Theorem 3 (Shumsky, 1988). Faulp; is strongly
detectable via residudl, j#i, if

£0 x g0 giy, (21)

whereiy is identity function with domail.

Remark3. To check if (21) holds, it is sufficient to
prove rank condition

rank £V x £9)/ay =1 Oydy. (22)
Primary FS matrix of dimensiodxd is constructed
as follows. The diagonal elements of this matrix are
taken equal to zero, because residual subvefte
insensitive to the faulp;. Then, applying conditions
(20), (22), one fills in nondiagonal elements of this
matrix. Involving primary FS matrix, fault isolability
is investigated. Final FS matrix is obtained by
excluding redundant rows (i.e. rows whose excluding
do not influence on fault isolability).

4. GEOMETRIC INTERPRETATION

The use of algorithm 1 needs in calculating operation!n this section, the connection among algebraic and

O and operatom. If necessary, one can find the rules

for their calculation in Shumsky (1989), Zhirabok

and Shumsky (1993a, b). Notice, that in Section 4
these rules are given in geometric terms.

So, using algorithm 1, one obtains the functiafs

&0 for every faultp;, i =1, ...d.

3.3. Detectability analysis and FS matrix
construction

Let for the faultg; andp; it holds

E(i) > E(J')_ (19)

geometric tools is investigated for nonlinear systems,
whose dynamics is affine in control and fault action:

dx(t)/dt = f(x(1)) + g(x()) u(®)+ wx(©))3 (1),

whereg(x) andw(x) are smooth matrix functions of
appropriate dimensions.

(23)

4.1. Preliminary remarks

For vector functionaOOg the codistributionQq is
introduced as followsQq(s) = spad Jui(s), 1< i < p},
where Jy(s) is thei-th row of Jacobian matridy(s)
andp is the dimension of vector functiam Let q,
BOUOs It is easily to see that d<f then Qq O Q.



CodistributionQqxg is the minimal one that contains
both codistribution€), and Qg, i.e. Quxp = Qu+Qp.
Codistribution Qqnp is the maximal one that is
included into intersection of codistributiof%, and
Qg, i.e. QurelQunQe. At a given points, the
intersectionQ4(s)n Qg(s) can be found by solving the
homogeneous equation

Pa

W
2 a(9) Jai(®)" - 2 bi(s) Ju(9' =0 (24)

for the unknown functiong(s), 1<i < py, andb;(s),
1<i < pg, wherep, andpg denote the dimensions of

Corollary 2 (from theorem 2). Letdal V) pe
minimal involutive distribution, containingpa® )+
spar{[ ¢, «], d0{f, g1, ..., G}, WP D N ker Iy},
and there exists naturklsuch thatda® Y=g ¥,
Then the functiom® ¥ can be found by integration of
Pal¥,

Remark4. Corollary 2 results in the construction for
distribution®a *Y calculating that is similar to one
proposed by De Persis and Isidori (1999).

The codistributiorQ;" ., can be found aQa" ",
underQal* ¥V = dq ¥V inyolving equations of the
form (24), (25). From remark 2 (relation (20)) it

appropriate vector functions. Because codistributionfo|iows that faultp; is weakly detectable via residual

Qqng Must correspond to some vector function, the
coefficient matrix &,(s), ax(s), ..., apu(S), (), ba(Ss),

..., bpe(9)) must satisfy an additional demand to make
possible integration d@qng:

0(a(s) Jai(9)")/9s = A(ay(s) Joy(9) ")/ (25)

(the similar equation can be written for coefficients
bi(s), 1<i<pg, and functiorf). The set of independent

solutions of (24), (25) gives the basis for
codistribution Qqpg.

Consider the constructiof O m(axh)Oa that is
similar to onefrom theorem 2. Notice firstly, that
from definitions of operatom and relationA for
system (23) and eveiyl<i<pg, andj, 1<j<m,it
follows a x h < Jg f, a x h<Jg g, or, that is the
same,Ly Jpi O Qu+Qp, ¢O{f, gs,..., On}, Where
Ly Js denotes the Lie derivative of covector field
Jsi(X) along vector fieldp. Let A, be distribution
such that\,"=Q, whereA," is an annihilator of\,.
Let alsowlA, n kerJ,. Clearly, that €4 Jgi, 0> =0
where the brackets <**> denote an inner product.
Because oti<f3, one also hasJy;,w>=0. Taking into
account the identity (Isidori, 1989, <Js, w> =
<Ly Iy 0> + < Jg [0, of > =0, where [¥ *
denotes the Lie brackets, one obtaidg, {9, o] > =
0. Let now @z be minimal involutive distribution,
containing A+ span {{¢, «], ¢T{f, g1, ..., gn}
WAy n Kker J}. According to Frobenius theorem
(Isidori, 1989) distribution®g is integrable that
means solvability of partial differential equation
Jgi Pp=0 (27)
for unknown functior3;. Under this, all independent
solutions of (27) specify all componentsfof

4.2.Realisation of geometric approach

Denotew’(x) the matrix containing such (and only
such) columns of the matriw(x) that correspond to
components off affected by the faulp.. Let ®a ©
be minimal involutive distribution, containing
span{w"}. According to written above, the rule for
finding minimal functiona®, satisfying (14), obtains
the following geometric interpretation.

subvector® if

rank (Qe" -+ Q¥ 1) > rank Q¢ . (24)
It also follows from remark 3 (relation (21)) that fault
p, is strongly detectable via residual subvectbif

rank (Q¢" -+ Q0.) = 1. (25)

4.3.Example

Consider the system described by (23) and (2) with
matrix functionsf(x)=col(x;xs, %3(1-x3), 0, 0), h(x)=
COl(Xy, %)

0
@ =wx)=| 0

0
b4}
1
It holds for single fault®a @ = span{w™}, da® 9

= span{w®} and for multiple fault®a® @ = span
{w®, W}, Making further calculations, one obtains

X9

®PatY(x) =dpa®3Ax)=span{| 0 0 |}
0
1

0 0

®Pa? Yx) = da@® Ax) =spa{ | 0 x(1-2x%3) | };
X1 XX
0

®a® Yx) = Pa® Ax) = da® Yx) + DPa® x);
QY ., (X) = da® Ax)" n span {In(x), i=1, 2}=
spar{0,1,0,0}; Q:?.,(X) = ®a®2(x)" n span{In(x),
i=1, 2} = spar{1,0,0,0}; Q¥ -, (x) = ®a® Ix)" n
span {Jn(x), i=1,2} = [O. Appropriate vector
functions are found as followsa™ (X) = col(Xp, Xs);
a@(x)=col(x,, x); a¥(x)=const EV(y)=y,; E(y)=y:;
£3(y)=const

The results of calculating are applied to isolability
analysis. Because of fulfilling (22) (or, that is the
same, (25)) foi=1, j=2 andi=2, j=1, one concludes

that faultp, is strongly detectable via residual sub-
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