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Abstract: An integrated strategy for the tracking control of product qualities in batch processes is 
proposed by combing batch-to-batch iterative learning control (ILC) with on-line shrinking 
horizon model predictive control (SHMPC) within a batch. ILC is used in batch-to-batch control 
and the convergence of batch-wise tracking error under ILC is guaranteed. On-line SHMPC 
within a batch can reduce the effects of disturbances immediately and improve the performance 
of the current batch run. The integrated control strategy can complement both strategies to obtain 
good performance of tracking trajectories. The proposed strategy is illustrated on a simulated 
batch polymerization process. The results demonstrate that the performance of tracking product 
qualities can be improved quite well under the integrated control strategy than under the simple 
batch-to-batch ILC, especially when disturbances exist. Copyright © 2005 IFAC  
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1. INTRODUCTION 
 
Batch-to-batch control exploits the repetitive nature of 
batch processes to refine the operating policy. 
Recently, ILC has been used to directly update input 
trajectory (Amann, et al., 1998). ILC can update the 
control trajectory for the next batch run using the 
information from previous batch runs so that the 
output trajectory converges asymptotically to the 
desired reference trajectory (Lee, et al., 2000; Doyle, 
et al., 2003; Xiong and Zhang, 2003). 
 
However, batch-to-batch control can only improve the 
performance of future batch runs and cannot improve 
the performance of the current batch run. Batch-wise 
control also cannot handle disturbances that change 
from batch to batch in a completely random fashion 
and may actually amplify their effects (Lee, et al., 
2002). On the other hand, if output variables can be 
measured or inferred accurately on-line, it is possible 

to implement on-line control that adjusts the control 
policy for the remaining batch period while the batch 
is going on (Lee and Lee, 2003). SHMPC (Russell, et 
al., 1998) is most suitable for on-line control of batch 
processes within the current batch. Because on-line 
SHMPC can respond to disturbances immediately and 
batch-to-batch ILC can correct any bias left 
uncorrected by the on-line controller, it is natural to 
explore the possibility of combining both methods to 
obtain good control performance. The integrated 
control strategy can combine the advantages of both 
methods (Flores-Cerrillo and MacGregor, 2003; Lee 
and Lee, 2003). If disturbances occur, the integrated 
control method is expected to diminish more rapidly 
the effect of disturbances than the results for only 
implementing ILC from batch to batch.  
 
Based on a batch-wise linear time-varying (LTV) 
perturbation model, the ILC method can be 
implemented from batch to batch for tracking 



 

trajectories and the convergence of tracking error is 
guaranteed (Xiong and Zhang, 2003). But in order to 
implement SHMPC on-line, more accurate predictive 
model has to be proposed based on the current output 
values and remaining input moves. A predictive LTV 
perturbation model also has to be utilized in a manner 
similar to the batch-to-batch control formulation. 
 
The rest of this paper is organized as follows: Section 
2 presents batch-to-batch ILC based on a batch-wise 
LTV perturbation model. Section 3 proposes a within- 
batch predictive model and the SHMPC method is 
implemented based on the model. The integrated 
control strategy of combining both methods is 
outlined in Section 4. Application of this strategy to a 
simulated batch polymerization process is given in 
Section 5. Section 6 draws some concluding remarks. 
 
 

2. BATCH-TO-BATCH CONTROL 
 
We consider batch processes where the batch run 
length (tf) is fixed and consists of N sampling intervals 
and all batches run from the same initial condition. 
The batch-to-batch control problem is to manipulate 
the whole control profile so that the product quality 
variables follow specific desired reference 
trajectories. It would be convenient to consider a 
batch-wise static function relating the control profile 
to the product quality profile over the whole batch 
duration. It can be written in matrix form as 

Yk = F(y0,Uk) + vk    (1) 

where the subscript k denotes the batch index, Yk= 
[yk

T(1),yk
T(2),…,yk

T(N)]T (y∈Rn, n≥1) is a matrix of 
product quality variables and can be obtained on-line 
or off-line, Uk=[uk(0), uk(1),…,uk(N-1)]T (u∈Rm, m=1 
in this work) is manipulated variable, y0 is the initial 
value, F(⋅) represents a non-linear static function, and 
vk is a matrix of measurement noises, respectively.  
 
Subtracting the time-varying nominal trajectories 
from the process operation trajectories removes the 
majority of the process non-linearity and allows linear 
modeling methods to perform well on the resulting 
perturbation variables (Russell, et al., 1998). An LTV 
perturbation model can be obtained by linearizing a 
non-linear model with respect to the nominal (mean or 
reference) trajectories. Linearizing the non-linear 
batch process model described by Eq(1) with respect 
to control sequence around the nominal trajectories, 
the following can be obtained 
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where Us is the nominal control trajectory, Ys is the 
nominal product quality trajectory and ys(0) = y0, and 
wk is a sequence of model errors due to the 
linearization (i.e., due to neglecting the higher oder 
terms). Then a batch-wise LTV perturbation model 
can be obtained as 

kY = Gs kU + dk      (3) 

where Gs=(∂F(y0,U)/∂U) )(| sk UU = , kU =Uk−Us and kY = 

Yk−Ys, respectively, are perturbation variables of 
control and product quality variables and )0(ky =0, 
and dk= wk+vk is the model disturbance sequence. Gs 
is batch-wise linear time-varying in the sense that it 
varies with Us, which usually varies from batch to 
batch. Due to the causality, the structure of Gs is of the 
following lower-block-triangular form: 

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡

=

−110

2120

10
0
00

NNNN

s

ggg

gg
g

L
MOMM

L
L

G                   (4) 

where gij∈Rn. The batch-wise LTV model Gs can be 
found by linearizing a non-linear model along the 
nominal trajectories or through direct identification 
from process operational data. Available methods for 
identifying Gs range from simple static linear 
regression, such as the least squares and its variants 
(Srinivasan, et al., 2003; Xiong and Zhang, 2003), to 
more elaborate optimal dynamic estimation methods 
like the Kalman filtering (Lee, et al., 2002). 
 
In this study, we utilize the model errors of the 
immediate previous batch run to modify predictions of 
the perturbation model. The model prediction and 
modified model prediction in the (k+1)th batch run are 
obtained respectively as 

ILC
ks

ILC
k 11

ˆˆ
++ = UGY      (5) 
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where ILC
kk

ILC
k YYε ˆˆ −=  and the superscript ILC 

represents batch-to-batch iterative learning control.  
Considering that the objective of ILC is to track the 
desired reference trajectories of product quality, 
tracking errors of process and modified model 
prediction are defined respectively as 

ILC
kd

ILC
k YYe −=       (7) 

ILC
kd

ILC
k YYe

~~ −=       (8) 

where dY =Yd−Ys, and Yd is the specified reference 
trajectory and assumed here to be set reasonably. Then 
an iterative relationship for ILC

ke~  along the batch 
index k can be obtained as (Xiong and Zhang, 2003) 
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where ILC
k

ILC
k

ILC
k UUU −=∆ ++ 11  represents the input change 

between two adjacent batch runs. Given the above 
batch-wise error transition model, the objective of ILC 
is to design a learning algorithm to manipulate the 
control policy so that the product qualities follow the 
specific desired reference trajectories from batch to 
batch. We consider solving the following quadratic 



 

objective function based on the modified prediction 
errors upon the completion of the kth batch run to 
update the input trajectory for the (k+1)th batch run 
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where Qs and Rs are positive definitive matrices and 
selected here as Qs=λq⋅IN and Rs=λr⋅IN. Through 
straightforward manipulation, the following ILC law 
can be obtained 
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The convergence of ILC alogrithm can be obtained 
and its proof can directly be derived from the 
convergence theorems in the literature. It can be 
proved that ILC

ke  will nominally converge as k→∞ if 
ILC

sKGI ˆˆ−  has all its eigenvalues inside the unit 

circle, i.e. 1 ||ˆˆ|| <− ILC
sKGI  (Xiong and Zhang, 2003). 

 
 

3. ON-LINE CONTROL WITHIN BATCH 
 
Batch-to-batch ILC strategy can only improve the 
performance of future batch runs and cannot improve 
the performance of the current batch run. In addition, 
it cannot handle disturbances that change from batch 
to batch in a completely random fashion and may 
actually amplify their effects (Lee, et al., 2002). 
However, if on-line measurement of output variables 
can be made on a reliable basis, one can explore the 
possibility of implementing on-line control that 
adjusts the future input policy while the batch is going 
on (Lee and Lee, 2003). On-line batch control can be 
established in a manner similar to the batch-to-batch 
control formulation.  
 
SHMPC (Russell, et al., 1998) can be utilized within 
the current batch. In SHMPC, the horizon of model 
prediction p is equal to the control horizon m and the 
both are shrinking with time t as the batch progresses, 
i.e. m=p=N-t. During on-line SHMPC, it is quite 
useful to update the future control profile based on the 
calculated batch-to-batch ILC profile ILC

k 1+U , instead of 
directly calculating future control actions. It can be 
represented by 

OLC
k 1+U (t+m) = OLC

k 1+Uδ (t+m) + ILC
k 1+U (t+m)    (12) 

where OLC
k 1+U (t+m)=[ OLC

ku 1+ (t),..., OLC
ku 1+ (t+m-1)]T is a 

vector of remaining m (m=N−t) control actions to be 
obtained, ILC

k 1+U (t+m) = [ ILC
ku 1+ (t),..., ILC

ku 1+ (t+m-1)]T is a 
vector of control values in the same m horizons that 
have been calculated by ILC, OLC

k 1+Uδ  is the deviation, 
and the superscript OLC represents the on-line 
control, respectively. 

In the batch-wise LTV perturbation model, output 
)(1 jy ILC

k+  at time j is related to all input values up to 

time j, )(1 jILC
k+U =[ )0(1

ILC
ku + ,…, )1(1 −+ ju ILC

k ]T, i.e. )(1 jyk+  

= fj ( )0(ILC
ky , )(1 jILC

k+U ) (j=1,2,…,N). From Eq(3) and 

Eq(4) and due to )0(ILC
ky =0, the prediction of the 

batch-wise LTV model can be represented by 
=+ )(ˆ

1 jy ILC
k  )(ˆ 1 jg ILC

k
T
j +U , where gj is the jth row of Gs in 

Eq(4). However, to utilize SHMPC within a batch 
based on the current value )(1 tyk+ , future values 

)(1 ityk ++  have to be predicted using future input 

sequence )(1 itOLC
k ++U = [ 1+ku (t),..., 1+ku (t+i-1)]T (i=1, 

2,…,m). Therefore, we cannot directly use the 
batch-wise model to predict the future values )(1 ityk ++  
at time t within a batch. In this study, using current 
output value )(1 tyk+  and future control values 

)(1 itOLC
k ++U , a new predictive LTV perturbation model 

within a batch is proposed: 
OLC
ky 1

ˆ
+ (t+i|t) = 10 +kt yg (t) + )(1 itg OLC

kti ++U      (13) 

where 0tg =diag{gt,01, …, gt,0n} and tig = [gt,i0, gt,i1,…, 
gt,ii-1]T (i=1,2,…,m). Eq(13) can be written in the the 
following matrix form  
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In order to identify the parameters, Gtm is partitioned 
according to the time index of output trajectory as a 
block column matrix Gtm= [gt1

T, gt2
T,…,gtm

T]T, where 
T

im
iitititti gggg ]0,,0,,,,[ 1,1,0, 321LK

−

−= (i=1,2,…,m). Then 

model parameters to be estimated are reformed as a 
vector i

tΘ =[gt,01, gt,02,…, gt,0n, gt,i0, gt,i1,…, gt,ii-1]T
 and 

can also be identified by the least-square regression 
method based on the historical process operation data 
set as presented in Xiong and Zhang (2003). 
 
If the predictive errors calculated from the batch-to- 
batch controller are not added to the predictive model 
within a batch, on-line control calculation ends up 
‘undoing’ the correction made by the batch-to-batch 
controller (Lee, et al.,2002). To improve the accuracy 
of the predictive model, predictive errors of the 
immediate previous batch run are utilized to modify 
predictions of the predictive model in the current 
batch run, which is defined as 

OLC
k 1

~
+Y (t+m|t) = )|(ˆ

1 tmtOLC
k ++Y  + OLC

kε̂ (t+m|t)   (15) 

where OLC
kε̂ (t+m|t)= kY (t+m)- )|(ˆ

1 tmtOLC
k ++Y . Substitute 



 

Eq(12) and Eq(14) to Eq(15), then OLC
k 1

~
+Y (t+m|t) can 

be rewritten further as 

OLC
k 1

~
+Y (t+m|t)= )(ˆ

10 tykt +G +Gtm )(1 mtILC
k ++U  

    + Gtm )(1 mtOLC
k ++Uδ + OLC

kε̂ (t+m|t)    (16) 

The tracking error of the modified predictive model 
for the remain trajectory is also defined as 

OLC
ke~ (t+m|t)= dY (t+m) − OLC

k 1

~
+Y (t+m|t)  (17) 

where dY (t+m)=[ )1( +tyd ,..., )( mtyd + ]T. The objective 
function of the SHMPC is defined as 
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where Qt and Rt are positive definitive weighting 
matrices with appropriate dimensions. Through 
straightforward manipulation, the following on-line 
controller within batch can be obtained 

)(1 mtOLC
k ++Uδ = OLC

tmK̂ η(t+m)     (19) 

where η(t+m)= )( mtd +Y − )()(ˆ
110 mtty ILC

ktmkt +− ++ UGG − 
OLC
kε̂  (t+m|t), and t

T
tmttmt

T
tm

OLC
tm QGRGQGK ˆ]ˆˆ[ˆ 1−+= .  

According to Eq(12), the SHMPC law can be obtained 
OLC
k 1+U (t+m) = )(1 mtILC

k ++U + OLC
tmK̂ η(t+m)    (20) 

Only the first element of OLC
k 1+U (t+m) is applied to the 

process and the same procedure is repeated with time t 
increased by 1 but control horizon m shrinked by 1. 
The SHMPC law is similar to that in Lee et al. (2002) 
except for the term η(t+m) instead of ek(t|t).  
 
 

4. INTEGRATED CONTROL 
 
Because on-line SHMPC can respond to disturbances 
immediately and batch-to-batch ILC can correct any 
bias left uncorrected by the on-line controller, it is 
natural to explore the possibility of combining them to 
obtain good performance of tracking trajectories. The 
integrated control strategy can combine the benefits of 
the both methods. The procedure of integrated control 
by combing batch-to-batch ILC with on-line SHMPC 
within batch is outlined as follows:  
 
Step 1. Based on the historical process operation data 

set, select the nominal trajectories (Us,Ys). 
Initially set k=0 and ILC

kU = OLC
kU =Us. 

Step 2. Based on ILC
kU , use batch-to-batch ILC to 

calculate the whole control trajectory ILC
k 1+U  of the 

(k+1)th batch run. The model prediction errors 
ILC
kε̂  are calculated and used to correct the 

batch-wise model predictions. Then based on the 

modified predictions ILC
k 1

~
+Y , a new control policy 

ILC
k 1+U  for the next batch is calculated by using the 

ILC law Eq(11). 
Step 3. During the (k+1)th batch, at time t (t=1,…,N), 

based on the calculated )(1 mtILC
k ++U  by ILC and 

the errors OLC
kε̂ (t+m|t) calculated in the previous 

batch, the remaining control policy OLC
k 1+U (t+m) is 

obtained by using SHMPC method Eq(20). Then 
its first element is applied to the process. Repeat 
this procedure in the current batch run until time t 
reaches the end of this batch. After completion of 
the (k+1)th batch run, both the output profile 1+kY  

and the whole on-line control policy OLC
k 1+U  are 

obtained. 
Step 4. Set =+

ILC
k 1U OLC

k 1+U  and k=k+1, return to step 2.  
 
It has been shown that convergence holds under some 
reasonable assumption in batch-to-batch ILC (Xiong 
and Zhang, 2003). SHMPC can further improve the 
control performance within a batch. Robustness of 
integrated control has not been investigated rigorously 
(Lee, et al., 2002). However, experience from 
extensive numerical studies demonstrates that 
integrated control has good  performance. 
 
 

5. APPLICATION TO A SIMULATED BATCH 
POLYMERIZATION REACTOR 

 
This example involves a thermally initiated bulk 
polymerization of styrene in a batch reactor. The 
differential equations describing the polymerization 
process are given by Kwon and Evans (1975) through 
reaction mechanism analysis and laboratory testing. 
Gattu and Zafiriou (1999) report the parameter values 
of the first principle model. The product quality 
variables include the conversion (y1), the 
dimensionless number-average chain lengths (NACL, 
y2) and dimensionless weight-average chain lengths 
(WACL, y3). The input variable is u=T/Tref, where T is 
the absolute temperature of the reactor and Tref is the 
reference value. In this study, the final time tf is fixed 
to be 313 minutes and the batch length is divided into 
N equal stages, and initial values of the outputs are 
y1(0)=0, y2(0)=1, and y3(0) =1. The desired product 
reference trajectory Yd was taken from Gattu and 
Zafiriou (1999).  
 
Thirteen batches of process operation under different 
temperature profiles were simulated from the 
mechanistic model and used as the historical process 
data sets for building relationship between u and y= 
[y1, y2, y3]T. A batch-wise LTV perturbation model Gs 
is utilized to build the relationship between u and y. A 
predictive model (Gt0, Gtm) within a batch is built to 
represent the dynamic model between u and y, and 
parameters of the model are estimated by using the 
least-square regression method. 
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Fig. 1.  Convergence of RMSE under two strategies in 

different time stages: (a) N=5 (b) N=10 
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(N=10)  
 
To investigate the performance of the proposed 
integrated control strategy, it is compared with the 
simple batch-to-batch ILC scheme. The parameters in 
ILC were set as Q=IN and R=0.05IN, while the 
parameters in integrated control were set as Qt=Im and 
Rt=0.05Im, where m≤N and it is shrinking with time t 
during a batch. Here two values of time stage N (N = 
10 and N = 5) are studied. The results under two 
control strategies are shown in Fig. 1 and Fig. 2. 
Although the number of parameters to be estimated 
when N=10 is more than those for N=5, the models are 
more accurate than those for N=5 and the results for 
N=10 are slightly better than those for N=5 under two 
strategies. Fig. 1 shows the RMSE of tracking error of 
product quality ek under two strategies at different 
time stages. Since the final product quality is of the 
main interest in batch process operation, the tracking 
errors ek(tf) at the batch end-point from these two 
strategies are also compared, as shown in Fig. 2. Fig 1 
and Fig 2 show that ek(tf) is also improved gradually 
while the whole trajectory converges asymptotically 
to the desired trajectory. It can also be seen that when 
N=10, both the RMSE of ek and ek(tf) have almost 
converged after about 3 batch runs under integrated 

control strategy, but they converge after 8 batch runs 
under the simple batch-to-batch ILC scheme. Fig. 3 
and Fig. 4 show, respectively, the product quality 
profiles Yk and control profile Uk of the 1st, 2nd, 5th and 
15th batch runs when N=10. It can be seen that Yk has 
already converged to the desired reference Yd after 5 
batch runs under the integrated control strategy. As 
can be seen, the integrated control strategy has the 
advantage of combined error correction within batch 
and the gradual reduction to the minimum error 
afforded by the batch-to-batch control.  
 
We also consider how disturbances that occur just for 
a single batch affect the batch-to-batch behavior of the 
product qualities under the two control strategies. The 
scenario here is that the kinetic parameter Am (the 
frequency factor of the overall monomer reaction) 
changes from nominal value Am0 to 1.2Am0 in the 10th 
batch and switches back to the original value at the 
11th batch. Fig. 5 shows the RMSE of the product 
qualities under the two strategies. 
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Fig. 3. Trajectories of quality product variables under 

integrated control (N=10): (a) y1 (b) y2 (c) y3 
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Fig. 4.  Convergence of Uk under integrated control 
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Fig. 5.  Comparison of RMSE in the disturbance case 

(N=10) 
 

In the case of the simple batch-to-batch ILC, the 
disturbance of the 10th batch resulted in a large error 
in that batch, and it caused incorrect control profile in 
subsequent batches. Errors of subsequent batches 
decreased by the batch-to-batch ILC action, but the 
error has more effect on the subsequent batches. In the 
case of integrated control, errors in the 10th batch 
were reduced significantly through the on-line 
SHMPC method. The effect of the disturbance does 
carry over to the next batch due to the batch-to-batch 
control but the effect is diminished more rapidly 
compared with the simple batch-to-batch ILC.  
 
 

6. CONCLUSION 
 
An integrated batch-to-batch ILC and on-line SHMPC 
strategy for the tracking control of product qualities in 
batch processes is proposed. On-line SHMPC within a 
batch can decrease the effects of disturbances 
immediately, while the batch-to-batch ILC can correct 
the bias left uncorrected by the on-line controller. The 
integrated strategy can complement each other to 
obtain good performance of tracking trajectories. The 
proposed method is illustrated on a simulated batch 
polymerization process. The results demonstrate that 
the performance of tracking product qualities can be 
improved quite well under the integrated control 
strategy than under the simple batch-to-batch ILC, 
especially when disturbances exist.  
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