
MINIMUM TIME CONTROL USING
STRAIGHT TRANSFER FOR A ROTARY

CRANE

Ying Shen ∗, Kazuhiko Terashima ∗and
Ken’ichi Yano ∗∗

∗ Dept. of Production Systems Engineering
Toyohashi University of Technology

Hibarigaoka 1-1, Tempaku-cho, Toyohashi, 441-8580 Japan
FAX : +81-532-44-6690

E-mail : shen, terasima@procon.tutpse.tut.ac.jp
∗∗ Dept. of Machanics Systems Engineering

Gifu University
Yanagido 1-1, Gifu, 501-1139 Japan

FAX : +81-58-293-2507
E-mail : yano@cc.gifu-u.ac.jp

Abstract: This paper provides a feedforward control method for controlling the
load vibration of a rotary crane using a straight transfer transformation (STT)
model. The parameters of the model were geometrically derived. The minimum
time control problem was solved for the revised STT model by means of both
clipping-off technique for the constraints of control inputs amplitude and the
Bisection Method. Preshaping control method is also discussed for comparison
with proposed minimum time control. Finally, proposed control method using
the STT model was demonstrated to be effective in eliminating the influence of
centrifugal force through simulation and experiments. Copyright c©2005 IFAC
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1. INTRODUCTION

The fundamental motions of a rotary crane are
rotation, boom luffing and load hoisting. Using
a crane, a load can be transferred to any place
within a limited region. With this advantage, ro-
tary cranes are extensively applied for transferring
loads in factories, construction sites, harbors and
so on. Fig.1 shows a laboratory model of a rotary
crane. One major drawback to rotary cranes is
the uncontrolled movement of the load. Because
centrifugal force is produced by the rotary motion,
the load sways easily.

Many studies attempting to control the sway of ro-
tary crane loads have been published. Sakawa and
Nakazumi applied an open-loop scheme with feed-
back control scheme to allow the sway of the load
to decay at the end point of transfer(Sakawa and
Nakazumi, 1985). Stefan et al. presented a feed-
back method to control the load rotation(Stefan
and Eberhard, 2000). Takaki and Nishimura de-
signed a gain-scheduled H∞ compensator based
on the LMI for the length of the load rope to
control the sway(Takaki, 1998). But these papers
did not consider the condition of simultaneous
rotary motion and boom luffing motion. Using a
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Fig. 1. A laboratory rotary crane built in this
paper

rotary crane, Yamazaki et al. presented the idea
of a straight transfer without centrifugal force
that makes the crane tip and the load move on
a straight line in the X-Y coordinates by simul-
taneous rotation and boom luffing(Yamazaki and
Hisamura, 1978). Although straight transfer is
limited to working spaces within 180 degrees, it
is obvious that straight transfer by a rotary crane
uses less space to transfer a load from starting
point to end point than rotational transfer.

In recent years, the authors have also studied
control of the rotary crane(Shen and Terashima,
2002; Shen and Yano, 2003). Authors present a
general optimal control method of a rotary crane
using straight transfer by controlling the rota-
tion, boom’s luffing and load’s hoisting simulta-
neously, and a straight transfer transformation
(STT) model was derived. Using the Davidon-
Fletcher-Powell (DFP) method for the STT model
considering the requisite change in rope length,
the actual control inputs for a rotary crane were
obtained.

Based on (Shen and Yano, 2003), this paper
presents the minimum time control for STT by
means of both clipping-off technique for the con-
straints of control inputs amplitude and the Bi-
section Method. The minimum time control can
reduce the transfer time and well control the vi-
bration angle of the load, even if the length of rope
changed. Further, the present method is compared
with Preshaping control method effective in prac-
tical application and evaluated.

2. MINIMUM TIME CONTROL

In (Shen and Yano, 2003), the STT model was
derived as follows:

ψ̈ = uψ (1)

ξ̈ = −g
l

sin ξ +
¨̃x′

l
cos ξ −

¨̃z′

l
sin ξ − 2

l̇ξ̇

l
(2)
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′
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Fig. 2. Straight transfer transformation model

¨̃x′ = R
{
ψ̈ cos (ψ − ψi) − ψ̇2 sin (ψ − ψi)

}
(4)

¨̃z′ = −R
{
ψ̈ sin (ψ − ψi) + ψ̇2 cos (ψ − ψi)

}
(5)

In addition to the suppression control of residual
vibration, it is hoped to safely transfer the load
as fast as possible while satisfying the restricted
conditions of the actual apparatus. Minimum time
control is one of the effective methods to satisfy
such requirements. Here, the case in which the
rope length is varied will be also discussed. For
this case, the transfer process can be divided
into three steps: an accelerating motion step, a
uniform motion step and a decelerating motion
step. If the STT model is directly used to calculate
the acceleration ψ̈, the velocity of the imaginary
boom will be constant during the uniform motion,
but at this time, the acceleration of the load in
x′ direction (see Fig.2) is not zero, and there
appears some sway. In order to keep the swing
angle of the load during the uniform motion
at zero, the independent variable ¨̃x′ is proposed
instead of ψ̈ as the control input, and the STT
model can be easily deformed to the following
type:

¨̃x′ = ux (6)

ψ̈ =
ux

R
− ψ̇2 sin(ψi − ψ)
cos(ψi − ψ)

(7)

¨̃z′ =
ux sin(ψi − ψ) − Rψ̇2

cos(ψi − ψ)
(8)

ξ̈ = −g
l

sin ξ +
¨̃x′

l
cos ξ −

¨̃z′

l
sin ξ − 2

l̇ξ̇

l
(9)

l̈ =
¨̃z
′
+ ξ̈l sin ξ + ξ̇2l cos ξ + 2l̇ξ̇ sin ξ

cos ξ
(10)

Here ux presents the acceleration of the load in x′

direction.

Transformation from virtual control input ux in
Eq.(6) obtained for STT model to control inputs
θ̈(t), φ̈(t) and l̈(t) in absolute coordinates of ro-
tary crane can be easily achieved by coordinate-
transformation, which is in detail described in



(Shen and Yano, 2003). Here, in real rotary crane
as show in Fig.1, θ̈(t), φ̈(t) and l̈(t) are accel-
eration of rotary angle, luffing angle and rope
length, respectively. Further, actual control inputs
in experiments are uθ, uφ and ul, where respec-
tively, input voltages to motor driver to produce
θ̈(t), φ̈(t) and l̈(t), and its relationship between
uθ and θ̈, uφ and φ̈, ul and l̈ are expressed by
second-order lag differential equation(Shen and
Yano, 2003). Now the problem is to obtain the ac-
celeration input ux, when the rotary crane starts,
while maintaining ux at zero during the uniform
motion. Then, if the swing angle is suppressed
at zero at the end of acceleration interval, there
is no residual vibration during the constant ve-
locity interval. Considering the restricted condi-
tions for the actual crane, the maximum value of
ux is selected to be uxmax = 1[m/s2], and the
maximum velocity of the load is selected to be
vxmax = 0.17[m/s] by simulation analysis. Then
this problem can be reconfigured as follows:

For the constrained magnitude |ux| ≤ 1[m/s2],
with the terminal condition

[ ˙̃xtf ξtf ξ̇tf ]T = [0.17 0 0]T (11)

The index function is chosen to be

J = x(tf )TWx(tf), (12)

where x(tf) = [v − ˙̃xtf 0 − ξtf 0 − ξ̇tf ]T ,

W = diag[105 105 105]
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Fig. 3. Clipping-off process: (a) ith iteration,
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}
Here, tf is the end time of acceleration interval.
Then, the problem is to find the optimum input
ux such that tf becomes minimum time under the
constraints of control input’s amplitude.

This is a well-known problem as two-point bound-
ary problem. In general, it is impossible to solve
this problem analytically except for a simple case.
The input shape of minimum time control is Bang-
Bang Type. There are many numerical methods

to solve the nonlinear optimal control. One of the
effective methods is a conjugate-gradient method.
For the fixed end time control, conjugate gradient
method is a powerful way using DFP method,
or FR (Fletcher-Reeves) method. Then, in this
paper, in order to find the minimum time control,
we extended the method of DFP for the fixed
end time problem to the minimum time control
problem by reducing the end time. Thus, the
benefit of this method enables us to solve both
problem of the fixed end time and the minimum
time control in the same framework. Now, con-
trol input constraints problem can be resolved
by clipping-off gradient algorithms (Quintana and
Davision, 1974), where the FR method is used as
an optimization technique.

Fig. 3 depicts the clipping-off process: given
an estimate ui for the optimal u∗, compute the
gradient gi of u, and by means of this gradient,
determine a new estimate ũi+1, which, when it is
clipped off at the upper and lower bounds, gives
ui+1. This means that a gradient technique is
used to compute only the ’ unsaturated ’ segments
of ui+1, while the Maximum Principle is applied
in finding the ’saturated’ segments of ui+1. This
method is easily extended to the case of DFP.
But using DFP method, only step 7(Shen and
Yano, 2003), that is to say, a new di, needs to be
calculated, and the other steps are the same. Here,
the new di is calculated as follows:

di = −gi

−βi
i−1∑
k=0

[
(sk, gi)
(yk,yk)

sk − (Bkyk, gi)
yk,Bkyk

Bkyk

]

, and

βi =




1, I2 > 0 or I2 < 0 but I1 > −I2

γβm, I2 < 0 or I1 ≤ −I2

0, I2 = 0

(13)

, where

I1 =
∫
Ui

gigidt

I2 =
∫
Ui

gi

i−1∑
k=0

[
(sk, gi)
(yk,yk)

sk − (Bkyk, gi)
yk,Bkyk

Bkyk

]
dt

and 0 < γ < 1, βm = − I1
I2

. Ui presents the non-
optimal saturation area.

Eq.(13) is straightforwardly proved in the follow-
ing way.



For all values of ui and Jui , the time area in which
| ui |> 1 and uiJui < 0 is defined as the optimal
saturation area Si, and the remaining time area
is defined as the non-optimal saturation area Ui.
Then,

δJi =
∫
Ui

∂H

∂u

∣∣∣∣
i

δuidt (14)

, where

δui =



αidi, t ∈ Ui

0, t ∈ Si

(15)

, and

∂H

∂u

∣∣∣∣
i

= gi (16)

Then, substituting Eq.(15) and Eq.(16) into
Eq.(14), it follows that

δJi = αi

∫
Ui

gididt, (17)

and then it follows:

δJi = −αi[I1 + βiI2] (18)

According to Eq.(13), the following result can be
obtained:

J(ui+1) < J(ui) i = 0, 1, 2, · · ·, (19)

which means using βi to calculate the searching
direction di, and ui+1 = ui + αidi can be calcu-
lated, and the DFP algorithm converges to a cal-
culation of the performance index. This completes
the proof.

Here, in this paper, the minimum time tf can be
searched by the Bisection Method. The algorithm
of the Bisection Method is:

[Procedure of finding Minimum Time by
Bisection Method]

(Step1) Give an arbitrary initial number of sam-
pling N0, and the minimum time tf = N0 × ∆t,
here ∆t = 0.01s represents the sampling period.
And also time step length h to renew the end time.

(Step2) Within Nc = 500, (Nc is the limited
calculating number), calculate the index function
J(Ni∆t). If the terminal condition J < ε is
satisfied, then letNi+1 = Ni− h

2
(i = 0, 1, · · ·), and

then, the end time should be shorten; otherwise,
let Ni+1 = Ni + h

2 , in which case the end time
should be prolonged. Here int(h2 ) → h.

(Step3) If h �= 1, then let i = i+ 1, goto Step2;
if h = 1 and the terminal condition is satisfied,

then Ni∆t is the optimum solution, otherwise, the
previous calculating resultNi−1∆t is the optimum
solution(the minimum time).

(Remark) The initial value of N0 and h is given
as follows:

N0 = c× vxmax

uxmax

× 1
∆t

= c× 0.17
1

× 1
0.01

,

and

h = 100.

With the experiment condition, initial position of
the crane tip is (xi, yi, zi) = (0.73, 0, 1.05)m, and
the final position is (xf , yf , zf) = (0, 0.73, 1.05)m,
the factor c is selected to be 3.

3. SIMULATION AND EXPERIMENTAL
RESULTS

Table 2 shows the calculating result for each step
by Bisection Method. Here, i presents the calcu-
lation step by Bisection Method, tf presents the
minimum acceleration (or deceleration) time. Nc
presents the calculation number by DFP method,
tc presents the calculation time, and J presents
the index function. The computer for calculation
is Endeavor(R)4(3.20GHz).

Table 1. Calculating result of tf using
proposed Method.

i tf [s] Nc J tc[s] h

0 0.51 100 226 3.1 100
1 1.01 42 4.8 × 10−3 0.8 50

2 0.76 100 4.72 3.7 25
3 0.89 55 4 × 10−3 1.1 13

4 0.82 100 0.036 3.6 7
5 0.86 83 3.4 × 10−3 1.2 4

6 0.84 95 4.9 × 10−3 1.6 2
7 0.83 100 4.9 × 10−3 2.9 1
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Fig. 4. The acceleration of the load in x′ direction

Fig.4(a) shows the acceleration input of mini-
mum time control, and Fig.5 shows the simula-
tion and experimental results.

All of the results of the experiment agree with the
simulation results, and the deceleration input is
obtained from −ux simply. The optimal comput-
ing time is 18s. If the position model(Shen and
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Fig. 5. The simulation and experimental result
with the minimum time control(tall = 6.88s)

Yano, 2003) is used, it will take the time of about
25 times to compute, compared with the case of
using STT model. Thus, the proposed method is
effective.

4. COMPARISON OF THE PROPOSED
MINIMUM TIME CONTROL WITH

PRESHAPING CONTROL

In order to compare with the proposed method,
Preshaping control effective in real application
is introduced in this section. The input shaping
method was developed by Neil Singer and Warren
Seering(Singer and Seering, 1990). The general
principle is to superpose two input responses so
that the input responses cancel the vibrations
after a short time delay.

In order to get a linear model for the vibration
angle, for Eq. (4), if ξ is very small, sin ξ ≈ ξ,
cos ξ ≈ 1, and omit last two parts, then

ξ̈ =
ux0
l0

− g

l0
ξ (20)

Here, l0 presents the standard rope length, and
ux0 presents the standard acceleration input. If it
is defined that ωn =

√
g
l0

and K = 1
g , the transfer

function of Eq.(20) is as follows:

G(s) =
ξ(s)
ux0(s)

=
Kω2

n

s2 + ω2
n

(21)

Here, the damping factor ζ is zero. If the standard
rope length is chosen to be l0 = 0.9m, then

resonant frequency ωn =
√

9.8
0.9 = 3.3rad/s. Then

the input time T and the input amplitudeKm can
be calculated as follows:




T =
π

ωn
√

1 − ζ2
= 0.95s

Km = exp(
−ζπ√
1 − ζ2

) = 1

(22)

Considering that uxmax = 1[m/s2], vxmax =
0.17[m/s], the acceleration or deceleration time is
ta = t1+T = vxmax

uxmax
+T = 0.17+0.95 = 1.12s, and

the uniform time is tu = S
uxmax t1

− T = 1.03
1×0.17 −

0.95 = 5.14s, and the whole transfer time is
tall = tu + 2ta = 7.4s.
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Fig. 7. Experimental result by Preshaping input
with the change of rope length

Fig. 4 shows that acceleration input ux0 was calcu-
lated from Preshaping method, and Fig. 7 shows
the simulation and experimental results consider-
ing the change of rope length, and it is clear that
the vibration occurs even if during the uniform
transfer. In order to eliminate this vibration, the
acceleration input must be re-calculated, and the
principle will be introduced as follows, which is
proposed by Toyohara, et al in (Toyohara and
Shimotsu, 2003).

Considering the change of the rope length, Eq.(4)
can be changed as follows:

ξ̈ =
ux
l

− g

l
ξ − 2

l̇ξ̇

l
(23)

Letting Eq.(23) be equal to Eq.(20), that is to say

ux
l

− g

l
ξ − 2

l̇ξ̇

l
=
ux0
l0

− g

l0
ξ (24)

Namely, this means that the vibration angle is the
same as that without changing the rope length.
From Eq.(24), the new acceleration input can be
obtained as follows:



ux =
l

l0
+ (1 − l

l0
)gξ + 2l̇ξ̇ (25)
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Fig. 8 shows the new acceleration input, and Fig. 9
shows the simulation and the experimental results
using the new input. The vibration during the
uniform transfer disappears.

Advantage aspect of Preshaping control is that
the acceleration input can be calculated simply
and immediately. Then the effect on eliminating
the vibration angle is also good, but comparing to
the proposed minimum time control, the transfer
time by Preshaping control is longer. In the case
that the transfer route is previously fixed, the min-
imum time control input is calculated offline, and
the transfer efficiency will be excellent compared
with the Preshaping control.

5. CONCLUSION

The main results and contributions of this paper
are summarized as follows:

(1) In order to eliminate the effect of the cen-
trifugal force, three motions of rotation, boom
luffing and rope hoisting are simultaneously being
moved, so that the load is transferred by a straight
line and STT model is derived.

(2) In order to keep the vibration angle zero
during the uniform velocity transfer, a revised
STT model based on STT model is derived. Using
this model, not only the minimum time problem,

but also the Preshaping control problem can be
resolved simply.

(3) Utilizing the revised STT model, the minimum
time control problem of a load in the straight
transfer with rope length change could be solved
by using both of DFP method with clipping-off
algorithm and Bisection method.

(4) Comparing with Preshaping control, it is
demonstrated through experiments that the pro-
posed minimum time controls method not only
controls the residual vibration angle easily, but
also can reduce the whole transfer time.
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