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1. INTRODUCTION

In this paper we present local and nonlocal pertur-
bation analysis of the H∞-optimization problem
for continuous-time linear multivariable systems.
First, nonlinear local perturbation bounds are de-
rived for the matrix equations which determine
the problem solution. The new local bounds are
tighter than the existing condition number based
linear perturbation estimates.

Then, using the nonlocal perturbation analysis
techniques developed by the authors, the nonlin-
ear local bounds are incorporated into nonlocal
perturbation bounds which are less conservative
than the existing nonlocal perturbation estimates
for the H∞-optimization problem. The nonlocal
perturbation bounds are valid rigorously in con-
trast to the local bounds in which higher order
terms are neglected.

We use the following notations: Rm×n – the space
of real m × n matrices; Rn = Rn×1; In – the
unit n × n matrix; A> – the transpose of A;
‖A‖2 = σmax(A) – the spectral norm of A, where

σmax(A) is the maximum singular value of A;
‖A‖F =

√
tr(A>A) – the Frobenius norm of A;

‖ .‖ is any of the above norms; vec(A) ∈ Rmn – the
column-wise vector representation of A ∈ Rm×n;
Π ∈ Rn2×n2

– the vec-permutation matrix, so that
vec(A>) = Πvec(A) for A ∈ Rn×n; A ⊗ B – the
Kronecker product of the matrices A and B. The
notation “:=” stands for “equal by definition”.

2. STATEMENT OF THE PROBLEM

Consider the linear continuous-time system

ẋ(t) = Ax(t) +Bu(t) + Ev(t)

y(t) = Cx(t) + w(t)

z(t) =

[
Dx(t)

u(t)

] (1)

where x(t) ∈ Rn, u(t) ∈ Rm, y(t) ∈ Rr and
z(t) ∈ Rp are the system state, input, output and
performance vectors respectively, v(t) ∈ Rl and



w(t) ∈ Rr are disturbances and A,B,C,D,E are
constant matrices of compatible dimensions.

The H∞-optimization problem is stated as fol-
lows: Given the system (1) and a constant λ > 0,
find a stabilizing controller

u(t) = −Kx̂(t)
˙̂x(t) = Âx̂+ L((y(t)− Cx̂(t))

which satisfies

‖H‖∞ := sup
Re s≥0

‖H(s)‖2 < λ

whereH(s) is the closed-loop transfer matrix from
v, w to z.

If such a controller exists, then (Kwakernaak,
1993)

K = BTX0

Â = A− Y0(CTC −DTD/λ2)

L = Z0Y0C
T

where X0 ≥ 0 and Y0 ≥ 0 are the stabilizing
solutions to the Riccati equations

ATX +XA−X(BBT − EET /λ2)X (2)

+DTD = 0

AY + Y AT − Y (CTC −DTD/λ2)Y (3)

+EET = 0

and the matrix Z0 is defined from

Z0 = (I − Y0X0/λ
2)−1 (4)

under the assumption ‖Y0X0‖2 < λ2.

In the sequel we shall write equations (2), (3) as

ATX +XA−XSX +Q = 0 (5)

AY + Y AT − Y RY + T = 0 (6)

where Q = DTD, T = EET , S = BBT −
T/λ2, R = CTC −Q/λ2.

Suppose that the matrices A, . . . , E in (1) are
subject to perturbations ∆A, . . . , ∆E. Then we
have the perturbed equations

(A+ ∆A)TX +X(A+ ∆A) (7)

−X(S + ∆S)X +Q+ ∆Q = 0

(A+ ∆A)Y + Y (A+ ∆A)T (8)

−Y (R+ ∆R)Y + T + ∆T = 0

Z = (I − Y X/λ2)−1 (9)
where

∆Q = ∆DTD +DT∆D + ∆DT∆D

∆T = ∆EET + E∆ET + ∆E∆ET

∆S = ∆BBT +B∆BT + ∆B∆BT −∆T/λ2

∆R = ∆CTC + CT∆C + ∆CT∆C −∆Q/λ2.

Denote by ∆M = ‖∆M‖ the absolute pertur-
bation of a matrix M . It is natural to use the
Frobenius norm ‖ .‖F identifying the matrix per-
turbations with their vector-wise representations.

Since the Fréchet derivatives of the left-hand sides
of (5), (6) in X and Y at X = X0 and Y = Y0 are
invertible (see the next section) then, according
to the implicit function theorem (Kantorovich et
al., 1977), the perturbed equations (7), (8) have
unique solutions X = X0 +∆X and Y = Y0 +∆Y
in the neighborhoods of X0 and Y0 respectively.
Assume that ‖Y X‖ < λ2 and denote by Z = Z0 +
∆Z the corresponding solution of the perturbed
equation (9).

The sensitivity analysis of H∞-optimization prob-
lem aims at determining perturbation bounds for
the solutions X,Y and Z of equations (5), (6) and
(4) as functions of the perturbations in the data
A,S,Q,R, T .

Using the approach developed in (Konstantinov
et al., 1986; Konstantinov et al., 1987), local per-
turbation bounds for the H∞-optimization prob-
lem have been obtained in (Christov et al., 1995;
Konstantinov et al., 1995), based on the condition
numbers of equations (5), (6) and (4). However,
the local estimates, based on condition numbers,
may eventually produce pessimistic results. At the
same time it is possible to derive local, first order
homogeneous estimates, which are tighter in gen-
eral (Konstantinov et al., 1999a; Konstantinov et
al., 1999b). In this paper, using the local perturba-
tion analysis technique developed in (Konstanti-
nov et al., 1999a; Konstantinov et al., 1999b), we
shall derive local first order perturbation bounds
which are less conservative than the condition
number based bounds in (Christov et al., 1995;
Konstantinov et al., 1995).

Local perturbation bounds have a serious draw-
back: they are valid in a usually small neigh-
borhood of the data A, . . . , T , i.e. for ∆ =
[∆A, . . . ,∆T ]T asymptotically small. In practice,
however, the perturbations in the data are always
finite. Hence the use of local estimates remains
(at least theoretically) unjustified unless an ad-
ditional analysis of the neglected terms is made,
which in most cases is a difficult task. In fact, to
obtain bounds for the neglected nonlinear terms
means to get a nonlocal perturbation bound.

Nonlocal perturbation bounds for the continuous-
time H∞-optimization problem have been ob-
tained in (Christov et al., 1995; Konstantinov et
al., 1995) using the Banach fixed point principle.
In this paper, applying the method of nonlinear
perturbation analysis proposed in (Konstantinov
et al., 1999a; Konstantinov et al., 1999b) we shall
derive new nonlocal perturbation bounds for the
problem considered, which are less conservative



than the nonlocal bounds in (Christov et al., 1995;
Konstantinov et al., 1995).

3. LOCAL PERTURBATION ANALYSIS

Consider first the local sensitivity analysis of
the Riccati equation (5). Denote by F (X,Σ) =
F (X,A, S,Q) the left-hand side of (5), where
Σ = (A,S,Q) ∈ Rn.n × Rn.n × Rn.n. Then
F (X0,Σ) = 0.

Setting X = X0 + ∆X, the perturbed equation
(7) may be written as

F (X0 + ∆X,Σ + ∆Σ) = (10)

F (X0,Σ) + FX(∆X) + FA(∆A) + FS(∆S)

+FQ(∆Q) +G(∆X,∆Σ) = 0

where FX(.), FA(.), FS(.) and FQ(.) are the
Fréchet derivatives of F (X,Σ) in the correspond-
ing matrix arguments, evaluated for X = X0, and
G(∆X,∆Σ) contains the second and higher order
terms in ∆X, ∆Σ.

A straightforward calculation leads to

FX(M) = ATcM +MAc

FA(M) = X0M +MTX0

FS(M) = −X0MX0

FQ(M) = M

where Ac = A − (BBT − EET /λ2)X0. Denote
by MX ∈ Rn

2.n2
, MA ∈ Rn

2.n2
, MS ∈ Rn

2.n2

the matrix representations of the operators FX(.),
FA(.), FS(.) :

MX = ATc ⊗ In + In ⊗ATc

MA = In ⊗X0 + (X0 ⊗ In)Π

MS = −X0 ⊗X0

(11)

where Π ∈ Rn2.n2
is the permutation matrix such

that vec(MT ) = Πvec(M) for each M ∈ Rn.n
and vec(M) ∈ Rn2

is the column-wise vector
representation of M .

It follows from (10)

FX(∆X) = −FA(∆A)− FS(∆S)−∆Q

−G(∆X,∆Σ).
(12)

Since Ac is stable, the operator FX(.) is invertible
and (12) yields

∆X = −F−1
X ◦ FA(∆A)− F−1

X ◦ FS(∆S)

−F−1
X (∆Q)− F−1

X (G(∆X,∆Σ)).
(13)

The operator equation (13) may be written in a
vector form as

vec(∆X) = N1vec(∆A)

+N2vec(∆S)

+N3vec(∆Q)

−M−1
X vec(G(∆X,∆Σ))

(14)

where N1 = −M−1
X MA, N2 = −M−1

X MS , N3 =
−M−1

X .

It is easy to show that the well-known condition
number based perturbation bound (Christov et
al., 1995; Konstantinov et al., 1995) is a corollary
of (14). Indeed, it follows from (14)

‖vec(∆X)‖2 ≤ ‖N1‖2‖vec(∆A)‖2

+ ‖N2‖2‖vec(∆S)‖2

+ ‖N3‖2‖vec(∆Q)‖2

+ O(‖∆̃‖2).

Having in mind that ‖vec(∆M)‖2 = ‖∆M‖F =
∆M and denoting KX

A = ‖N1‖2, KX
S = ‖N2‖2,

KX
Q = ‖N3‖2, we obtain

∆X ≤ KX
A ∆A+KX

S ∆S+KX
Q∆Q+ O(‖∆̃‖2)(15)

where KX
A , KX

S , KX
Q are the individual condition

numbers of (5) and ∆̃ = [∆A,∆S ,∆Q]T . Denot-
ing ∆max = max{∆A,∆S ,∆Q} and taking into
account the inequalities

KX
A ≤ 2KX

Q ‖X0‖

KX
S ≤ KX

Q ‖X0‖2
we get

∆X ≤ KX
Q (1 + ‖X0‖)2∆max (16)

where KX
Q (1 + ‖X0‖)2 is the overall condition

number of (5).

Relation (14) also gives

∆X ≤ ‖Ñ‖2‖∆̃‖2 + O(‖∆̃‖2) (17)

where Ñ = [N1, N2, N3].

Note that the bounds in (15) and (17) are al-
ternative, i.e. which one is less depends on the
particular value of ∆̃.

There is also a third bound, which is always less
than or equal to the bound in (15). We have

∆X ≤
√

∆̃TU(Ñ)∆̃ + O(‖∆̃‖2)

where U(Ñ) is the 3 × 3 matrix with elements
uij(Ñ) = ‖NT

i Nj‖2.



Since
∥∥NT

i Nj
∥∥

2
≤ ‖Ni‖2‖Nj‖2 we get√

∆̃TU(Ñ)∆̃ ≤ ‖N1‖2∆A+‖N2‖2∆S+‖N3‖2∆Q.

Hence we have the overall estimate

∆X ≤ f(∆̃) + O(‖∆̃‖2), ∆̃→ 0 (18)

where

f(∆̃) = min{‖Ñ‖2‖∆̃‖2,
√

∆̃TU(Ñ)∆̃ } (19)

is a first order homogeneous and piece-wise real
analytic function in ∆̃.

The local sensitivity of the Riccati equation (6)
may be determined using the duality of (5) and
(6). For the estimate of ∆Y we have

∆Y ≤ g(∆̂) + O(‖∆̂‖2), ∆̂→ 0 (20)

where

g(∆̂) = min{‖N̂‖2‖∆̂‖2,
√

∆̂TU(N̂)∆̂ } (21)

∆̂ = [∆A,∆R,∆T ]T and N̂ is determined replac-
ing in (11) Ac and X0 by ÂT and Y0, respectively.

Consider finally the local sensitivity analysis of
equation (4). In view of (9) we have

∆Z = [In − (Y0 + ∆Y )(X0 + ∆X)/λ2]−1 − Z0

=Z0WZ0 + O(‖W‖2) (22)

where W = (Y0∆X + ∆Y X0 + ∆Y∆X)/λ2.

It follows form (22)

∆Z ≤ ‖ZT0 ⊗ Z0‖2‖W‖F + O(‖W‖2)

and denoting ζ0 = ‖ZT0 ⊗ Z0‖2 we get

∆Z ≤ ζ0(‖Y0‖2 ∆X + ‖X0‖2 ∆Y )/λ2

+ O(‖(∆X,∆Y )‖2)

≤ ζ0(‖Y0‖2 f(∆̃) + ‖X0‖2 g(∆̂))/λ2 (23)

+ O(‖∆‖2).

The relations (18), (20) and (23) give local first
order perturbation bounds for the continuous-
time H∞-optimization problem.

4. NONLOCAL PERTURBATION ANALYSIS

The local perturbation bounds are obtained ne-
glecting terms of order O(‖∆‖2, i.e. they are valid
only asymptotically, for ∆→ 0. That is why, their

application for possibly small but nevertheless fi-
nite perturbations ∆ requires additional justifica-
tion. This disadvantage may be overcome using
the methods of nonlinear perturbation analysis.
As a result we obtain nonlocal (and in general
nonlinear) perturbation bounds which guarantee
that the perturbed problem still has a solution
and are valid rigorously, unlike the local bounds.
However, in some cases the nonlocal bounds may
not exist or may be pessimistic.

Consider first the nonlocal perturbation analysis
of the Riccati equation (5). The perturbed equa-
tion (13) can be rewritten in the form

∆X = Ψ(∆X) (24)

where Ψ : Rn.n → Rn.n is determined by the
right-hand side of (13). For ρ > 0 denote by
B(ρ) ⊂ Rn.n the set of all matrices M ∈ Rn.n
satisfying ‖M‖F ≤ ρ. For U, V ∈ B(ρ) we have

‖Ψ(U)‖F ≤ a0(∆̃) + a1(∆̃)ρ+ a2(∆̃)ρ2

and

‖Ψ(U)−Ψ(V )‖F ≤ (a1(∆̃) + 2a2(∆̃)ρ)‖U − V ‖F
where

a0(∆̃) := f(∆̃)

a1(∆̃) := 2‖M−1
X ‖2∆A + (‖M−1

X (X0 ⊗ In)‖2

+ ‖M−1
X (In ⊗X0)‖2)∆S (25)

a2(∆̃) := ‖M−1
X ‖2(‖S‖2 + ∆S).

Hence, the function h(ρ, ∆̃) = a0(∆̃) + a1(∆̃)ρ +
a2(∆̃)ρ2 is a Lyapunov majorant (Grebenikov et
al., 1979) for equation (24) and the majorant
equation for determining a nonlocal bound ρ =
ρ(∆̃) for ∆X is

a2(∆̃)ρ2 − (1− a1(∆̃))ρ+ a0(∆̃) = 0. (26)

Suppose that ∆̃ ∈ Ω̃, where

Ω̃ =
{

∆̃ � 0 : a1(∆̃) + 2
√
a0(∆̃)a2(∆̃) ≤ 1

}
. (27)

Then equation (26) has nonnegative roots ρ1 ≤ ρ2

with

ρ1 = φ(∆̃) (28)

:=
2a0(∆̃)

1− a1(∆̃) +
√

(1− a1(∆̃))2 − 4a0(∆̃)a2(∆̃)
.

The operator Ψ maps the closed convex set
B(∆̃) =

{
M ∈ Rn.n : ‖M‖F ≤ φ(∆̃)

}
⊂ Rn.n

into itself and according to the Schauder fixed



point principle there exists a solution ∆X ∈ B(∆̃)
of equation (24), for which

∆X ≤ φ(∆̃), ∆̃ ∈ Ω̃. (29)

The elements of ∆X are continuous functions of
the elements of ∆Σ.

If ∆̃ ∈ Ω̃1, where

Ω̃1 =
{

∆̃� 0 : a1(∆̃) + 2
√
a0(∆̃)a2(∆̃) < 1

}
⊂ Ω̃

then ρ1 < ρ2 and the operator Ψ is a contraction
on B(∆̃). Hence according to the Banach fixed
point principle the solution ∆X, for which the es-
timate (29) holds true, is unique. This means that
the perturbed equation has an isolated solution
X = X0 + ∆X. In this case the elements of ∆X
are analytical functions of the elements of ∆Σ.

In a similar way, replacing Ac with ÂT , S with R,
Q with T and X0 with Y0, we obtain a nonlocal
perturbation bound for ∆Y . Suppose that ∆̂ ∈ Ω̂,
where

Ω̂ =
{

∆̂ : b1(∆̂) + 2
√
b0(∆̂)b2(∆̂) ≤ 1

}
⊂ R3

+

and

b0(∆̂) = g(∆̂)

b1(∆̂) = 2‖M−1
Y ‖2∆Â + (‖M−1

Y ((Y0 ⊗ In))‖2

+ ‖M−1
Y ((In ⊗ Y0))‖2)∆R

b2(∆̂) = ‖M−1
Y ‖2(‖R‖2 + ∆R).

Then

∆Y ≤ ψ(∆̂), ∆̂ ∈ Ω̂ (30)

where

ψ(∆̂) =

2b0(∆̂)

1− b1(∆̂) +
√

(1− b1(∆̂))2 − 4b0(∆̂)b2(∆̂)
.

Finally, the nonlinear perturbation bound for ∆Z
is obtained using (14) and (28), (29). If 1 /∈
spect(WZ0) we have

∆Z = Z0WZ0(In −WZ0)−1.

Hence

∆Z ≤ ζ0‖W‖F ‖(In −WZ0)−1‖2.

If ‖W‖2 < 1/‖Z0‖2 we have

∆Z ≤
ζ0‖W‖F

1− ‖Z0‖2‖W‖2
.

It is realistic to estimate ‖W‖ when ∆X,∆Y vary
independently. In this case one has to assume that

‖Y0‖2φ(∆̃) + ‖X0‖2ψ(∆̂) + φ(∆̃)ψ(∆̂)

< λ2/‖Z0‖2

and

∆Z ≤
ζ0λ

2ξ0
λ2 − ‖Z0‖2ξ0

(31)

where

ξ0 = ‖Y0‖2φ(∆̃) + ‖X0‖2ψ(∆̂) + φ(∆̃)ψ(∆̂).

Relations (29), (30) and (31) give nonlocal per-
turbation bounds for the continuous-time H∞-
optimization problem.

Note finally that one has to ensure the inequality

‖Y X‖2 < λ2. (32)

Since the unperturbed inequality ‖Y0X0‖2 < λ2

holds true, a sufficient condition for (32) to be
valid is

‖Y0‖2φ(∆̃) + ‖X0‖2ψ(∆̂) + φ(∆̃)ψ(∆̂)

< λ2 − ‖Y0X0‖2.

Note that ∆̃, ∆̂ depend on λ2 through ∆S ,∆R.

5. NUMERICAL EXAMPLE

Consider a third order Riccati equation of type
(5) with matrices

A = V A∗V, S = V S∗V Q = V Q∗V

where

V = I3 − 2vvT /3, v = [1, 1, 1]T

and

A∗ = diag(1,−0.1,−1)

S∗ = diag(0.2, 1, 10)

Q∗ = diag(0.1, 0.1, 0.1).

The solution is given by

X = V X∗V, X∗ = diag(x1, x2, x3)

where

xi =
ai +

√
a2
i + siqi
si

and ai, si and qi are the corresponding diagonal
elements of A∗, S∗ and Q∗.



The perturbations considered in the data satisfy

∆A = V∆A∗V

∆S = V∆S∗V

∆Q = V∆Q∗V
where

∆F ∗ =

 3 −1 0
−1 2 −9

0 −9 5

× 10−i

∆S∗ =

 10 −5 7
−5 1 3

7 3 10

× 10−i−1

∆Q∗ =

 1 −1 2
−1 5 −1

2 −1 10

× 10−i

for i = 12, 11, . . . , 4.

The perturbed solution X + ∆X of the equation
is computed by the Schur method (Laub, 1979)
in arithmetic with relative precision ε = 2−52 ≈
2.22× 10−16.

The perturbations ∆X = ‖∆X‖F in the solution
are estimated by the well known linear bound
(16), and the new nonlinear homogeneous bound
(18) and nonlocal bound (29). The results ob-
tained for different values of i are shown in Table
1. The actual changes in the solution are closed
to the quantities predicted by the improved sensi-
tivity analysis. The case when the conditions for
existence of a nonlocal estimate are violated is
denoted by asterisk.

Table 1

i ∆X Est. (16) Est. (18) Est. (29)

12 2.1 10−11 2.6 10−9 2.5 10−10 2.5 10−10

11 2.1 10−10 2.6 10−8 2.5 10−9 2.5 10−9

10 2.1 10−9 2.6 10−7 2.5 10−8 2.5 10−8

9 2.1 10−8 2.6 10−6 2.5 10−7 2.5 10−7

8 2.1 10−7 2.6 10−5 2.5 10−6 2.5 10−6

7 2.1 10−6 2.6 10−4 2.5 10−5 2.5 10−5

6 2.1 10−5 2.6 10−3 2.5 10−4 2.5 10−4

5 2.1 10−4 2.6 10−2 2.5 10−3 2.6 10−3

4 2.1 10−3 2.6 10−1 2.5 10−2 ∗

6. CONCLUSIONS

The local and nonlocal sensitivity of the continu-
ous-time H∞-optimization problem have been
studied. New local perturbation bounds have been

obtained for the matrix equations determining
the problem solution. The new local bounds are
nonlinear functions of the data perturbations and
are tighter than the existing condition number
based local bound. Using a nonlinear perturbation
analysis technique, nonlocal perturbation bounds
for the H∞-optimization problem have then been
derived. These bounds have two main advantages:
they guarantee that the perturbed problem still
has a solution, and are valid rigorously, unlike the
local perturbation bounds.
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