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A WAVELET-BASED ITERATIVE LEARNING CONTROL SCHEME FOR
MOTION CONTROL SYSTEMS
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Abstract: A wavelet-based iterative learning control scheme is presented in this article. To
improve the learning behaviour, wavelet transform is employed to extract the learnable
dynamics from measured output signal before it can be used to update the control profile.
The wavelet transform is adopted to decompose the original signal into many low-
resolution signals that contain the learnable and unlearnable parts. The desired control
profile is then compared with the leanable part of the transformed signal. Thus, the effect
from unlearnable dynamics on the controlled system can be attenuated solely by a
feedback controller design. Both the feedback and learning controllers are of proportional
type to show the efficacy of this proposed scheme. Convergence analysis is also presented
to provide theoretical background. A typical DC servo system is employed as the control
target for experimental verification. Experimental results have shown a much-improved
speed-tracking performance. Copyright © 2005 IFAC
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1. INTRODUCTION

Iterative learning control (ILC) is a very effective
control methodology that improves tracking control
performance through repeated trials. Since the
pioneering work from Arimoto (Arimoto et al. 1984)
introduced iterative learning control (ILC), many
researchers have been focused on this topic. A more
detailed discussion on this control technique can be
found in (Moore, et al., 1992, Mo0re, 1999). The ILC
scheme proposed by Arimoto et al. is a feedforward
only action soley depended upon the previous
performance of an identical task. Therefore, the
resulting control system is basically an open-loop
system. Although the applicability of the feedforward
only learning control scheme, also called previous
cycle error (PCE) type ILC scheme (Bien and Xu
1998), has been theoretically proven stable, it still
suffers from certain drawbacks. Firstly, this ILC system
may encounter adverse effects if the open-loop system
is unstable and it is not robust against disturbances that
are not repeatable among iterations. In practical
applications, several feedback-based ILC algorithms
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were proposed (Chen, et al., 1997, Moon, et al., 1998,
Tayebi and Zaremba, 2003). These feedback-based ILC
schemes are also called current cycle error (CCE) type
ILC. In these schemes, a feedback controller is adopted
to ensure the closed-loop stability and suppress the
exogenous disturbances, and an iterative learning law is
employed to provide improved tracking performance
over a pre-specified trajectory utilizing previous control
results. The CCE-type ILC scheme can achieve faster
convergent rate than the PCE-type ILC. Most
existing literatures are mainly focused on the
derivation of sufficient conditions under which the
ILC system converges. Although the CCE-type ILC
has been applied to many nonlinear systems and
provided satisfactory performance, it has certain
limitations, still. Among those, the most stringent
condition is that the system must be “learnable”, 
which requires that system dynamics must be
“repeatable”including disturbances during iterative
process. Unfortunately, many practical systems do
not possess such properties and the disturbances are
usually non-repeatable. For motion control system
using ILC scheme, nonlinear disturbances such as
dead-zone, backlash, friction or certain state
dependent nonlinearities are always non-repeatable



during iterative process. Alternatively, the
unlearnable dynamics of a motion control system
will corrupt the control profile and may cause
instability during the iterative operation. In this paper,
an enhanced iterative learning scheme with wavelet
transform is presented, which is consisted of a
feedforward and feedback controllers as most CCE-
type scheme. To improve its learning behavior,
wavelet transform is employed to extract the
learnable dynamics from the output response before
it can be used to update the control profile. The
wavelet transform (Cohen and Ryan, 1995) can be
adopted as a contraction mapping operator which
decomposes the original signal into many low-
resolution signals with the learnable and unlearnable
parts. The desired control profile is then compared
with the learnable part of the transformed signal only.
By this way, the effects of unlearnable dynamics of
the non-repeatable system can solely be attenuated
by a feedback controller but the ILC.

2. PROBLEM STATEMENT

A CCE-type ILC scheme would perform very well
while applying to repeatable and learnable systems.
Considering a linear time-invariant system with non-
repeatable disturbance is described as follows (Tao
and Kokotovic, 1995, Linden and Lambrechts, 1993).
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where ,nx  mu  , k is the number of iteration
and f(xk,t) is the nonlinear and non-repeatable
disturbance, such as noise, friction and other state-
depenedent nonlinearities etc. The non-repeatable
and asymmetrical dead-zone DZ(.) with input zk(t)
and the output yk(t) may be described by:
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where lf > 0, lr > 0, min 0k   , max0 k   , the
bounds min and max are unknown constants.
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Fig. 1 A Typical CCE-Type ILC

Fig. 1 shows the block diagram of the control system
described as above with a typical CCE-type ILC
scheme (Owens 1992). G(s) is the nominal transfer
function of the system and P(s) is the causal
“learning” operator feeding back the current trial 
error. The physical meaning of this form of learning

law is that current trial feedback obtained causally
during the trial by normal feedback mechanisms for
updating the control input. Now, consider the case
when the input update law is a time-domain learning
algorithm and set )(sP as the so-called P-type
learning law (Owens, 1992) to yield

)()()( 11 tetutu kkk    (3)

Obviously, the response due to non-repeatable
dynamics will contaminate the learning control signal
uk(t) through the feedback control process and the
CCE-type ILC system may become diverge
(Mezghan, et al., 2001, Zheng and Alleyne, 2003).
From the viewpoint of system dynamics, the nominal
plant is corresponds to the learnable dynamics while
the non-repeatable disturbances may excite the
unlearnable dynamics. To ensure the stability of the
controlled system, the unlearnable dynamics must be
explicitly distinguished from the response of the
system. In this way, the dynamics of the controlled
system are decomposed into a learnable part and an
unlearnable part by suitably choosing signal
processing tools, e.g. wavelet transform. We then
design the ILC scheme devoted to learn the learnable
dynamics. Thus, the stability of the ILC scheme
would not be destroyed by the unlearnable part.

3. AN ENHANCED ILC USING WAVELET
TRANSFORM

3.1 The wavelet transform
The basic idea of the wavelet transform is to
represent any arbitrary function f(t) as a
superposition of wavelets. Any such superposition
decomposes f(t) into different scale levels, where
each level is then further decomposed with a
resolution adapted to the level. The wavelet
transform of a time function f(t) with a mother
wavelet , ( )a b t , is defined as the inner product of f(t)

with , ( )a b t i.e.

 batfbaWf ,),(),(  (4)

where a is a scaling factor and b is a shift parameter.
Using the wavelet transform, the signal f(t) can be
decomposed into multiple-level signals. Hence, the
signal f(t) is broken down into many lower-resolution
components. This process is expressed in terms of
the wavelet decomposition tree as shown in Fig 2.

Fig. 2 The Decomposition Tree for f(t)
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An and Dj, j=1,2,3,..,n are called the approximations
(low-frequency components) and details (high-
frequency components), respectively, and n is the
level of decomposition. After the process of
decomposition, the original signal f(t) can also be
reconstructed through the reconstruction filters as
below
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In practical applications, some or all of the detail
components can be excluded during the reconstruct
process. In other words, the wavelet transform can be
a contraction mapping on f(t). To show this fact, let

fWf *1  (6)

where the symbol *W stands for the wavelet
transform as a filtering operator. Then we have

111 |||||||| ff  . Denote
1||.|| as the one-norm of a time

function. The following lemma will be useful in the
sequel.

Lemma: Suppose that a signal f(t) can be
decomposed as (5) with 
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Proof:
From (5), without losses of generality, let n=1. The
signal f can be decomposed into

11 DAf  (7)

with
1111 DA  for 2 (8)

The detail components can be eliminated during the
reconstructed process as described in (6) such that
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If we choose a constant, such that 1
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applying (8) , we have

1111 ||||)1(|||| DA   (11)

Continuing from (10)

11111 )
1

1(||)1(|| ADA


 

])1()[
1

1()
1

1(
111111 DAA 





 

])[
1

1)(1(
1111 DA 




fDA  
111 (12)

where )
1

1)(1(


  , with 



2

2
2

 and

1
1





 , >2

We conclude that < 1

Therefore,

1 1

1 1

|| (1 *) || || ||

|| (1 *) || || || 0k k

W f f

W f f

 

 

 

   
as k

Q.E.D.

3.2 The Proposed Controller Design

For the dynamic system of interest which has the
unlearnable dynamics, the CCE-type ILC scheme
fails to work properly over the iterative process. In
such applications, the ILC controller updates the
profile of control effort by using tracking error
which is contaminated by non-repeatable
disturbance, dead-zone and measured noise etc., the
error will eventually grow up and the learning
behaviour will fail. In other words, the iterative
learning controller will induce the system instability
due to the unlearnable dynamics inherent in the
non-repeatable system. A block-diagram of the
overall control system is shown in Fig. 3, where yd

is the desired output trajectory and ky is the

system output of the thk iteration.
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Fig. 3 The Proposed Control Structure

The control scheme is expressed as follows
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where is a positive and fixed learning gain, the
f

ku is a proportional feedback controller and l
ku is

the iterative learning controller. The feedback control
signal f

ku is processed by wavelet transform and then
applied to update the learning profile. In practical
applications, it is reasonable to assume that the
control system with transfer function G(s) satisfy the
following properties.

(A1) The transfer function G(s) has a positive real
part forc, i.e.,

c0
inf Re(G(j)) >0 ,

wherec denotes the cut-off frequency of
the system.



(A2) The control signal uk(t) can be decomposed into
the learnable part )(tu l

d
and the unlearnable

part )(tuul
k

, i.e.,

(A3) At the k -th iteration, the frequency spectral of
the unlearnable part ul

ku is of band-pass type

and is bounded by a residual function, (t) .
After wavelet transform, we have
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Theorem: Suppose that an ILC system satisfies
assumption (A1)-(A3) and with the control laws
described as (13)-(15). As 0

1
 , there exists a

real number , as defines in Lemma, such that the
iterative learning process will convergent, i.e.
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Proof:
From (13) and (A2), at the k-th iteration, the
feedback signal is expressed as
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Applying the wavelet operator and using (A3)
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After iterating k times on f
ku in (18), the following

inequality holds.
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Since the operator *)1( W is a contraction
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where  1*)(~ W and (W*)-1 is an inverse wavelet
transform or the reconstruction process.
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Q.E.D.

The unlearnable part of the system response is
filtered out by using the wavelet transform. Hence,
the learning behaviour is improved while the

feedback controller improves the transition response
due to the unlearnable dynamics or non-repetitive
disturbance. The convergent rate depends on the
value ofand . While =1, and according to (A1)
the convergent rate becomes
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Remark : Since the system loop-gain is usually
greater than one below cut-off frequency, when is
fixed, larger implies smaller steady-state error at
every iteration process and the convergent rate
remains unchanged as a small is adopted. We can
design the maximum value of feedback gain max by
using the Ziegler-Nichols method (Stefani, et al,
1994). Since is designed between zero and max (i.e.

max0    ), the overall control signal is equal to

the feedback part at the first iteration (i.e. f
kk uu  for

k=1). According to the theorem, when the feedback
control signal f

ku approaches and the learning

control signal l
ku approaches l

du as k , the
stability of the closed-loop control system is ensured.
For a fixed , the choice of = 1 will achieve the
fastest convergent rate.

4. EXPERIMENTAL VERIFICATION

4.1 The experimental system

Personal Computer
(P2-550) and Matlab
Simulink Real-Time
Workshop
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Fig. 4 The DC Servo System Under Study

The configuration of the overall control system is
shown in Fig. 4. A DC servo motor equips with an
inertia load as the control target. While the DC servo
system is utilized for the purpose of speed-tracking
control, there exists asymmetrical dead-zones in the
forward and backward rotations. Since the shaft of
DC motor starts with different angle in every
iteration process, this yields different dead-zone for
each iteration, which makes a typical non-repeatable
system. In other words, the friction can act as a
highly nonlinear disturbance on system. Especially,
when the servo system is under heavy load, the
friction will vary accordingly. Furthermore, a low
frequency vibration will occur due to the variable
inertia load. To model the non-repeatable term
described above, a general dynamical description of
the DC servo system can be expressed as shown in
Eq. (1) and (2). To devise the experimental setup, a
personal computer (P3-550) sends the speed
commands to the PWM driver via an A/D card
(MCS-6A-C-10), and the shaft position is detected by
a photo encoder that delivering two-phase signals (A,
B phase). The position data is then fed into a decoder
circuit implemented on a CPLD (Complex
Programmable Logic Device) board, which uses an
over-sampling scheme (Su, 1998) to calculate the



shaft speed in digital format. The controller is
realized with the MATLAB, SIMULINK and RTW
(Real-Time Workshop) toolboxes.

4. 2 Experimental results

By using the time domain system identification, an
experimental transfer function (ETF)

8983.2
86.186
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sG (23)

can be obtained. To verify the tracking performance,
a sinusoidal speed trajectory is given as bellow, i.e.

3000sindy t rpm

For the purpose of comparison, a CCE-type ILC
scheme adopted from (Owens, 1992)

)()()( 11 tetutu kkk    (24)

is implemented, where  is the causal “learning” 
operator feeding back the current trial error. Here,
we set ,1 and 1 . As we will see in the
experiment, this setting can achieve maximum
feedback gain while inducing no vibration. Note
that the CCE-type ILC (24) is identical to the
proposed ILC scheme (13)-(15) during the first
iteration. Using the CCE-type ILC scheme (24), the
tracking response and the learning curve are shown
in Fig. 5 and Fig. 6, respectively.
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Fig. 5 Speed Tracking using CCE-ILC

From the response of the first iteration (k=1), it can
be observed that there is a large lag between the
command profile and the speed response due to the
unlearnable dynamics (i.e. dead-zone, friction, noise
of measurement and variation of load). After 12th

iterations, the tracking error is still unacceptable and
the learning behaviour is not robust. Using the
proposal method, the ‘Sym5’ function (Wavelet Tool
Box, 1997) is selected as the mother wavelet and six
level details are decomposed. According to the
Ziegler-Nichols method, when max =1.1, the
resonant phenomenon occurs. After the 12th iteration,

the speed response and tracking error with the
proposed method are demonstrated in Fig.7.
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Fig. 6 The Learning Curve Using CCE-ILC
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Fig. 7 Speed Tracking Using Proposed Scheme

The feedback control signal f
ku is decomposed into

six levels as shown in Fig. 8. The signal A6 is the low
frequency part, corresponding to the learnable
dynamics of the DC servo system and the signals
D1~D6 are the high frequency part due to the
unlearnable dynamics. Although the resolution of the
speed measurement is limited to 30 rpm by the over-
sampling module (Su, 1998), the tracking
performance is greatly improved by using the
proposed scheme.
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Fig. 9 shows the learning curve for the same =1.0
but with 0.5 , 0.9, 1.0, 1.1. They clearly
demonstrate that for 1.0 , the proposed ILC
scheme can achieve the best convergent rate.
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5. CONCLUDING REMARKS

An iterative learning control scheme using wavelet
transform is presented with experimental verification.
The proposed iterative learning scheme is applicable
to systems with unlearnable dynamics while maintain
robust learning behavior. This paper also presents the
relation between the learning gain, , the convergent
rate is explicitly exploited and confirmed via
experiments. From experimental results, it is further
verified that the proposed method can guarantee
convergence of the learning process even under the
influence of unlearnable dynamics. As a comparison,
the experimental results of the CCE-type ILC are also
given. It is seen that the CCE-type ILC is not applicable
to a servo-system with unlearnable dynamics for the
purpose of speed-tracking.
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