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Abstract: A scheme of quantum feedback control with an optimal cloning machine is 
proposed. The design of quantum feedback control algorithms is separated into a state 
recognition strategy, which gives “on-off” signal to the actuator through recognizing 
some copies from cloning machine, and a feedback (control) strategy through feeding 
back the another copies of cloning machine. Precise feedback is abandoned and a 
compromise between information acquisition and measurement disturbance is established. 
The recognition process involves measurement and is destructive, however, the feedback 
step without measurement is preserving quantum coherence, so the scheme can perform 
some quantum control tasks with coherent feedback.  Copyright © 2005 IFAC 
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1. INTRODUCTION 

 
The control of quantum phenomena is an important 
problem that lies at the heart of several fields, 
including quantum computer, atomic physics and 
molecular chemistry (Rabitz, et al., 2000). Nowadays, 
quantum control theory is becoming a rapidly 
increasing research field and it expects to determine 
how to drive quantum mechanical systems from an 
initial given state to a pre-determined target state 
with some given time T (Solomon and Schrirmer, 
2002). The current research on quantum control 
mainly involves controllability of quantum system 
(Clark, et al., 2003), quantum optimal control 
(D`Alessandro and Dahleh, 2001) and quantum 
feedback control (Yanagisawa and Kimra, 2003a; 
Yanagisawa and Kimra, 2003b; Doherty, et al., 2000;  
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Doherty, et al., 2001). Here, the attention will be 
taken to quantum feedback control and quantum 
cloning in quantum information technology is used to 
design feedback channel.  
 
In classical control applications, feedback is a most 
effective strategy, and recently it is also used to 
quantum control. Scientists expect to obtain 
information about the system from the quantum 
system to be controlled, process the information and 
feed it back to the system to complete active control 
of quantum system in a desired way. However, a 
quantum system (such as electron spin, photon 
polarization and two-level atom) is essentially 
different from a classical system. The measurement 
on a classical system doesn’t change its state, but a 
measurement of a quantum system will disturb its 
quantum state. Some quantum feedback strategies 
including Markovian quantum feedback (Wiseman 
and Milburn, 1993), Bayesian quantum feedback 
(Doherty and Jacobs, 1999), non-Markovian 
quantum feedback with time delay (Giovannetti, et 
al., 1999) and coherent quantum feedback (Lloyd, 



 

     

2000) have been presented, and they have also been 
applied to coherence maintenance of quantum 
information and quantum error-correction. On the 
other hand, the rapid development of quantum 
information technology makes it possible that one 
applies some achievements in quantum information 
to quantum control theory (Nielsen and Chuang, 
2000). This paper applies quantum optimal cloning 
machine in quantum information theory to design 
quantum feedback channel. Here, the problem of 
designing quantum feedback control algorithms is 
separated into a state recognition strategy (Dong and 
Chen, 2003) and a feedback (control) strategy. The 
recognition process gives actuators “on-off” signal 
through recognizing some copies from cloning 
machine and is destructive. However, the feedback 
process doesn’t involve measurement and can 
preserve quantum coherence. So the scheme can 
perform some quantum control tasks with coherent 
feedback. 
 
 

2. QUANTUM FEEDBACK CONTROL 
 
Recently, scientists are greatly interested in quantum 
feedback control and have also proposed many 
feedback strategies including Markovian quantum 
feedback, Bayesian quantum feedback, non-
Markovian quantum feedback with time delay and 
coherent quantum feedback. The first theoretical 
work on quantum feedback was presented by 
Yamamoto et al.(1986), where they treated the 
fluctuations of the photocurrent in negative feedback 
way to generate amplitude squeezed state.  
 
In 1993, Wiseman and Milburn first presented a 
quantum theory of optical feedback via homodyne 
detection, where the homodyne photocurrent was fed 
back onto optical cavity to alter the dynamics of the 
source cavity. In this quantum feedback theory, only 
the current photocurrent is immediately fed back and 
may then be forgotten, so the master equation 
describing the resulting evolution is Markovian and 
the theory is called Markovian quantum feedback 
(Wiseman, et al., 2002). It has been applied to 
generate squeezed light (Wiseman and Milburn, 
1993) and stabilize the internal state of atoms (Wang 
and Wiseman, 2001).  
 
Markovian quantum feedback doesn’t use the 
previous knowledge about the system to be 
controlled, therefor Doherty and Jacobs presented a 
quantum feedback scheme using continuous state 
estimation in 1999. They made the best of the 
detailed information from measurement record, and 
divided quantum feedback control process into two 
steps: a state estimation step and a feedback control 
step. Since the best state estimation will use all 
previous measurement results, not just the lastest 
ones, the feedback is called Bayesian quantum 
feedback (Wiseman, et al., 2002). Recently, Doherty 
et al. (2001) also tried to consider separately 
optimizing state estimation step and feedback control 
step. Bayesian quantum feedback has been used to 
cool and confine a single quantum degree of freedom 

(Doherty and Jacobs, 1999), switch the state of a 
particle in a double-well potential (Doherty, et al., 
2000) and control the decoherence of solid-state 
qubit (Ruskov and Korotkov, 2002). Comparison 
research shows that Bayesian quantum feedback is 
never inferior, and is usually superior, to Markovian 
quantum feedback in stabilizing the quantum state of 
the simplest nonlinear quantum system (Wiseman, et 
al., 2002). 
 
Both Markovian quantum feedback and Bayesian 
quantum feedback ignore the effect of feedback time 
delay. However, the delay can’t be ignored in some 
situation. When nonzero feedback time delay is 
considered, the dynamics of system evolution 
exhibits strong non-Markovian. Giovannetti and co-
workers first studied the non-Markovian quantum 
feedback with time delay in 1999. Their results show 
that feedback can also improve the dynamics of 
quantum systems for the delay time not too large.  
 
Markovian feedback, Bayesian feedback and non-
Markovian feedback with time delay all use the 
feedback information from measurement results, 
however, measurement destroys the quantum 
characteristics of feedback information, so feedback 
information becomes classical information. As a 
result, although the system under control is quantum 
system, feedback controller processes classical 
information and effective quantum channel in 
feedback loop isn’t constructed, so the strategies can 
be called quantum control with classical feedback 
(Fig.1(a)). Differently, Lloyd presented a coherent 
quantum feedback scheme in which controller 
obtained quantum information, processed it and 
coherently fed back to the system to be controlled 
(Fig.1(b)). In this feedback strategy, the quantum 
characteristics in feedback loop aren’t destroyed and 
the strategy can accomplish some tasks which are not 
possible using classical feedback (Lloyd, 2000). 
Recently, Ting (2002) also proposed an alternative 
method for quantum feedback control, where a 
cloning machine served to obtain the feedback signal 
and the output (Fig.1(c)). Ting’s quantum feedback 
method can also perform coherent feedback control 
at the cost of feeding precisely back the output. 
 
 

3. QUANTUM FEEDBACK CONTROL USING 
QUANTUM CLONING AND STATE 

RECOGNITION 
 
As an essential idea in classical control, feedback is 
used to compensate the effects of unpredictable 
disturbances on a system under control, or to make 
automatic control possible when the initial state of 
the system is unknown. To control a system, one 
must obtain the information about the evolving 
system state through measurements. However, in 
quantum feedback control, it is impossible to extract 
information about the state of system through 
measurement without disturbing it. Moreover, 
measurement backaction greatly complicates the 
notion of quantum feedback control. Following 
Ting’s idea, this paper renounces precise feedback  



 

     

 
 

 
 

 
 

 
 
Fig. 1.(a) General quantum feedback; (b) Coherent 

quantum feedback; (c) Quantum feedback control 
using quantum cloning; (d) Quantum coherent 
feedback based quantum cloning and state 
recognition. 

 
and adds an optimal cloning machine at the output 
side. Different from Ting’s complete abandonment 
of measurement, we separate quantum feedback 
control design into a state recognition step involving 
measurements and a feedback control step without 
measurements (Fig.1(d)). So this scheme establishes 
a compromise between information acquisition and 
measurement disturbance. This is obviously different 
from traditional quantum feedback since there the 
information acquisition necessarily results in 
destroying the state of quantum system.  
 
The general picture of quantum feedback control 
using quantum cloning and state recognition is as 
follows (Fig.1(d)). The quantum system to be 
controlled is called object. The actuator generates 
input quantum signal to drive the object and its 
output is sent into an optimal cloning machine 
(cloner). The cloner (C) inaccurately clones the state, 
generates (N+M+1) copies, and a copy is taken as 
the output of system. State recognizer (R) receives N 
unknown copies, makes some measurements on them 
and obtains some information about their states. 
Then, one can recognize the N copies through 

appropriate recognition algorithm. If the N copies are 
enough “good”, the recognizer gives an “on” signal 
to the actuator, and the actuator receives another M 
copies from the cloner as feedback and generates 
new quantum signal to drive the object until the 
given control objective is reached. Here, the new 
signal of the actuator is determined by the feedback 
information and control objective. If the N copies are 
not enough “good”, the recognizer will send an “off” 
signal to the actuator, and the actuator will not 
receive feedback copies from the cloner.  
 
According no-cloning theorem (Wootters and Zurek, 
1982), arbitrary unknown quantum state cannot be 
copied exactly, and this is also an important 
difference between quantum control system and 
classical control system. However, this doesn’t 
exclude the possibility of approximately cloning 
quantum state. In fact, there is optimal universal 
quantum cloning machine that can approximately 
copy arbitrary unknown quantum state with unity 
probability (Gisin and Massar, 1997). Besides 
approximate cloning, linearly independent quantum 
states can also be probabilistically cloned by a 
general unitary reduction operation with probability 
less than unity (Duan and Guo, 1998). In 
probabilistic cloning, the machine yields faithful 
copies of the input state with a postselection of the 
measurement result. However, optimal universal 
quantum cloning machine can be decomposed into 
rotations and controlled NOTs gates and doesn’t 
involve measurement. Here, we use approximately 
cloning to amplitude the output state of the object, 
that is to say, the output state is approximately copied, 
and some copies are used to obtain information 
through quantum measurement and other copies are 
used to determine feedback control.  
 
The ideal 1  2 cloning process is described by the 
transformation: 

 

xbaxa MssMs 〉〉〉→〉〉 ~|||||              (1) 
 

Where as〉|  is the state of the original mode, bs〉|  

is the copied state, xM 〉|  is the original state of the 

quantum cloning machine and xM 〉~|  is the final 
state of the quantum cloning machine. The whole 
process of quantum cloning is to produce at the 
output of the cloning machine two identical states 

as〉|  and bs〉|  in the modes a and b, respectively. 
Considering 1 M+N+1 cloning process, it can be 
described by the transformation:  

         

xNMbaxa MsssMs 〉〉〉〉→〉〉 ++
~|||||| 1L    (2) 

 
The cloner generates (M+N+1) copies and sends N 
copies into the state recognizer. Assume that the 
recognizer receives N unknown copies 

{ }〉〉〉= NR PPPU |,,|,| 21 L , make some 



 

     

measurements on them and obtain some information 
about their states.  
 
In quantum mechanics, states of quantum systems 
are represented by quantum states and quantum 
states can be represented by the vector 〉φ|  in 
Hilbert space: 

 

  ∑ 〉=〉
k

kka ϕφ ||                        (3) 

 

where ka  is complex number and satisfies 

1|| 2
=∑

k
ka . }|,,|,{| 21 〉〉〉 kϕϕϕ L  is a set of 

bases of the vector 〉φ|  and is called k eigenstates of 
quantum states 〉φ| , namely all possible states when 

〉φ|  is measured. 2|| ka  represents the occurrence 

probability of eigenstate  〉kϕ|  and the information 
about the phase is contained in the argument of 
complex number ka .  
 
After some measurement on the N unknown copies 
of the recognizer, one can get some information of 
unknown copies. Assume that )1( ≥NN  quantum 

states )1(| NsPs ≤≤〉  can be respectively 
represented as follows: 
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sn  orthogonal eigenstates of 〉sP|  and these 
eigenstates can constitute a set of orthogonal bases in 
Hilbert space. We use U  to express the number of 

elements in the set U , then ss nU = . Let U~  
represent the set of the extended bases:  
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                (5) 
 
that is to say, define the union of these eigenstate sets 
as the set of extended bases. The elements in the set 
of extended bases are not necessarily orthogonal. 
Now express the all quantum states with the 
extended bases { }〉〉〉 lppp ~|,,~|,~| 21 L : 
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where if 〉kp~|  is equal to 〉)(| s
jp ,  )(~ s

kβ  is equal to 
)(s

jβ ; otherwise )(~ s
kβ  is zero. Then calculate their 

arithmetical mean value 〉P| :   
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Regard 〉P|  as the “objective” state. Based on the 
above notations, we may define state-distance 
between the given quantum states 〉sP|  and the 

“objective” quantum state 〉P| : 
 

Definition 1: State-distance between )1( ≥NN  

given quantum states )1(| NsPs ≤≤〉  expressed 

by Eq.(4) and the “objective” state 〉P|  expressed 
by Eq.(7) is defined as: 
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where )(~ s
kβ  and kα~  are corresponding complex 

numbers in Eq.(6) and Eq.(7), respectively. 
 
According to the definition of state-distance, it is 
obvious that 0)|,(| ≥〉〉 PPd s  and 

0)|,(| =〉〉 PPd s  if only if 〉P|  and 〉sP|  are the 
same, that is to say, state-distance will reach the 
minimum zero when all given quantum states are 
identical.  
 

Calculate )|,(| 〉〉 PPd s  according to Eq.(8) 
respectively and compare them with the beforehand 
given state-distance threshold 0d  . Here, the state-
distance threshold should be selected according to 
the need of specific problem. If all state-distances 
satisfy 0)|,(| dPPd s <〉〉 , recognize them as a 
class, the state recognizer generates an “on” signal, 
and the actuator receives another M copies from the 
cloner as feedback. Considering the feedback 
information and comparing the output with the 
control objective, the actuator generates new 
quantum signal to drive the object. Otherwise, the 
state recognizer will send an “off” signal to the 
actuator, and the actuator will not receive feedback 
copies from the cloner.  
 
To demonstrate the above recognition process, 
consider the recognition of many states:  
 
Example 1: Consider { }〉〉〉〉〉= 54321 |,|,|,|,| PPPPPUR , 
and after some measurement we get: 

          
〉+〉+〉+〉=〉 00|100.001|100.010|700.011|700.0| 1P

          (9)      



 

     

〉+〉+〉+〉=〉 00|155.001|100.010|690.011|700.0| 2P
                (10) 

          
〉+〉+〉+〉=〉 00|100.001|118.010|690.011|707.0| 3P

                (11) 
      

〉+〉+〉+〉=〉 00|113.001|100.010|703.011|695.0| 4P
               (12) 

 
   〉+〉+〉=〉 01|100.010|700.011|707.0| 5P     (13) 

 
Under the condition of given state-distance threshold 

1.0=d , recognize these states.  
 
Based on the above discussion, we calculate the set 
of the extended bases  

 

          }00|,01|,10|,11{|~ 〉〉〉〉=U               (14) 
 

and the “objective” state 〉P|  is: 
          

〉+〉+〉+〉=〉 00|094.001|104.010|697.011|702.0| P
               (15) 

 
According to the definition of state-distance, 
calculate the state-distance between every state and 
the “objective” state, respectively:  
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So we recognize them as a class, the state recognizer 
should generate an “on” signal, the actuator receives 
another M copies from the cloner as feedback and 
generates new quantum signal to drive the object.  
 
Remark 1: In this feedback strategy, the problem of 
designing quantum feedback algorithms is separated 
into two steps: a state recognition step and a 
feedback control step. The aim of state recognition 
step is to obtain information and the process involves 
quantum measurement, so it is destructive. However, 
the feedback process doesn’t necessarily acquire 
information and doesn’t involve measurement, so it 
can preserve quantum coherence. In fact, we give a 
compromise between information acquisition and 
measurement disturbance in view of the 
characteristics of measurement in quantum control. 
The compromise is realized through approximately 
cloning and renouncing precise feedback. Since the 
coherence of feedback information can be preserved, 
this feedback strategy can perform coherent feedback 
control at the cost of feeding precisely back the 
output. 
 
 

4. CONCLUSIONS 
 
Quantum control theory and quantum information 
technology are two rapidly developing new subjects. 
This paper proposes a scheme of quantum feedback 
control with an optimal cloning machine in quantum 
information technology. In this method, the design of 
quantum feedback control algorithms is separated 
into a state recognition strategy, which gives “on-off” 
signal to the actuator through recognizing some 
copies from the cloning machine, and a feedback 
(control) strategy with the another copies of cloning 
machine. The recognition process involves quantum 
measurement and is destructive, however, the 
feedback process is preserving quantum coherence, 
so this scheme can perform some quantum control 
tasks with coherent feedback, and also points out a 
new path for quantum feedback control design using 
quantum information technology. Besides quantum 
control, this quantum feedback scheme also has 
important potential application to large-scale 
quantum computation, quantum communication 
network and quantum robot. 
 

 
REFERENCES 

 
Clark, J.W., D. G. Lucarelli and T. J. Tarn (2003). 

Control of quantum systems. International 
Journal of Modern Physics B, 17, 5397—5411. 

D`Alessandro, D., and M. Dahleh (2001). Optimal 
control of two-level quantum systems. IEEE 
Transactions on Automatic Control, 46, 866—
876. 

Doherty, A.C., S. Habib, K. Jacobs, H. Mabuchi,  
and S. M. Tan (2000). Quantum feedback 
control and classical control theory. Phys. Rev. A, 
62, 012105. 

Doherty, A.C., S. Habib, and G. Jungman (2001). 
Information, disturbance, and Hamiltonian 
quantum feedback control. Phys. Rev. A, 63, 
062306. 

Doherty, A.C. and K. Jacobs (1999). Feedback 
control of quantum systems using continuous 
state estimation. Phys. Rev. A, 60, 2700—2711. 

Dong, D.Y. and Z. H. Chen (2003). Clustering 
recognition of quantum states based on quantum 
module distance. Acta Sinica Quantum Optica, 9, 
144—148. 

Duan, L.M. and G. C. Guo (1998). Probabilistic 
cloning and identification of linearly 
independent quantum states. Phys. Rev. Lett., 88, 
4999—5002. 

Giovannetti, V., P. Tombesi and D. Vitali (1999). 
Non-Markovian quantum feedback from 
homodyne measurements: The effect of a 
nonzero feedback delay time. Phys. Rev. A, 60, 
1549—1561. 

Gisin, N. and S. Massar (1997). Optimal quantum  
cloning machines. Phys. Rev. Lett., 79, 2153—
2156. 

Lloyd, S.(2000). Coherent quantum feedback. Phys. 
Rev. A, 62, 022108. 



 

     

Nielsen, M.A. and I. L. Chuang (2000). Quantum 
computation and quantum information. 
Cambridge: Cambridge University Press. 

Rabitz, H., R. de Vivie-Riedle, M. Motzkus and K. 
Kompa (2000). Whither the future of controlling 
quantum phenomena?. Science, 288, 824－828. 

Ruskov, R. and A. N. Korotkov (2002). Quantum 
feedback control of a solid-state qubit. Phys. Rev. 
B, 66, 041401R. 

Solomon, A.I. and S. G. Schrirmer (2002). 
Limitations in quantum control. International 
Journal of Modern Physics B, 16, 2107－2112. 

Ting, J.J.L.(2002). Alternative method for quantum 
feedback-control. Superlattices and 
Microstructures, 32, 331－336. 

Wang, J. and H. M. Wiseman (2001). Feedback-
stabilization of an arbitrary pure state of a two-
level atom. Phys. Rev. A, 64, 063810. 

 Wiseman, H.M., S. Mancini and J. Wang (2002). 
Bayesian feedback versus Markovian feedback 
in a two-level atom. Phys. Rev. A, 66, 013807. 

Wiseman, H.M. and G. J. Milburn (1993). Quantum 
theory of optical feedback via homodyne 
detection. Phys. Rev. Lett., 70(5), 548－551. 

 Wootters, W. K. and W. H. Zurek (1982). A single 
quantum cannot be cloned. Nature, 299, 802－
803. 

Yamamoto, Y., N. Imoto and S. Machida (1986). 
Amplitude squeezing in a semiconductor laser 
using quantum nondemolition measurements 
and negative feedback. Phys. Rev. A, 33(5), 
3243－3261. 

Yanagisawa, M. and H. Kimra (2003a). Transfer 
function approach to quantum control—part I: 
Dynamics of quantum feedback systems. IEEE 
Transactions on Automatic Control,48(12), 2107
－2120. 

Yanagisawa, M. and H. Kimra (2003b). Transfer 
function approach to quantum control—part II: 
Control concepts and applications. IEEE 
Transactions on Automatic Control,48(12), 2121
－2132. 


