

A PROPOSAL OF WEIGHTED Q-LEARNING FOR CONTINUOUS
STATE AND ACTION SPACES

Yuhu Cheng, Jianqiang Yi, Dongbin Zhao

(Laboratory of Complex Systems and Intelligence Science,
Institute of Automation,

Chinese Academy of Sciences, Beijing 100080, China)

Abstract: A kind of weighted Q-Learning algorithm suitable for control systems with
continuous state and action spaces was proposed. The hidden layer of RBF network was
designed dynamically by virtue of the proposed modified growing neural gas algorithm so
as to realize the adaptive understanding of the continuous state space. Based on the
standard Q-Learning implemented by RBF network, the weighted Q-Learning was used
to solve the control problem with continuous action outputs. Simulation result of
mountain car control verified the validity of the proposed weighted Q-Learning algorithm.
Copyright © 2005 IFAC

Keywords: continuous state space, continuous action space, weighted Q-Learning, neural
gas algorithm, RBF network, mountain car.

1. INTRODUCTION

Reinforcement learning is a kind of learning
algorithm between supervised and unsupervised
learning algorithms which is based on markov
decision process (MDP). For the solution of large-
scale MDPs or continuous state and action spaces,
it’s impossible for reinforcement learning agent to go
through all the states and actions. In order to realize
the optimal approximation for value functions of
continuous states and actions respectively, therefore,
learning agent must have generalization ability. In
other words, such an agent should be able to utilize
finite learning experience to acquire and express a
good knowledge of a large-scale space effectively,
see (Sutton, et al., 1999). How to design a function
approximator with abilities of high generalization
and computation efficiency has become a key
problem for the research field of reinforcement
learning.

Q-Learning is an effective reinforcement learning
method to solve markov decision problem with
incomplete information. It is also viewed as a kind of
asynchronous dynamic planning method. Since
Watkins and Dayan (1992) proposed Q-Learning

algorithm and proved its convergence, it has been
received broad attention. However, research works
about Q-Learning are restricted to limited markov
decision problem and there are little works related to
continuous state and action spaces. Because states
and actions of many stochastic control systems are
continuous in fact, we should make state and action
spaces discrete when we use Q-Learning to solve the
stochastic optimal control problem of continuous
state and action spaces. But such a discrete operation
is likely to result in the following problems:(a)
hidden state problem easily occurs when state space
is divided roughly;(b) curse of dimensionality
problem appears when the state space is enormous;(c)
the property of markov of the system can’t be
guaranteed after discrete operation (Munos, 1997).
The surrounding environment and the task are very
complex; therefore, we can’t obtain satisfactory
control effects by merely defining a simple discrete
action set. Moreover, if we make continuous action
space discretization for an actual control system even
disregarding spatial and computational complexities,
the pre-defined discrete action set may not includes
the optimal action of each time-step so as to
satisfactory control effects are difficult to obtain.

Lately, some scholars pursued researches on
extension of the application field of Q-Learning to
continuous state and action spaces. The main
difference between state and action spaces is that the
input data used to constitute state space is provided
by environment, but on the other hand action space is
obtained only by virtue of exploring by learning
agent. Werbos (1992) proposed a kind of adaptive
critic method by using several feedforward networks
to realize Q-Learning. Each element of action vector
is assigned reinforcement signal through learning
system dynamics. The method doesn’t satisfy model-
free condition; therefore, if the system dynamics
model is known, such a model-based adaptive critic
method is an effective reinforcement learning
method suitable for continuous state and action
spaces. Santamaria et al. (1998) put forward a kind
of reinforcement learning method based on CMAC.
Because CMAC has stronger nonlinear
approximation and generalization abilities, it can
realize generalization of reinforcement learning in
continuous state space. The inputs of CMAC are
states and actions, and its outputs are desired values.
The method has the following defects. At first, we
should explore all possible action spaces in order to
find out the action with the maximal Q value,
therefore the method couldn’t meet online learning
requirement. Moreover, the number of weights of
CMAC network increases exponentially according to
the dimension of state because the learning algorithm
based on CMAC is a kind of overlap state discrete
algorithm. At last, the convergence of direct gradient
descent reinforcement learning algorithm hasn’t been
proven from the point of view of theory. Claude
(1997) proposed a Q-Learning system based on
Kohonen network where states, actions and desired
values are all viewed as eigenvectors. Action
selection is determined by selecting the optimal
matching units, but the action is merely piecewise
continuous and in fact doesn’t completely satisfy
continuous standard. Smith (2002) used two SOM to
approximate state and action spaces respectively, and
utilized one-step TD error of Q-Learning to adjust
exploring orientation, the center of units of actions
and inputs mapping. The algorithm is quite complex
due to coordinator problem between the two SOM
networks. Santos (1999) put forward a kind of
reinforcement learning algorithm based on radial
basis function (RBF) network. Each RBF unit has a
central vector that is similar to eigenvector of
Kohonen network. The number of hidden units of
RBF network is equal to the number of actions that
are possiblely adopted by learning agent. The action
is piecewise continuous. Samejima and Omori (1999)
gave a state space adaptive division method called
Actor-Critic method. The method can adaptively
increase the number of units of the hidden layer
according to the surrounding environment and task.
At the beginning of learning, the hidden layer only
has one unit and one basis function. During the
learning process, new basis functions will be
produced by automatically dividing state space
according to TD error till the requirements of the
task are met. A Q-Learning system based on

dynamic neural field was proposed by Gross et al.
(1998). This Q-Learning system uses neural gas to
cluster similar states, and uses neural field to code
action values and then selects the action with the
maximal Q value. Despite the method meets state
and action generalization standards, low velocity of
action selection hampers its application.

Aiming at effective control of systems with
continuous state and action spaces, a weighted Q-
Learning is proposed in the paper. We use RBF
network to approximate the utility values of discrete
actions, and then obtain continuous actions that
actually act upon the system by making each discrete
action weighted according to its utility value.
Because the structure and parameters of RBF
network are vital to approximation effects, we
propose a modified growing neural gas (GNG)
algorithm to realize adaptive design of the hidden
layer of RBF network. At last, simulation research of
mountain car control is given and the simulation
result verifies that the proposed weighted Q-Learning
algorithm has better learning efficiency and
generalization capability.

2. WEIGHTED Q-LEARNING BASED ON
 RBF NETWORK

The idea of Q-Learning is to directly optimize a Q
function that can be computed iteratively and not to
approximate environment model directly. At each
time step, the agent observes the state ts , takes the

action ta subsequently, it then receives a reward on

the new state 1+ts . The reward is discounted into the
future, meaning the rewards received n time steps
later are worthless by nγ than that receives at
present,)1,0(∈γ is discounting factor. Thus the
cumulative discount reward is given by: During the
exploration, agent updates its Q-values based on the
received reward ()tt asr , and the perceived state

transition from ts to 1+ts using:

() () () () ()⎥⎦
⎤

⎢⎣
⎡ −++← ++∈+

ttttAatttttt asQasQasrasQasQ
t

,,max,,, 11
1

γα

 (1)
where ()1,0∈α is the learning rate that specifies the
incremental update.

There are many realization forms of Q-Learning by
virtue of neural network. We can set codes of states
and actions as network inputs, and then apply a
definite learning rule to train the network to produce
the goal value of Q. We also can train an individual
network for each action, and set states and Q value as
inputs and output respectively. In addition, there is a
commonly used method to train a network whose
inputs and outputs are states and Q values
corresponding to each action. The key problem of
realizing Q-Learning by neural network is learning
algorithm. Only the premise of the optimal strategy is
achieved, can the definition of Q function, i.e. Eq.(1)

is established. Eq.(1) isn’t established during the
learning process. Here, we define TD error as tδ .

() ()tttAatt asQasQrQ ,,max 1 −+=∆= +∈
γδ (2)

where ()asQ t ,1+ stands Q value corresponding to

the next state. tδ reflects the degrees of good or bad

of the selected action. tδ can be set as small as
possible by adjusting network weights.

The proposed system structure is a five-layer
network as shown in Fig.1. The signal propagation
and the basic function of each layer are described as
follows.

Continuous Action Output Layer

Discrete Action Utility Value

Normalized Layer

Input Layer

Hidden Units Layer

()′= Ii sss ,,,,1 LLs

()Hj ϕϕϕϕ ,,,,1 LL=

()Hj ΦΦΦ= ,,,,1 LLΦ

() () ()()Ok aUaUaU ,,,,,,, 1 sssU LL=

()bQ ,s

Fig. 1. System structure

Layer 1: input layer. () It
Iit Rssss ∈= ,,,,1 LL

denotes input state vector at time t and I denotes
the dimension of the input vector. The number of
input units is equal to the dimension of the input
vector.

Layer 2: hidden units layer that is composed of H
radial basis function units. The hidden layer is
constructed adaptively based on a modified GNG
algorithm proposed in this paper. The number of
hidden units isn’t predefined, but is adjusted
dynamically by the modified GNG algorithm during
the learning process. The active function of hidden
unit is Gaussian function, therefore the output of the
jth hidden unit is

()
⎥
⎥

⎦

⎤

⎢
⎢

⎣

⎡ −
−= 2

2

2
exp

j

jt
tj

s
s

σ

µ
ϕ ， Hj ,,2,1 L= (3)

where jµ and jσ are the center (mean) and the
width (variance) of the jth hidden unit respectively,
and H denotes the number of hidden units.

Layer 3: normalized layer that is composed of H

units. The normalized output corresponding to the jth
hidden unit is

() ()
()∑ =

=Φ H

l tl

tj
tj

s

s
s

1
ϕ

ϕ ， Hj ,,2,1 L= (4)

Layer 4: linear approximation layer that is composed
of O units. This layer fulfills approximation task for
O discrete action utility values ()kt asU , , i.e. Q
values of actions. This approximation represents
contributes of each discrete action to the
compounded continuous action.

() ()∑ =
Φ=

H

j tjjkkt swasU
1

, ， Ok ,,2,1 L= (5)

where jkw is connect weight from the jth output of
the normalized layer to the kth unit of the linear
approximation layer.

Layer 5: continuous action output layer that is
composed of only one unit (can be extended to the
application of continuous action vector output). The
output of continuous action depends on discrete
actions. Differing from winner-take-all mechanism
and −ε greedy strategy, command fusion
mechanism is used to select continuous actions.
Command fusion mechanism weights all discrete
actions according to their utility values to form a
continuous control action that represents the
consensus of the viable action set. Thus, this
approach provides for a coordination scheme that
allows all the behaviors to simultaneously contribute
to the control of the system in a cooperative rather
than a competitive manner. If we set utility value of
each discrete action at state ts as ()kt asU , , then

action tb that is acted upon the system at time t
takes the value spanned in the range of

⎥⎦
⎤

⎢⎣
⎡

∈∈ jOjiOi
aa max,min . The computation equations of tb

and its Q value are

∑
∑

=

== O

l l

O

k kk
t

u

ua
b

1

1 (6)

() ()
2

,,max1

1

⎟
⎠
⎞⎜

⎝
⎛ −+

=

∈ ktgtOg

k

asUasU
u (7)

() ()∑ =
=

O

k kkttt uasUbsQ
1

,, (8)

where []Ok ,1∈ and O is the number of discrete

actions, and ku is the weight coefficient of action

ka . We can see from Eq. (8) that the Q value of
continuous action is obtained by combining the
utility values of all the discrete actions using linear
combinations.

TD error is defined as

() ()tttttt bsQbsQr ,, 11 −+= ++γδ (9)

where tr is the future reinforcement signal when

action tb is executed at state ts . Furthermore,

system state will transit from state ts to state 1+ts .

The square sum of the TD errors 2δ
2
1

ttE = is

used as the basis of weights updating to reduce TD
error. The weights updating rule is

() ()
jk

t
jkjk w

twtw
∂
∂

−=+
E

1 η

() () () () ⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛ −
Φ+

Φ
+=

k

k
kttj

k

tj
tjk u

u
asUs

u
s

tw
1

,2ηδ

(10)

where η is learning rate.

3. STATE SPACE GENERALIZATION BASED
ON MODIFIED GNG ALGORITHM

The structure and parameters of RBF network are
vital to the system approximation effects. We
propose a modified GNG algorithm based on GNG
algorithm that was first put forward by Friztke
(1995) .The modified GNG algorithm is used to
construct the hidden layer of RBF network. In order
to obtain appropriate approximation precision, we
don’t pre-set the number of hidden units of RBF
network, but use the modified GNG algorithm to
make the network adaptively add or delete hidden
units with the requirements of the environment and
task so as to realize adaptive, online state space
division in deed. This approach of construction of
hidden layer of RBF network using the modified
GNG algorithm has self-organized and self-learning
abilities whose structure is shown in Fig.2.

 1ϕ

jϕ

Hϕ

S

Fig. 2. Structure of construction of hidden layer of

RBF network by modified GNG algorithm

The modified GNG algorithm is described as follows.

Each hidden unit has the following parameters:
reference vector (denoting the position of input unit
that is corresponding to hidden unit on input space,
i.e. weights), edge (denoting the neighbor of the
topology structure on space which is used to connect
hidden units), age (denoting the existence term of
edge), local error and local square error (determining
new unit addition, and here using TD error to define
the local error and local square error of units).

1. Initializing GNG algorithm. Establishing two
hidden units corresponding to stochastic
positions and connecting the two units using
edge. The age of the edge is set as 0, and the
local error and local square error of units are also
initialized to 0.

2. Submitting input vector ts and computing the

Euclidean distances it vs − between ts and
each unit. Determining the optimal matched unit
m and the sub-optimal matched unit n
according to the least Euclidean distance rule.
Supposing that the reference vectors
corresponding to units m and n are mv and

nv respectively, then we can get

 mt
Hm

vsm −=
∈
minarg , nt

mnHm
vsn −=

≠∈ ,
minarg

(11)
3. Defining local error mf and local square error

mg of the optimal matched unit to evaluate the
adaptability of the unit. The updating equations
are
() ()() () () () ttmtmmtmm sstfstf δϕββ Φ+Φ−=+ 1111

(12)

() ()() () () () 2
2211 ttmtmmtmm sstgstg δϕββ Φ+Φ−=+

 (13)

where 1β and 2β are learning rates of mf and

mg respectively.
4. Moving the optimal matched unit m and its

neighbour units (all units that are connected with
unit m by edges) along the direction ts so as to
adjust the center of hidden unit of RBF network.

()mttmmm vsvv −+← δτ , ()ittiii vsvv −+← δτ

)(mNeighbouri∈∀ . (14)

where []1,0, ∈im ττ and im ττ >> .
5. Adjusting the widths of the unit m (after being

moved) and its neighbour units. Defining the
width of the jth hidden unit as the average value
of all the distances between unit j to its all
neighbor units, that is

∑
=

−=
jN

j
cj

j
j vv

N 1

1σ ，)(jNeighbourc∈∀

(15)
where jN denotes the number of the neighbour

units of unit j .
6. Increasing the age of edges that connect unit m

with its neighbour units. If units m and n are
connected by edge, the age of the edge is set as 0.
On the other hand, if units m and n aren’t
connected, connect the two units and set the age
of the edge is 0. Any edge whose age is bigger
than maxage should be deleted. If there is a unit

having no edges to be connected, the unit is
viewed as a ‘dead’ unit and should be deleted.
The widths of those units influenced should be
re-computed according to Eq. (15).

7. Adding a new unit when the activation degree,

mϕ of the optimal matched unit is smaller than

threshold Tϕ and mm fg is bigger than

threshold Tθ which indicate that the existing
basis functions didn’t cover the current input
vector. The detailed operation steps are: finding
out a unit u with the largest local error; finding
out a unit v with the largest local error from the
neighbor units of unit u ; adding a new unit r
between units u and v , and setting its

reference vector is ()vur vvv +=
2
1

;

connecting units u with r , r with v
respectively; deleting the connect between units
u and v , and re-computing the widths of the
RBF basis function of units u , v and r .

8. Repeating the above steps in case the stop
condition isn’t satisfied.

It is noted that the proposed algorithm in the paper is
different from the growing algorithm proposed by
Fritzke. Fritzke’s algorithm works in an offline
manner, whereas the modified GNG algorithm is an
online learning algorithm. In addition, Fritzke’s
algorithm adds new units according to fixed iterative
step, whereas the modified GNG algorithm adds or
deletes new units according to the approximation
requirements so as to always make the network
structure keep the optimal status.

4. SIMULATION RESEARCH

In order to verify the validity of the proposed
weighted Q-Learning, a mountain car control with
continuous state and action spaces is simulated.
Mountain car is usually viewed as a typical control
object with continuous state and action spaces so as
to verify the learning efficiency and generalization
ability of reinforcement learning algorithm.

Mountain car control problem has two-dimension
continuous state space and one-dimension
continuous action spaces. Supposing that there is no
aprior knowledge about the system dynamics besides
the state observation values, therefore, the traditional
model-based optimal control strategies can’t solve
the problem. Fig.3 gives the sketch map of mountain
car control where the curve denotes the terrain of the
valley, and ‘Goal’ is the goal point. The task of the
system is to move the car from any point to ‘Goal’
point as quick as possible under the condition that
the power energy of the car is insufficient. The state
variables of the system are the horizontal position p
and the horizontal velocity v of the car. The state
space meets (){ }07.007.0,5.02.1, 2 ≤≤−≤≤−∈ vpRvp .
Control variable is horizontal force acted upon the
car, and the action space meets []1,1−∈u . The

system dynamics model is adopted as the following
equation during simulation.

⎩
⎨
⎧

−=
=

puv
vp

3cos0025.0001.0&

&
 (16)

Goal

-1.2 0.5

Fig. 3. Sketch map of mountain car control

The goal of the learning controller is to realize the
least time control of moving the car from any point to
‘Goal’ point on the premise of having no aprior
knowledge about the system dynamics. The above
learning control problem can be modeled by a
deterministic MDP, and the rewards function is
designed as

⎩
⎨
⎧

≥
<−

=
5.0,0
5.0,1

p
p

rt

The initial state of the car can be taken from the
range [] []07.0,07.05.0,2.1 −∈∩−∈ vp during each
trial. The current learning process will end when the
car reaches ‘Goal’ point or time step exceeds the
given value. The performance index of the learning
system is defined as the time step of moving the car
from any point to ‘Goal’ point. Figures 4, 5, 6, 7 give
simulation curves. Fig.4 is position curve of the car.
We can see from Fig.5 (velocity curve of the car) that
the car can gain the needed potential energy by
reverse movement under the condition that the power
energy is insufficient. Fig.6 is learning curve
indicating the learning steps of moving the car from
any point to ‘Goal’ point. The horizontal coordinate
of Fig.6 is learning trials. Seeing from Fig.6, the car
can reach the goal point within 200 steps after 60
trials. Fig.7 gives Q value curve after 80 trials.
Therefore, it’s concluded that the proposed algorithm
has better learning efficiency and generalization
ability.

-1.5
-1

-0.5
0

0.5
1

1 2 3 4 5 6 7 8 9 10

time step(×10)

po
si

tio
n

of
 c

ar

Fig. 4. Position curve of car

-0.1
-0.05

0
0.05

0.1

1 2 3 4 5 6 7 8 9 10

time step(×10)

ve
lo

ci
ty

 o
f c

ar

Fig. 5. Velocity curve of car

0

200

400

600

800

1000

1200

1 8

1
5

2
2

2
9

3
6

4
3

5
0

5
7

6
4

7
1

7
8

8
5

learning trials

ste
ps

 to
 g

oa
l

Fig. 6. Learning curve

Fig. 7. Q-Value curve

5. CONCLUSIONS

A kind of weighted Q-Learning algorithm for
continuous state and action spaces was proposed in
the paper. RBF network is used to implement
standard Q-Learning so as to approximate the utility
values of discrete actions. And then, the continuous
action acted upon the actual system can be obtained
by weighing the utility values of discrete actions
according to the proposed weighted rule in the paper.
In this way, the application field of Q-Learning is
extended to control system with continuous state and
action spaces. Regarding the importance of the
structure and parameters of RBF network on
approximation effects on discrete action utility
values, we put forward a modified GNG algorithm
and applied it to construct the hidden layer of RBF
network. Therefore, the number of hidden units,
centers and widths of RBF network can be adjusted
adaptively. Simulation result of mountain car control

verified the validity of the proposed weighted Q-
Learning algorithm.

ACKNOWLEDGEMENTS

This work was partly supported by 973 Project
(Grant No. 2003CB517106) and International
Cooperation Key Project (Grant No.
2004DFB02100) of Ministry of Science and
Technology, China.

REFERENCES

Claude, F. T. (1997). Neural reinforcement learning

for behavior synthesis. Robotics and
Autonomous Systems, Vol. 22, No. 3, 251-281.

Fritzke, B. (1995). A growing neural gas network
learns topologies. Advances in Neural
Information Processing Systems 7, MA: MIT
Press, 625-632.

Gross, H. M., V.Stephan, and M.Krabbes. (1998). A
neural field approach to topological
reinforcement learning in continuous action
spaces. Proceedings of IEEE World Congress on
Computational Intelligence, Vol. 2, 826-832.

Munos, R. (1997). A convergent reinforcement
learning algorithm in the continuous case based
on a finite difference method. Proceedings of the
International Joint Conference on Artificial
Intelligence, Vol. 1, 268-278

Samejima, K, and T. Omori. (1999). Adaptive
Internal State Space Construction Method for
Reinforcement Learning of a Real-world Agent.
Neural Networks, No. 12, 1143-1155.

Santamaria, J. C., R. S.Sutton, and Ashwin Ram
(1998). Experiments with reinforcement learning
in problems with continuous state and action
spaces. Adaptive Behavior, Vol. 6, No.2, 163－
218.

Santos, J. M. (1999). Contribution to the study and
design of reinforcement functions. PhD thesis,
Universidad de Buenos Aires, Universities
d'Aix-Marseille III.

Smith, A. J. (2002). Applications of the Self-
organizing Map to Reinforcement Learning.
Neural Network, No. 15, 1107-1124.

Sutton, R.S., D.McAllester, and S.Singh, et al. (2000).
Policy Gradient Methods for Reinforcement
learning with Function Approximation.
Advances in Neural Information Processing
Systems 12 (Proceedings of the 1999 conference),
pp. 1057-1063. MIT Press.

Watkins, C.J.C.H. and P. Dayan. (1992). Q Learning.
Machine Learning, Vol. 8, No. 3, 279-292.

Werbos, P. J. (1992). Approximate dynamic
programming for real-time control and neural
modeling. Handbook of Intelligent Control:
Neural, Fuzzy, and Adaptive Approaches. (D. A.
White and D. A. Sofge, editors).Van Nostrand
Reinhold.

