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Abstract: A kind of weighted Q-Learning algorithm suitable for control systems with 
continuous state and action spaces was proposed. The hidden layer of RBF network was 
designed dynamically by virtue of the proposed modified growing neural gas algorithm so 
as to realize the adaptive understanding of the continuous state space. Based on the 
standard Q-Learning implemented by RBF network, the weighted Q-Learning was used 
to solve the control problem with continuous action outputs. Simulation result of 
mountain car control verified the validity of the proposed weighted Q-Learning algorithm.  
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1. INTRODUCTION 

 
Reinforcement learning is a kind of learning 
algorithm between supervised and unsupervised 
learning algorithms which is based on markov 
decision process (MDP). For the solution of large-
scale MDPs or continuous state and action spaces, 
it’s impossible for reinforcement learning agent to go 
through all the states and actions. In order to realize 
the optimal approximation for value functions of 
continuous states and actions respectively, therefore, 
learning agent must have generalization ability. In 
other words, such an agent should be able to utilize 
finite learning experience to acquire and express a 
good knowledge of a large-scale space effectively, 
see  (Sutton, et al., 1999). How to design a function 
approximator with abilities of high generalization 
and computation efficiency has become a key 
problem for the research field of reinforcement 
learning. 
 
Q-Learning is an effective reinforcement learning 
method to solve markov decision problem with 
incomplete information. It is also viewed as a kind of 
asynchronous dynamic planning method. Since 
Watkins and Dayan (1992) proposed Q-Learning 

algorithm and proved its convergence, it has been 
received broad attention. However, research works 
about Q-Learning are restricted to limited markov 
decision problem and there are little works related to 
continuous state and action spaces. Because states 
and actions of many stochastic control systems are 
continuous in fact, we should make state and action 
spaces discrete when we use Q-Learning to solve the 
stochastic optimal control problem of continuous 
state and action spaces. But such a discrete operation 
is likely to result in the following problems:(a) 
hidden state problem easily occurs when state space 
is divided roughly;(b) curse of dimensionality 
problem appears when the state space is enormous;(c) 
the property of markov of the system can’t be 
guaranteed after discrete operation (Munos, 1997). 
The surrounding environment and the task are very 
complex; therefore, we can’t obtain satisfactory 
control effects by merely defining a simple discrete 
action set. Moreover, if we make continuous action 
space discretization for an actual control system even 
disregarding spatial and computational complexities, 
the pre-defined discrete action set may not includes 
the optimal action of each time-step so as to 
satisfactory control effects are difficult to obtain. 
 



 

     

Lately, some scholars pursued researches on 
extension of the application field of Q-Learning to 
continuous state and action spaces. The main 
difference between state and action spaces is that the 
input data used to constitute state space is provided 
by environment, but on the other hand action space is 
obtained only by virtue of exploring by learning 
agent. Werbos (1992) proposed a kind of adaptive 
critic method by using several feedforward networks 
to realize Q-Learning. Each element of action vector 
is assigned reinforcement signal through learning 
system dynamics. The method doesn’t satisfy model-
free condition; therefore, if the system dynamics 
model is known, such a model-based adaptive critic 
method is an effective reinforcement learning 
method suitable for continuous state and action 
spaces. Santamaria et al. (1998) put forward a kind 
of reinforcement learning method based on CMAC. 
Because CMAC has stronger nonlinear 
approximation and generalization abilities, it can 
realize generalization of reinforcement learning in 
continuous state space. The inputs of CMAC are 
states and actions, and its outputs are desired values. 
The method has the following defects. At first, we 
should explore all possible action spaces in order to 
find out the action with the maximal Q value, 
therefore the method couldn’t meet online learning 
requirement. Moreover, the number of weights of 
CMAC network increases exponentially according to 
the dimension of state because the learning algorithm 
based on CMAC is a kind of overlap state discrete 
algorithm. At last, the convergence of direct gradient 
descent reinforcement learning algorithm hasn’t been 
proven from the point of view of theory. Claude 
(1997) proposed a Q-Learning system based on 
Kohonen network where states, actions and desired 
values are all viewed as eigenvectors. Action 
selection is determined by selecting the optimal 
matching units, but the action is merely piecewise 
continuous and in fact doesn’t completely satisfy 
continuous standard. Smith (2002) used two SOM to 
approximate state and action spaces respectively, and 
utilized one-step TD error of Q-Learning to adjust 
exploring orientation, the center of units of actions 
and inputs mapping. The algorithm is quite complex 
due to coordinator problem between the two SOM 
networks. Santos (1999) put forward a kind of 
reinforcement learning algorithm based on radial 
basis function (RBF) network. Each RBF unit has a 
central vector that is similar to eigenvector of 
Kohonen network. The number of hidden units of 
RBF network is equal to the number of actions that 
are possiblely adopted by learning agent. The action 
is piecewise continuous. Samejima and Omori (1999) 
gave a state space adaptive division method called 
Actor-Critic method. The method can adaptively 
increase the number of units of the hidden layer 
according to the surrounding environment and task. 
At the beginning of learning, the hidden layer only 
has one unit and one basis function. During the 
learning process, new basis functions will be 
produced by automatically dividing state space 
according to TD error till the requirements of the 
task are met. A Q-Learning system based on 

dynamic neural field was proposed by Gross et al. 
(1998). This Q-Learning system uses neural gas to 
cluster similar states, and uses neural field to code 
action values and then selects the action with the 
maximal Q value. Despite the method meets state 
and action generalization standards, low velocity of 
action selection hampers its application. 
 
Aiming at effective control of systems with 
continuous state and action spaces, a weighted Q-
Learning is proposed in the paper. We use RBF 
network to approximate the utility values of discrete 
actions, and then obtain continuous actions that 
actually act upon the system by making each discrete 
action weighted according to its utility value. 
Because the structure and parameters of RBF 
network are vital to approximation effects, we 
propose a modified growing neural gas (GNG) 
algorithm to realize adaptive design of the hidden 
layer of RBF network. At last, simulation research of 
mountain car control is given and the simulation 
result verifies that the proposed weighted Q-Learning 
algorithm has better learning efficiency and 
generalization capability. 
 

2. WEIGHTED Q-LEARNING BASED ON 
 RBF NETWORK 

 
The idea of Q-Learning is to directly optimize a Q 
function that can be computed iteratively and not to 
approximate environment model directly. At each 
time step, the agent observes the state ts , takes the 

action ta  subsequently, it then receives a reward on 

the new state 1+ts . The reward is discounted into the 
future, meaning the rewards received n  time steps 
later are worthless by nγ  than that receives at 
present, )1,0(∈γ  is discounting factor. Thus the 
cumulative discount reward is given by: During the 
exploration, agent updates its Q-values based on the 
received reward ( )tt asr ,  and the perceived state 

transition from ts  to 1+ts  using: 

( ) ( ) ( ) ( ) ( )⎥⎦
⎤

⎢⎣
⎡ −++← ++∈+

ttttAatttttt asQasQasrasQasQ
t

,,max,,, 11
1

γα

       (1) 
where ( )1,0∈α  is the learning rate that specifies the 
incremental update. 
 
There are many realization forms of Q-Learning by 
virtue of neural network. We can set codes of states 
and actions as network inputs, and then apply a 
definite learning rule to train the network to produce 
the goal value of Q. We also can train an individual 
network for each action, and set states and Q value as 
inputs and output respectively. In addition, there is a 
commonly used method to train a network whose 
inputs and outputs are states and Q values 
corresponding to each action. The key problem of 
realizing Q-Learning by neural network is learning 
algorithm. Only the premise of the optimal strategy is 
achieved, can the definition of Q function, i.e. Eq.(1) 



 

     

is established. Eq.(1) isn’t established during the 
learning process. Here, we define TD error as tδ . 

( ) ( )tttAatt asQasQrQ ,,max 1 −+=∆= +∈
γδ        (2) 

where ( )asQ t ,1+  stands Q value corresponding to 

the next state. tδ  reflects the degrees of good or bad 

of the selected action. tδ  can be set as small as 
possible by adjusting network weights. 
 
The proposed system structure is a five-layer 
network as shown in Fig.1. The signal propagation 
and the basic function of each layer are described as 
follows. 
 

Continuous Action Output Layer

Discrete Action Utility Value

Normalized Layer

Input Layer

Hidden Units Layer

( )′= Ii sss ,,,,1 LLs

( )Hj ϕϕϕϕ ,,,,1 LL=

( )Hj ΦΦΦ= ,,,,1 LLΦ

( ) ( ) ( )( )Ok aUaUaU ,,,,,,, 1 sssU LL=

( )bQ ,s

 
Fig. 1.  System structure  
 

Layer 1: input layer. ( ) It
Iit Rssss ∈= ,,,,1 LL  

denotes input state vector at time t  and I  denotes 
the dimension of the input vector. The number of 
input units is equal to the dimension of the input 
vector.  
 
Layer 2: hidden units layer that is composed of H  
radial basis function units. The hidden layer is 
constructed adaptively based on a modified GNG 
algorithm proposed in this paper. The number of 
hidden units isn’t predefined, but is adjusted 
dynamically by the modified GNG algorithm during 
the learning process. The active function of hidden 
unit is Gaussian function, therefore the output of the 
jth hidden unit is 

( )
⎥
⎥

⎦

⎤

⎢
⎢

⎣

⎡ −
−= 2

2

2
exp

j

jt
tj

s
s

σ

µ
ϕ ， Hj ,,2,1 L=     (3) 

where jµ  and jσ  are the center (mean) and the 
width (variance) of the jth hidden unit respectively, 
and H  denotes the number of hidden units. 
 
Layer 3: normalized layer that is composed of H  
 
units. The normalized output corresponding to the jth 
hidden unit is 

( ) ( )
( )∑ =

=Φ H

l tl

tj
tj

s

s
s

1
ϕ

ϕ ， Hj ,,2,1 L=            (4) 

  
Layer 4: linear approximation layer that is composed 
of O  units. This layer fulfills approximation task for 
O  discrete action utility values ( )kt asU , , i.e. Q 
values of actions. This approximation represents 
contributes of each discrete action to the 
compounded continuous action. 

( ) ( )∑ =
Φ=

H

j tjjkkt swasU
1

, ， Ok ,,2,1 L=   (5) 

where jkw  is connect weight from the jth output of 
the normalized layer to the kth unit of the linear 
approximation layer. 
 
Layer 5: continuous action output layer that is 
composed of only one unit (can be extended to the 
application of continuous action vector output). The 
output of continuous action depends on discrete 
actions. Differing from winner-take-all mechanism 
and −ε greedy strategy, command fusion 
mechanism is used to select continuous actions. 
Command fusion mechanism weights all discrete 
actions according to their utility values to form a 
continuous control action that represents the 
consensus of the viable action set. Thus, this 
approach provides for a coordination scheme that 
allows all the behaviors to simultaneously contribute 
to the control of the system in a cooperative rather 
than a competitive manner. If we set utility value of 
each discrete action at state ts  as ( )kt asU , , then 

action tb  that is acted upon the system at time t  
takes the value spanned in the range of 

⎥⎦
⎤

⎢⎣
⎡

∈∈ jOjiOi
aa max,min . The computation equations of tb  

and its Q value are 

∑
∑

=

== O

l l

O

k kk
t

u

ua
b

1

1                     (6) 

( ) ( )
2

,,max1

1

⎟
⎠
⎞⎜

⎝
⎛ −+

=

∈ ktgtOg

k

asUasU
u   (7) 

( ) ( )∑ =
=

O

k kkttt uasUbsQ
1

,,         (8) 

where [ ]Ok ,1∈  and O  is the number of discrete 

actions, and ku  is the weight coefficient of action 

ka . We can see from Eq. (8) that the Q value of 
continuous action is obtained by combining the 
utility values of all the discrete actions using linear 
combinations. 
 
TD error is defined as 

( ) ( )tttttt bsQbsQr ,, 11 −+= ++γδ         (9) 



 

     

where tr  is the future reinforcement signal when 

action tb  is executed at state ts . Furthermore, 

system state will transit from state ts  to state 1+ts . 
 

The square sum of the TD errors 2δ
2
1

ttE =  is 

used as the basis of weights updating to reduce TD 
error. The weights updating rule is 

( ) ( )
jk

t
jkjk w

twtw
∂
∂

−=+
E

1 η  

( ) ( ) ( ) ( ) ⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛ −
Φ+

Φ
+=

k

k
kttj

k

tj
tjk u

u
asUs

u
s

tw
1

,2ηδ

 
(10) 

where η  is learning rate. 
 

3. STATE SPACE GENERALIZATION BASED 
ON MODIFIED GNG ALGORITHM 

 
The structure and parameters of RBF network are 
vital to the system approximation effects. We 
propose a modified GNG algorithm based on GNG 
algorithm that was first put forward by Friztke 
(1995) .The modified GNG algorithm is used to 
construct the hidden layer of RBF network. In order 
to obtain appropriate approximation precision, we 
don’t pre-set the number of hidden units of RBF 
network, but use the modified GNG algorithm to 
make the network adaptively add or delete hidden 
units with the requirements of the environment and 
task so as to realize adaptive, online state space 
division in deed. This approach of construction of 
hidden layer of RBF network using the modified 
GNG algorithm has self-organized and self-learning 
abilities whose structure is shown in Fig.2. 
 

  1ϕ

jϕ

Hϕ

S

 
Fig. 2. Structure of construction of hidden layer of 

RBF network by modified GNG algorithm  
 
The modified GNG algorithm is described as follows. 
 
Each hidden unit has the following parameters: 
reference vector (denoting the position of input unit 
that is corresponding to hidden unit on input space, 
i.e. weights), edge (denoting the neighbor of the 
topology structure on space which is used to connect 
hidden units), age (denoting the existence term of 
edge), local error and local square error (determining 
new unit addition, and here using TD error to define 
the local error and local square error of units).  

1. Initializing GNG algorithm. Establishing two 
hidden units corresponding to stochastic 
positions and connecting the two units using 
edge. The age of the edge is set as 0, and the 
local error and local square error of units are also 
initialized to 0. 

2. Submitting input vector ts  and computing the 

Euclidean distances it vs −  between ts  and 
each unit. Determining the optimal matched unit 
m  and the sub-optimal matched unit n  
according to the least Euclidean distance rule. 
Supposing that the reference vectors 
corresponding to units m  and n  are mv  and 

nv  respectively, then we can get 

      mt
Hm

vsm −=
∈
minarg , nt

mnHm
vsn −=

≠∈ ,
minarg   

(11) 
3. Defining local error mf  and local square error 

mg  of the optimal matched unit to evaluate the 
adaptability of the unit. The updating equations 
are 
( ) ( )( ) ( ) ( ) ( ) ttmtmmtmm sstfstf δϕββ Φ+Φ−=+ 1111

 
(12) 

( ) ( )( ) ( ) ( ) ( ) 2
2211 ttmtmmtmm sstgstg δϕββ Φ+Φ−=+

 
 (13) 

where 1β  and 2β are learning rates of mf  and 

mg  respectively. 
4. Moving the optimal matched unit m  and its 

neighbour units (all units that are connected with 
unit m  by edges) along the direction ts  so as to 
adjust the center of hidden unit of RBF network.  

( )mttmmm vsvv −+← δτ , ( )ittiii vsvv −+← δτ  

)(mNeighbouri∈∀ .                  (14) 

where [ ]1,0, ∈im ττ  and im ττ >> . 
5. Adjusting the widths of the unit m  (after being 

moved) and its neighbour units. Defining the 
width of the jth hidden unit as the average value 
of all the distances between unit j  to its all 
neighbor units, that is 

∑
=

−=
jN

j
cj

j
j vv

N 1

1σ ， )( jNeighbourc∈∀    

(15) 
where jN  denotes the number of the neighbour 

units of unit j . 
6. Increasing the age of edges that connect unit m  

with its neighbour units. If units m  and n  are 
connected by edge, the age of the edge is set as 0. 
On the other hand, if units m  and n  aren’t 
connected, connect the two units and set the age 
of the edge is 0. Any edge whose age is bigger 
than maxage  should be deleted. If there is a unit 



 

     

having no edges to be connected, the unit is 
viewed as a ‘dead’ unit and should be deleted. 
The widths of those units influenced should be 
re-computed according to Eq. (15). 

7. Adding a new unit when the activation degree, 

mϕ  of the optimal matched unit is smaller than 

threshold Tϕ  and mm fg  is bigger than 

threshold Tθ  which indicate that the existing 
basis functions didn’t cover the current input 
vector. The detailed operation steps are: finding 
out a unit u  with the largest local error; finding 
out a unit v  with the largest local error from the 
neighbor units of unit u ; adding a new unit r  
between units u  and v , and setting its 

reference vector is ( )vur vvv +=
2
1

; 

connecting units u  with r , r  with v  
respectively; deleting the connect between units 
u  and v , and re-computing the widths of the 
RBF basis function of units u , v  and r . 

8. Repeating the above steps in case the stop 
condition isn’t satisfied.  

 
It is noted that the proposed algorithm in the paper is 
different from the growing algorithm proposed by 
Fritzke. Fritzke’s algorithm works in an offline 
manner, whereas the modified GNG algorithm is an 
online learning algorithm. In addition, Fritzke’s 
algorithm adds new units according to fixed iterative 
step, whereas the modified GNG algorithm adds or 
deletes new units according to the approximation 
requirements so as to always make the network 
structure keep the optimal status. 
 

4. SIMULATION RESEARCH 
 
In order to verify the validity of the proposed 
weighted Q-Learning, a mountain car control with 
continuous state and action spaces is simulated. 
Mountain car is usually viewed as a typical control 
object with continuous state and action spaces so as 
to verify the learning efficiency and generalization 
ability of reinforcement learning algorithm. 
 
Mountain car control problem has two-dimension 
continuous state space and one-dimension 
continuous action spaces. Supposing that there is no 
aprior knowledge about the system dynamics besides 
the state observation values, therefore, the traditional 
model-based optimal control strategies can’t solve 
the problem. Fig.3 gives the sketch map of mountain 
car control where the curve denotes the terrain of the 
valley, and ‘Goal’ is the goal point. The task of the 
system is to move the car from any point to ‘Goal’ 
point as quick as possible under the condition that 
the power energy of the car is insufficient. The state 
variables of the system are the horizontal position p  
and the horizontal velocity v  of the car. The state 
space meets ( ){ }07.007.0,5.02.1, 2 ≤≤−≤≤−∈ vpRvp . 
Control variable is horizontal force acted upon the 
car, and the action space meets [ ]1,1−∈u . The 

system dynamics model is adopted as the following 
equation during simulation. 

⎩
⎨
⎧

−=
=

puv
vp

3cos0025.0001.0&

&
            (16) 

Goal

-1.2 0.5  
 
Fig. 3. Sketch map of mountain car control 
 
The goal of the learning controller is to realize the 
least time control of moving the car from any point to 
‘Goal’ point on the premise of having no aprior 
knowledge about the system dynamics. The above 
learning control problem can be modeled by a 
deterministic MDP, and the rewards function is 
designed as  

⎩
⎨
⎧

≥
<−

=
5.0,0
5.0,1

p
p

rt  

The initial state of the car can be taken from the 
range [ ] [ ]07.0,07.05.0,2.1 −∈∩−∈ vp  during each 
trial. The current learning process will end when the 
car reaches ‘Goal’ point or time step exceeds the 
given value. The performance index of the learning 
system is defined as the time step of moving the car 
from any point to ‘Goal’ point. Figures 4, 5, 6, 7 give 
simulation curves. Fig.4 is position curve of the car. 
We can see from Fig.5 (velocity curve of the car) that 
the car can gain the needed potential energy by 
reverse movement under the condition that the power 
energy is insufficient. Fig.6 is learning curve 
indicating the learning steps of moving the car from 
any point to ‘Goal’ point. The horizontal coordinate 
of Fig.6 is learning trials. Seeing from Fig.6, the car 
can reach the goal point within 200 steps after 60 
trials. Fig.7 gives Q value curve after 80 trials. 
Therefore, it’s concluded that the proposed algorithm 
has better learning efficiency and generalization 
ability. 
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Fig. 4. Position curve of car 
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Fig. 5. Velocity curve of car 
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Fig. 6. Learning curve 

 
Fig. 7. Q-Value curve 
 

5. CONCLUSIONS 
 
A kind of weighted Q-Learning algorithm for 
continuous state and action spaces was proposed in 
the paper. RBF network is used to implement 
standard Q-Learning so as to approximate the utility 
values of discrete actions. And then, the continuous 
action acted upon the actual system can be obtained 
by weighing the utility values of discrete actions 
according to the proposed weighted rule in the paper. 
In this way, the application field of Q-Learning is 
extended to control system with continuous state and 
action spaces. Regarding the importance of the 
structure and parameters of RBF network on 
approximation effects on discrete action utility 
values, we put forward a modified GNG algorithm 
and applied it to construct the hidden layer of RBF 
network. Therefore, the number of hidden units, 
centers and widths of RBF network can be adjusted 
adaptively. Simulation result of mountain car control 

verified the validity of the proposed weighted Q-
Learning algorithm. 
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