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Abstract: A commonly employed measure of the signal amplification properties of an
input/output system is its induced L2 norm, sometimes also known as H∞ gain. In
general, however, it is extremely difficult to compute the numerical value for this norm, or
even to check that it is finite, unless the system being studied is linear. This paper describes
a class of systems for which it is possible to reduce this computation to that of finding the
norm of an associated linear system. In contrast to linearization approaches, a precise
value, not an estimate, is obtained for the full nonlinear model. The class of systems that
we study arose from the modeling of certain biological intracellular signaling cascades,
but the results should be of wider applicability. Copyright c©2005 IFAC.
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1. INTRODUCTION

The analysis of signaling networks constitutes one of
the central questions in systems biology. There is a
pressing need for powerful mathematical tools to help
understand and conceptualize their information pro-
cessing and dynamic properties. One natural question
is that of quantifying the amount of “signal ampli-
fication” in such a network, meaning in some sense
the ratio between the size of a response or output and
that of the input that gave rise to it. See for instance
(Heinrich et al., 2002) for a recent paper in this line of
work.

In control theory, a routine way to quantify amplifica-
tion is by means of the inducedL2 norm or “H∞ gain”
of a system. A major difficulty when trying to apply
these techniques to signaling networks is that such
systems are usually highly nonlinear. Thus, typically,
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mathematical results are only given for small inputs or
“weakly activated” systems, see for instance (Heinrich
et al., 2002; Chaves et al., 2004). For large signals,
that is, when analyzing the full nonlinear system, even
deciding if the norm is finite or not is usually a very
hard question.

In this paper, motivated by the particular systems stud-
ied in (Heinrich et al., 2002; Chaves et al., 2004), we
introduce a class of nonlinear systems, which includes
all these motivational examples as well as many oth-
ers, and we show finiteness and how to obtain precise
values for norms, by reducing the problem of norm
estimation to the same problem for an associated lin-
ear system. This associated system is sometimes a
linearization of the original system around an equi-
librium point, though it need not be. In any case, the
techniques are not at all related to linearization tech-
niques, but instead borrow from comparison theorems,
ISS-like estimates, and the theory of positive systems.



2. DEFINITIONS AND STATEMENTS OF
RESULTS

We deal with systems of the following special form:

ẋ(t) = A(x(t)) x(t) + B(x(t)) u(t) , x(0) = 0 (1)

(or just “ẋ = A(x)x + B(x)u”), where dot indicates
time derivative, and states x(t) as well as input values
u(t) are vectors with nonnegative components: x(t) ∈
R

n
≥0 and u(t) ∈ R

m
≥0 for all t ≥ 0, for some positive

integers n and m. We view A and B as matrix valued
functions

A : R
n
≥0 → R

n×n , B : R
n
≥0 → R

n×m

where R
k
≥0 = (R≥0)

k, for any positive integer k, is
the set of vectors ξ ∈ R

k in Euclidean k-space with
all coordinates ξi ≥ 0, i = 1, . . . , k. Associated to
these systems we also have an output or measurement

y(t) = h(x(t)) = C(x(t))x(t)

taking values y(t) ∈ R
p, for some integer p, where

C : R
n
≥0 → R

p×n.

Assumptions We make several assumptions concern-
ing the matrix functions A, B, and C, as follows.

Stability:

The matrix A(0) is Hurwitz, that is, all eigenvalues of
A(0) have negative real parts.

Maximization at ξ = 0:

For each ξ ∈ R
n
≥0, A(ξ) ≤ A(0), B(ξ) ≤ B(0),

and C(ξ) ≤ C(0), meaning that A(ξ)ij ≤ A(0)ij for
each i, j ∈ {1, . . . , n}, B(ξ)ij ≤ B(0)ij for each i ∈
{1, . . . , n} and j ∈ {1, . . . , m}. and C(ξ)ij ≤ C(0)ij

for each i ∈ {1, . . . , p} and j ∈ {1, . . . , m}.

Positivity of system:

For each ξ ∈ R
n
≥0 and each i ∈ {1, . . . , n} such

that ξi = 0, it holds that: A(ξ)ij ≥ 0 for all j 6= i
and B(ξ)ij ≥ 0 for all j. Also, for every ξ ∈ R

n
≥0,

Cij(ξ) ≥ 0 for all i, j.

Local Lipschitz assumption:

The matrix functions A(ξ), B(ξ), and C(ξ) are locally
Lipschitz in ξ.

Remarks about the form of the system The special
form assumed for the system is in itself not very
restrictive, since every (affine in controls) system ẋ =
F (x)+B(x)u may be written in this fashion, provided
only that F be a continuously differentiable vector
field and F (0) = 0, for instance by taking A(ξ) =
∫ 1

0 F ′(λξ) dλ, where F ′ indicates the Jacobian of F .
This reduction to a “state dependent linear form”
ẋ = A(x)x + B(x)u is often useful in control theory,

where it appears for instance in the context of “state-
dependent Riccati equation” approaches to optimal
control. Of course, the difficulty is in satisfying the
above assumptions for A and B.

A special case in which these hypotheses are satis-
fied is that of models of cell signaling cascades as
in (Heinrich et al., 2002; Chaves et al., 2004). These
are systems whose equations can be written as follows
(with n arbitrary and m = 1):

ẋ1 = α1u(c1 − x1) − β1x1

ẋi = αixi−1(ci − xi) − βixi , i = 2, . . . , n

and output y = xn, and the αi’s, βi’s, and ci’s are
all positive constants. We represent this system in the
above form using: A(ξ)1,1 = −β1, A(ξ)i,i−1 = αici

for i = 2, . . . , n, A(ξ)i,i = −αiξi−1 − βi for i =
2, . . . , n, B(ξ)1,1 = α1c1−α1ξ1, and all other entries
zero. Note that A(ξ) ≤ A(0) and B(ξ) ≤ B(0), for
all ξ ∈ R

n
≥0, because −αiξi ≤ 0 for all i. The matrix

A(0) is lower triangular with negative diagonals, and
hence is Hurwitz. Positivity holds as well: if i = 1
and ξ is such that ξ1 = 0, then A(ξ)1j = 0 for all
j 6= 1 and B(ξ)11 = α1c1 > 0; if instead i > 1
and ξ is such that ξi = 0, then A(ξ)ij = 0 for all
j 6∈ {i−1, i}, A(ξ)i,i−1 = αici > 0, and B(ξ)i1 = 0.
Finally, the functions A(·) and B(·) are linear, and
hence Lipschitz. The matrix C(ξ) = (0, 0, . . . , 0, 1)T

is constant and nonnegative. Thus all properties hold
for this example.

A linear one-dimensional system ẋn+1 = xn − `xn+1

may be cascaded at the end, as in (Chaves et al., 2004),
and the output is in that case redefined as y = xn+1;
this may be again modeled in the same way, and the
assumptions still hold.

Induced gains Assume given a system (1). We con-
sider the operator T that assigns the solution function
x to each input u. To be more precise, we consider
inputs u ∈ L2([0,∞), Rm

≥0), and define x = Tu as
the unique solution of the initial value problem (1).
In principle, this solution is only defined on some
maximal interval [0, T ), where T > 0 depends on u;
however, we will show below that T = +∞, and that
x is again square integrable (and nonnegative), so we
may view x as an element of L2([0,∞), Rn

≥0) and T
as an (nonlinear) operator

T : L2([0,∞), Rm
≥0) → L2([0,∞), Rn

≥0) .

We will write |·| for Euclidean norm, and use ‖·‖ to
denote L2 norm: ‖u‖2

=
∫ ∞

0 |u|2 dt. For the operator
T , we consider the usual induced operator norm:

‖T‖ := sup
u 6=0

‖Tu‖
‖u‖ .



We will show that ‖T‖ < ∞ for the systems that we
are considering. In order to see this, we first consider
the linear system

ż = A(0)z + B(0)u , z(0) = 0 (2)

with output v = `(z) = C(0)z, and its associated
operator

L : L2([0,∞), Rm
≥0) → L2([0,∞), Rn

≥0) : u 7→ z .

Since A(0) is a Hurwitz matrix, z(t) is defined for all
t ≥ 0, and L indeed maps L2 into L2. Furthermore, its
induced norm ‖L‖, the “H∞ gain” of the system with
output y = z, is finite; see for instance (Doyle et al.,
1992). (The H∞ gain is defined for arbitrary-valued
inputs u ∈ L2([0,∞), Rm); we will remark below,
cf. Section 5, that the same norm is obtained when
only nonnegative inputs are used in the maximization.)
Moreover, the L2 → L∞ (or “H2”) induced gain is
also finite. Therefore, using ‖·‖∞ to denote supremum
norm ‖z‖∞ = supt≥0 |z(t)|, we can pick a common
constant c ≥ 0 such that

‖Lu‖ ≤ c ‖u‖ and ‖Lu‖∞ ≤ c ‖u‖ (3)
for all u ∈ L2([0,∞), Rm

≥0)

where c upper bounds both ‖L‖ and ‖L‖∞ (we use
‖L‖∞ for operators to denote induced L2 → L∞

norm).

Our object of study are the compositions with the
output maps, i.e. the input/output operators:

To :L2([0,∞), Rm
≥0) → L2([0,∞), Rp

≥0)

: u 7→ y = C(x)x = C(Tu)Tu

and

Lo :L2([0,∞), Rm
≥0) → L2([0,∞), Rp

≥0)

: u 7→ v = C(0)z = C(0)Lu

and their corresponding induced norms. Our main
result is as follows:

Theorem 1. The norm of To is finite, and ‖To‖ =
‖Lo‖.

3. PRELIMINARY RESULTS

We start our proof by remarking that the solutions
of (1) remain in R

n
≥0. To see this, we need to verify

the following property (this is a standard invariance
fact; see for instance (Angeli and Sontag, 2003) for a
discussion in a related context):

for each i = 1, . . . , n, each ξ ∈ R
n
≥0 such that ξi = 0,

and each µ ∈ R
m
≥0,

(A(ξ)ξ + B(ξ)µ)i ≥ 0 .

Since ξi = 0, we need to prove that
∑

j 6=i A(ξ)ijξj +
∑

j B(ξ)ijµj is nonnegative, but this is implied by the
positivity assumption.

Similarly, solutions of (1) remain in R
n
≥0, as also

(A(0)ξ + B(0)µ)i ≥ 0 if ξi = 0.

The next observation is a key one:

Lemma 3.1. Every solution of (1), with u ∈ L2, is
defined for all t ≥ 0. Moreover, for any two solutions
x of (1) and (2) with the same input u, it holds that
0 ≤ xi(t) ≤ zi(t) for each coordinate i = 1, . . . , n
and each t ≥ 0.

Proof. We use the following comparison principle for
differential equations. Suppose that f(t, ξ) and g(t, ξ)
are such that fi(t, ξ) ≤ gi(t, ξ) for all i = 1, . . . , n
and all ξ ∈ R

n
≥0, and that we consider the solu-

tions of ẋ = f(t, x) and ż = g(t, z) with the
same initial condition (or, more generally, initial con-
ditions x(0) ≤ z(0)). Then, provided that g is quasi-
monotone (and suitable regularity conditions hold, as
here), we may conclude that x(t) ≤ z(t) (compo-
nentwise) for all t ≥ 0 for which both solutions are
defined. See for instance (Smith, 1995; Lakshmikan-
tham and Leela, 1969). Quasi-monotonicity means
that ∂gi/∂ξj ≥ 0 for all i 6= j.

Let us now take any fixed control and let f(t, ξ) =
A(ξ)ξ + B(ξ)u(t), g(t, ξ) = A(0)ξ + B(0)u(t). We
have that f(t, ξ) ≤ g(t, ξ) coordinatewise, because
A(ξ) ≤ A(0) and B(ξ) ≤ B(0) by assumption.
To see that g is quasi-monotone, one needs to verify
that A(0)ij ≥ 0 for all i 6= j. but this follows
from the positivity assumption on (A, B). Thus the
comparison principle tells us that x(t) ≤ z(t) for all
t ≥ 0 for which the solution x is defined (the solution
z is defined for all t, since (2) is linear and A(0)
is a Hurwitz matrix). We already observed that x is
bounded below by zero; thus, the maximal solution x
is bounded on any finite interval, and hence it is indeed
defined for all t, and the Lemma follows.

Corollary 3.2. For each u ∈ L2, the solution Tu
of (1) is in L2, and the operator T has finite norm.
Moreover,

‖Tu‖ ≤ ‖Lu‖ ≤ c ‖u‖

and

‖Tu‖∞ ≤ ‖Lu‖∞ ≤ c ‖u‖

where c is any constant as in (3), so in particular
‖T‖ ≤ ‖L‖ ≤ c and ‖T‖∞ ≤ ‖L‖∞ ≤ c. Similarly,
the i/o operator To also has finite norm, ‖Tou‖ ≤
‖Lou‖ and ‖Tou‖∞ ≤ ‖Lou‖∞ for all u ∈ L2, and
‖To‖ ≤ ‖Lo‖, ‖To‖∞ ≤ ‖Lo‖∞.



Proof. Pick any u, and let x = Tu and z = Lu. By
the Lemma, 0 ≤ xi(t) ≤ zi(t) for all t, so

‖x‖2 =

∞
∫

0

n
∑

i=1

xi(s)
2 ds ≤

∞
∫

0

n
∑

i=1

zi(s)
2 ds = ‖z‖2 .

So ‖Tu‖ ≤ ‖Lu‖ ≤ c ‖u‖, and since u was arbitrary
it follows that ‖T‖ ≤ ‖L‖. Similarly,

‖x‖∞ = sup
t≥0

|x(t)| ≤ sup
t≥0

|z(t)| = ‖z‖∞

leads to ‖Tu‖∞ ≤ ‖Lu‖∞ and ‖T‖∞ ≤ ‖L‖∞.

The positivity and the maximization properties for
C imply that, for each coordinate i of the out-
puts y(t) = C(x(t))x(t) and v(t) = C(0)z(t),
we have 0 ≤ yi(t) =

∑n
j=1 Cij(x(t))xj (t) ≤

∑n
j=1 Cij(0)zj(t) = vi(t), so the inequalities for To

and Lo follow by an analogous reasoning.

Note that the inequality ‖To‖ ≤ ‖Lo‖ gives the
finiteness statement as well as one-half of the equality
in the main theorem.

For any matrix Q, we denote by |Q| its induced
operator norm as an operator in Euclidean space, that
is, the smallest constant d such that |Qξ| ≤ d |ξ| for
all ξ.

Lemma 3.3. There is a nondecreasing and continuous
function M : R≥0 → R≥0 such that:

|A(ξ) − A(0)| ≤ M(|ξ|) |ξ|

|B(ξ) − B(0)| ≤ M(|ξ|) |ξ|

|C(ξ) − C(0)| ≤ M(|ξ|) |ξ|

for all ξ ∈ R
n
≥0.

Proof. This is a simple consequence of the local Lip-
schitz property. On each ball B(R) = {ξ | |ξ| ≤
R}, we pick the smallest common Lipschitz constant
M0(R) for A(·), B(·), and C(·). The function M0

is nondecreasing, and hence can be majorized by a
continuous and nondecreasing function M . Since ξ ∈
B(|ξ|), we have that |A(ξ) − A(0)| ≤ M(|ξ|) |ξ|, and
similarly for B and C.

Corollary 3.4. For each function x ∈ L2
⋂

L∞:

‖A(x(·)) − A(0)‖ ≤ M(‖x‖∞) ‖x‖

‖B(x(·)) − B(0)‖ ≤ M(‖x‖∞) ‖x‖

‖C(x(·)) − B(0)‖ ≤ M(‖x‖∞) ‖x‖

where M is as in Lemma 3.3.

Proof. We have:

‖A(x(·)) − A(0)‖2 =

∞
∫

0

|A(x(s)) − A(0)|2 ds

≤
∞
∫

0

M(|x(s)|)2 |x(s)|2 ds

≤
∞
∫

0

M(‖x‖∞)2 |x(s)|2 ds

= M(‖x‖∞)2
∞
∫

0

|x(s)|2 ds

= M(‖x‖∞)2 ‖x‖2

and similarly for B and C.

4. PROOF OF THE MAIN RESULT

Pick any input u ∈ L2 and consider once again
the respective solutions x = Tu and z = Lu. By
Corollary 3.2, we know that both ‖x‖ ≤ c ‖u‖ and
‖x‖∞ ≤ c ‖u‖. Therefore, using Corollary 3.4, we
also have that:

‖A(x(·)) − A(0)‖ ≤ cM(c ‖u‖) ‖u‖
‖B(x(·)) − B(0)‖ ≤ cM(c ‖u‖) ‖u‖
‖C(x(·)) − C(0)‖ ≤ cM(c ‖u‖) ‖u‖

where M is as in Lemma 3.3. Let ϕ : R≥0 → R
n
≥0 be

the function ϕ(t) :=

(A(0) − A(x(t))) x(t) + (B(0) − B(x(t))) u(t) .

By the Cauchy-Schwartz inequality,

‖(A(x(·)) − A(0)) x(·)‖ ≤ ‖A(x(·)) − A(0)‖ ‖x‖
≤ c2M(c ‖u‖) ‖u‖2

and

‖(B(x(·)) − B(0)) u(·)‖≤ ‖B(x(·)) − B(0)‖ ‖u‖
≤ cM(c ‖u‖) ‖u‖2

from which we conclude that

‖ϕ‖ ≤ γ(‖u‖) ‖u‖

with γ(r) = (c2 + c)M(cr)r, and γ is a function of
class K, i.e. continuous, strictly increasing, and with
γ(0) = 0.

Consider the difference w(t) = z(t) − x(t). Note
that w(0) = 0. Evaluating ẇ = [A(0)z + B(0)u] −
[A(x)x + B(x)u] and rearranging terms,

ẇ(t) = A(0)w(t) + ϕ(t) .

Using once again that A(0) is a Hurwitz matrix, we
know that, for some constant d ≥ 0 which depends



only on A(0) and not on the particular input u being
used, ‖w‖ ≤ d ‖ϕ‖. Therefore, ‖w‖ ≤ γ(‖u‖) ‖u‖,
after redefining γ(r) := dγ(r).

In terms of the outputs y = Tou = C(x)x and
v = Lou = C(0)z,

‖v − y‖= ‖C(0)z − C(x(·))x‖
≤ ‖C(0)(z − x)‖ + ‖(C(0) − C(x(·))x‖
≤ |C(0)| ‖z − x‖ + ‖C(0) − C(x(·))‖ ‖x‖
≤ |C(0)| γ(‖u‖) ‖u‖+ c2M(c ‖u‖) ‖u‖2

and we can again write the last term as γ(‖u‖) ‖u‖ if
we redefine γ(r) := |C(0)| γ(r) + c2M(cr)r.

The triangle inequality gives us that ‖Lu‖ − ‖Tu‖ ≤
‖Lu− Tu‖ and ‖Lou‖ − ‖Tou‖ ≤ ‖Lou − Tou‖,
and Corollary 3.2 gives ‖Tu‖ ≤ ‖Lu‖ and ‖Tou‖ ≤
‖Lou‖, so we may summarize as follows:

Proposition 4.1. There is a function γ ∈ K such that

0 ≤ ‖Lu‖ − ‖Tu‖ ≤ γ(‖u‖) ‖u‖

and

0 ≤ ‖Lou‖ − ‖Tou‖ ≤ γ(‖u‖) ‖u‖

for any input u ∈ L2. 2

To conclude the proof of Theorem 1, we must show
that ‖To‖ ≥ ‖Lo‖. Let g = ‖Lo‖, and pick a
minimizing sequence un, n = 1, 2, . . . of nonzero
inputs in L2, that is,

lim
n→∞

‖Loun‖
‖un‖

= g .

Pick a sequence of real numbers εn > 0 such that
vn := εnun → 0 (for example, εn = (n ‖un‖)−1).
Since Lo is a linear operator, ‖Lovn‖ = εn ‖Loun‖,
and since ‖vn‖ = εn ‖un‖, also ‖Lovn‖/‖vn‖ =
‖Loun‖/‖un‖. Applying the second inequality in
Proposition 4.1:

0 ≤ ‖Lovn‖
‖vn‖

− ‖Tovn‖
‖vn‖

≤ γ(‖vn‖) → 0

which gives that ‖Tovn‖
‖vn‖ → g, and therefore ‖To‖ ≥ g,

as desired. 2

5. POSITIVE VS. ARBITRARY INPUTS

We have shown that the norm of the nonlinear sys-
tem (1) can be exactly computed by finding the norm
of the associated linear system (2). The computation
of induced L2 norms for linear systems is a classical
area of study, and amounts to the maximization, over
the imaginary axis, of the largest singular value of

the transfer matrix of the system (the Laplace trans-
form of the impulse response), the H∞ norm; see for
instance (Doyle et al., 1992). There is, however, a
potential gap in the application of this theory to our
problem, namely, the usual definition of H∞ norm
corresponds to maximization over arbitrary inputs
u ∈ L2([0,∞), Rm), not necessarily inputs with val-
ues in R

m
≥0 as considered in this paper. We close this

gap now, by showing that the same result is obtained,
for systems (2), whether one optimizes over arbitrary
or over nonnegative inputs. We give two proofs, one
elementary and the other one less trivial but leading to
a stronger conclusion.

The positivity assumptions imply that the operator Lo

is a nonnegative convolution operator:

(Lou)(t) =

t
∫

0

W (t − s)u(s) ds , (4)

W (t) ∈ (R≥0)
p×m ∀ t ≥ 0 . (5)

Here W (t) = C(0)etA(0)B(0), and its nonnegativity
follows from the fact that etF has all entries nonneg-
ative, provided that Fij ≥ 0 for all i 6= j. (This
last fact is well-known: it is clear for small t from
the expansion etF = I + tF + o(t), and for large t
by then writing etF as a product of matrices e(t/k)F

with the positive integer k large enough.) We next
show that any operator as in (4-5) has the same norm
whether viewed as an operator on L2([0,∞), Rm) or
on L2([0,∞), Rm

≥0). Since the norm as an operator
on nonnegative inputs is, obviously, upper bounded by
the norm on arbitrary inputs, it will be enough to show
that, for each w ∈ L2([0,∞), Rm), there is another
input w̃ ∈ L2([0,∞), Rm

≥0) with ‖w‖ = ‖w̃‖ and
‖Low‖ ≤ ‖Low̃‖.

Given such a w, we start by writing w = u − v,
where u and v are picked in L2([0,∞), Rm

≥0) and
orthogonal. (Such a decomposition is always possible.
We define coordinatewise, for each i = 1, . . . , m,
ui := max{wi, 0} and vi := max{−wi, 0}; clearly,
w = u − v. The supports of ui and vi are disjoint,
so 〈ui, vi〉 =

∫ ∞

0 ui(t)vi(t) dt = 0 for each i, and
also then 〈u, v〉 =

∑m
i=1〈ui, vi〉 = 0.) We now let

w̃ := u + v. Since u and v (or −v) are orthogonal,
‖w‖2

= ‖u‖2
+ ‖−v‖2

= ‖u‖2
+ ‖v‖2

= ‖w̃‖2,
so ‖w‖ = ‖w̃‖. Because Lo is nonnegative, both
x = Lou and y = Lov are nonnegative. To finish the
proof, we only need to see that ‖x − y‖ ≤ ‖x + y‖:

‖x − y‖2
=

∞
∫

0

∑p
i=1(xi(t) − yi(t))

2 dt

=

∞
∫

0

∑p
i=1(xi(t)

2 + yi(t)
2 − 2xi(t)yi(t)) dt



≤
∞
∫

0

∑p
i=1(xi(t)

2 + yi(t)
2 + 2xi(t)yi(t)) dt

=

∞
∫

0

∑p
i=1(xi(t) + yi(t))

2 dt

= ‖x + y‖2
.

A different proof, which in fact also implies that the
supremum in the definition of norm is achieved as
a maximum, is as follows. We consider the adjoint
L∗

o of Lo (seen as an operator on the Hilbert space
L2([0,∞), Rm)), and the composition M = L∗

oLo :
L2([0,∞), Rm) → L2([0,∞), Rm). The operator M
is self-adjoint and (since Lo is a convolution operator
with an L2 kernel) compact. Its spectrum consists
of real and nonnegative eigenvalues, and its largest
eigenvalue λ is such that µ =

√
λ is the largest

singular value of Lo, and equals the norm of Lo as
an operator L2([0,∞), Rm) → L2([0,∞), Rp). Take
any eigenvector u corresponding to λ, so Mu = λu.
It follows that ‖Lou‖2 = 〈Lou, Lou〉 = 〈u, Mu〉 =

〈u, λu〉 = µ2 ‖u‖2, so u is a maximizing vector for
Lo. Moreover, for a compact positive operator M on a
Hilbert space, the Krein-Rutman Theorem says that,
provided that there is a nonzero eigenvalue (which
there is in this case, since M is self-adjoint and we
may assume without loss of generality that M 6= 0),
then the maximal eigenvalue λ admits a nonnegative
eigenvector u. Thus ‖Lou‖ is maximized at this u ∈
L2([0,∞), Rm

≥0).

6. CASCADES

Signaling systems are often built by cascading subsys-
tems, so it is interesting to verify that a cascade of any
number of systems which satisfy our properties again
has the same form. It is enough, by induction, to show
this for two cascaded systems

ẋ = A1(x)x + B1(x)u v = C1(x)x

ż = A2(z)z + B2(z)ũ y = C2(z)z

each of which satisfies our assumptions, under the
series connection obtained by setting ũ = v. The
composite system can be represented in terms of the
following A(ξ, ζ) and B(ξ, ζ) matrices:

A =

(

A1(ξ) 0
B2(ζ)C1(ξ) A2(ζ)

)

, B =

(

B1(ξ)
0

)

and output y.

It is easy to verify all the necessary properties. For
example, the only nontrivial part of the maximization
property amounts to checking that B2(ζ)C1(ξ) ≤
B2(0)C1(0), which follows from B2(ζ)C1(ξ) ≤
B2(0)C1(ξ) (using the maximization property for

B2 and the positivity of C1) and B2(0)C1(ξ) ≤
B2(0)C1(0) (using maximization for C1 and posi-
tivity of B2(0)). Similarly, the only nontrivial part
of the positivity property involves checking that
(B2(ζ)C1(ξ))ij ≥ 0 provided that ζi = 0, for all j.
But, for such a vector ζ, we know that B2(ζ)ik ≥ 0
for all k, so indeed

∑

k B2(ζ)ikC1(ξ)kj ≥ 0.

7. REMARKS AND CONCLUSIONS

We provided a way to compute, for systems of a spe-
cial form, the induced L2 norm of the system. The
special form includes a variety of cellular signaling
cascade systems. An even wider class of systems can
be included as well, provided that one extend our
treatment to systems that are monotone with respect
to orders other than that given by the first quadrant.
Such orders have proven useful in analyzing, for ex-
ample, MAPK cascades, see for example (Angeli and
Sontag, 2003; Angeli et al., 2004). The details of this
extension will be provided elsewhere.
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