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Abstract: Chemical process variables are always driven by random noise and 
disturbances. The closed-loop control yields process measurements that are auto & 
cross correlated. The influence of auto & cross correlations on statistical process 
control (SPC) is investigated in detail. It is revealed both auto and cross correlations 
among the variables will cause unexpected false alarms. Dynamic PCA and 
ARMA-PCA are demonstrated to be inefficient to remove the influences of auto & 
cross correlations. Subspace identification based PCA (SI-PCA) is proposed to 
improve the monitoring of dynamic processes. Through state space modelling, 
SI-PCA can remove the auto & cross correlations efficiently and avoid unexpected 
false alarms. The application in Tennessee Eastman challenge process illustrates the 
advantages of the proposed approach. Copyright © 2005 IFAC 
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1. INTRODUCTION 
 

With the advent of improved instrumentation and 
automation, chemical processes now produce large 
volumes of information which are highly correlated. 
Several multivariate statistical methods have been 
developed to identify the correlations between 
variables and create a reduced set of variables in the 
orthogonal axes that capture most of the variability in 
the collected information. One of most popular 
MSPC methods is principal component analysis 
(PCA), which also has been applied to chemical 
processes (Nomikos 1995, Wise 1996, Cinar 1999, 
Venkatasubramanian 2003). 
 
However, PCA is based on the assumption that the 
process variables are independent and identically 
normally distributed (iid), i.e., stationary or 
uncorrelated in time (Jackson 1991, Ku 1995). In 
practice, this assumption is always violated, as 
chemical process variables are driven by random 
noise and disturbances. Due to the feedback control, 
the impact of disturbances propagates through to 
both the input and output variables. Thus the 
variables will move around the steady state and 
exhibit some degrees of auto-correlation and 
cross-correlation. 

In order to monitor the process dynamics, PCA has 
been extended to include the time-series structures of 
variables (Ku 1995, Negiz 1997, Callao 2003, 
Simoglou 2002). Among these extensions, dynamic 
PCA (DPCA) by Ku et al (1995) is widely adopted 
and can be treated as a multivariate AR-like time 
series modelling approach. Although applications in 
Tennessee Eastman (Ku 1995) and some batch 
processes monitoring (Chen 2002) have 
demonstrated the efficiencies of dynamic PCA, it is 
proved recently that dynamic PCA can not eliminate 
the auto & cross correlations of variables (Kruger 
2004). If a dynamic PCA is used, the score variables 
will be auto and cross-correlated even when the 
process variables are neither auto nor cross correlated. 
In other words, dynamic PCA will always induce the 
dynamics into the score variables. In order to 
overcome this question, Kruger et al involved 
ARMA filters to remove the auto correlations from 
the PCA scores. But unfortunately, the cross 
correlations still remain in the filtered score 
variables. 
 
The contributions of this paper are as follows. First, 
the influences of auto & cross correlations of process 
variables are investigated through a numerical 
experiment. It is revealed that the presence of auto 



and cross correlations will both cause the false 
alarms Secondly, criterions to determine whether 
variables are auto or cross correlated are introduced. 
The ARMA filtering approach suggested by Kruger 
is inefficient to reduce the cross correlations of PCA 
scores. Thirdly, a subspace identification modelling 
approach combined with PCA is proposed to remove 
the entire dynamics from the score variables. A novel 
information based criteria is presented to determine 
the order of relative state-space model. Fourthly, the 
effectiveness of proposed approach is demonstrated 
using the Tennessee Eastman process. Finally, some 
remarks and conclusions are presented. 

 
 

2. MONITORING CROSS CORRELATED 
PROCESS VARIABLES 

 
 

2.1 PCA, Dynamic PCA and ARMA-PCA 
 
Given the measurements, normal operating process 
data are collected and put in a two-dimensional data 
matrix nNR *∈X  with N samples and n variables. 
PCA decomposes the data matrix X  in terms of r 
linear principal components with nr ≤ : 
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where rnR *∈P and rNR ** ∈= PXT are 
defined as the principal component loadings and 
scores, respectively. P~ contains the retained 
principal component directions. E is the residual 
matrix. When PCA is applied to monitor a process, 
T2 and SPE statistics are commonly used. A more 
detailed analysis of PCA refers to Jackson (1991). 
 
Dynamic PCA arranges the process variables to form 
an autoregressive (AR) structure: 
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where X  is an augmented set of variables, 
representing an AR model structure of order d and 
the subscripts 0, 1, d refer to the backshifts applied. 
PCA is applied to X  and the corresponding T2 and 
SPE statistics can be obtained.  
 
It is demonstrated by Kruger (2004) that the retained 
scores variables are auto-correlated irrespective of 
whether the process variables are auto-correlated or 
not. In order to overcome the deficiencies of dynamic 
PCA, Kruger et al (2004) incorporate ARMA filters 
in the PCA analysis (ARMA-PCA). The 
ARMA-PCA method applies traditional PCA method 
to original data matrix X first and r ARMA filters 
are identified to remove the auto correlations of each 
score variable. Although the auto correlations are 
efficiently eliminated, the cross correlations still exist 
and the filtered scores are not independent yet.  
 
2.2 Performance investigation of ARMA-PCA 
 
Type I error rate or false alarms rate refers to the 
percentage of statistics violating its confidence bound 

when monitoring normal operating process. For PCA, 
the ideal type I error rate for T2 statistic is equal to 
the significant levelα . In practice, false alarms rate 
is one of the most important parameters to determine. 
Too high false alarms rate will result in poor 
acceptance among shop-floor personnel while too 
low rate will make the monitoring system insensitive 
to potential process or sensor faults. 
 
The influence of auto-correlation on process 
monitoring results has been well studied in Kruger 
(2004). In this section, it will be illustrated that not 
only auto- but also cross- correlation will result in 
higher false alarms rate in T2 monitoring chart. 
 
In order to study the cross correlation effect solely, it 
is assumed that PCA score variables has been filtered 
with the PCA-ARMA approach presented in Kruger 
(2004). And there are 3 filtered scores have the 
following description: 
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, where )1,0(Nwi ∈ is a sequence of normally 
distributed values with zero mean and unit variance. 
The filtered score variables are all shifted sequences 
of iw . It is clear that the filtered scores are only cross 
correlated. In order to study the influence of cross 
correlation on the T2 statistic, 2000 samples are 
generated with (3). The first 1000 samples are 
selected as reference data and the remaining 1000 
samples served as testing data. 
 
The T2 monitoring chart is given in Fig.1 (solid line 
represents the 99% control limit) and shows that the 
number of violations exceeds 1% significantly 
around the 100th sample. Consecutive false alarms 
also appear around the 150th samples which will 
mislead the process engineers. 
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Fig.1 False alarms caused by cross 

correlations among PCA score variables 
 

Further more, because ARMA-PCA approach 
ignores the cross correlations of score variables, this 
will lead to ARMA models with higher orders than 
necessary. For example, in the example 1 studied by 
Kruger (2004), the underlying model order is 4 while 
the AR orders selected are all larger than 4 except for 
the last score variable. 



3. SUBSPACE IDENTIFICATION BASED PCA 
 
 

3.1 Auto & cross correlation coefficients 
 
Consider a set of random time 
series ][ 21 ruuu L=u , the auto & cross 
covariance coefficient is defined as: 
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where ))(),(( τ−tutuCov ji  is the cross 

covariance between iu and ju , N is the number of 
samples. For multi-normally distributed random 
variables (independent), 0)(, =τρ ji when 0≠τ . 
 
The auto & cross correlation coefficients can be 
defined in a similar manner. In the following sections, 
it is assumed process is stationary and variables are 
zero-centred, so the correlation coefficient equals the 
covariance coefficient and both of them are denoted 
as ACFs. 
 
The following two theorems are introduced to 
determine whether variables are auto or 
cross-correlated:  
Theorem 1: Suppose )(tui is a Gauss white noise 

sequence (so independent) and MN >> . Then the 
auto correlation coefficient )(, τρ ii  is 
approximately normally distributed, i.e.  

MNN ii ≤≤ ττρ 1),1,0(~)(, . 
 
Theorem 2: Suppose )(tui is a Gauss white noise 

sequence and independent of )(tu j  and MN >> . 

Then the cross correlation coefficient )(, τρ ji  is 
approximately normally distributed, i.e.  
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The detailed proof of theorem 1 and 2 refers to Ljung 
(1999, Section 16.6), the condition of theorem 2 can 

be relaxed as )(tui  being the linear combination of 
time shifted Gauss white noises. 
 
3.2 Subspace identification based PCA (SI-PCA) 
 
As mentioned above, Kruger’s ARMA-PCA 
approach ignores the cross correlations of score 
variables. In order to describe the auto & cross 
correlations simultaneously, one should consider that 
the ARMA approach can be extended to multivariate 
case and a multivariate time series model should be 
established. However, the multivariate ARMA model 
is much more difficult to analyze because all the 
coefficients in univariate model will become matrices 
and the model complexity will grow rapidly as the 
model order increases (George 1994). 
 
An alternative approach to analyze multivariate time 
series is state-space modelling. As argued by Ljung 
(2002) that “Generally speaking, it is preferable to 
work with state-space models in the multivariate case, 
since the model structure complexity is easier to deal 
with” and any linear model structure (ARX, ARMA 
etc.) can be represented by state-space model (Ljung 
1999). 
 
A state-space model for time series is given by: 
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where 1*r
k R∈t is the corresponding time series, 

1*nz
k R∈z is the vector of state variable, A , C are 

the system matrices, K is the Kalman gain. Note 
that there are no inputs in this model. The residuals 
of state-space model 1*r

k R∈e , which are assumed 
i.i.d., are employed to process monitoring instead of 
correlated scores. 
 
Subspace identification (SI) algorithms have been 
widely adopted to identify the state-space model 
from input-output data because it does not need 
iterative, nonlinear optimization as maximum 
likelihood method and SI is very easy to implement 
(Overschee 1996).  
 
For subspace algorithms, it is crucial to estimate the 
state kz which is defined as a linear combination of 
past outputs, 
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where d is the number of lags as mentioned in 
dynamic PCA. Once J is determined, the kz  can be 
calculated by Eq. (6) and the state-space matrices can 
be estimated via linear squares regression. Different 
approach to calculate J distinguishes various 
derivations of subspace algorithms including CVA, 
N4SID and PLS etc. More details about subspace 
identification algorithms refer to Ljung (1999) and 
Overschee(1996). 
 



To determine the order of system in Eq. (6), a 
number of approaches have been proposed. For 
instance, N4SID determines the system order by 
checking the singular values. Akaike information 
criterion (AIC) is also employed to determine the 
model order automatically. In this context, however, 
the purpose of modelling is to remove the auto & 
cross correlations from the score variables as much 
as possible, i.e., reduce the ACFs )(, τρ ji  of ke  

as close to zero as possible when 0≠τ . To the end, 
the following Akaike like information criterion is 
suggested: 
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where q is the number of estimated parameters in 
Eq. (6), N is the length of modelling data and 

nzM *3=  is the maximum time lag. 
N
q2

 is 

included to avoid over-fitting. The system order 
nz is then selected to minimize the AICx objective 
function. 
 
Once the state-space model is identified and the 
residual ke  is generated, we have the following T2 
statistic: 
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of ke . 
 
Note that not all scores are necessarily included in 
the state-model. If a score is independent on itself 
and other scores, it should be excluded to reduce the 
complexity of state-space model. In this situation, the 
T2 statistic will become: 
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matrix of kê  and kt
~ . kê  is the residual of auto & 

cross correlated scores kt̂  and kt
~  is the 

independent part. 
 
Remark: One could also apply the suggested 
state-space modelling approach to the original 
process variables first and then establish a PCA 
model. However, this might change the linear 
relationship among the variables and cause the 
variable reduction by PCA inefficient. Furthermore, 
if a set of process variables are driven by same 
dynamic processes, e.g., the reactor may have several 

temperature sensors on different locations, applying 
PCA first will result fewer dynamic scores. In section 
4.2, by the application in TE process, it is revealed 
that PCA does not only concentrate the variation 
information but also the dynamic information in the 
scores and the computation cost to establish the 
state-space model is therefore less demanding. 
 
3.3Dynamic process monitoring framework based on 

SI-PCA 
The procedures of off-line and on-line monitoring 
using SI-PCA are as follows: 
 
Off-line: develop the normal operating condition 
model (NOC) 
 
1. Collect an operating data set during normal 
operation X . 
 
2. Apply PCA to X  and obtain the score 

variables 
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be determined by cross validation or other criteria. 
The independence of excluded principal components 
relative to SPE statistic should also be checked. If 
dynamics exist, state-space model can also be 
employed. 
 
3. Subspace identification method in section 3.2 is 
employed to remove the dynamics of kt̂ . The 
confidence interval of T2 statistic is determined based 
on the residual kê , kt

~ . 
 
On-line monitoring: 
1. For new observation, obtain the score values 
via k

T
k xPt = . 

 
2. Apply the identified subspace model to calculate 
the residual kê . 
 
3. Determine the T2 and SPE statistics and compare 
with the confidence intervals. 
 

4. APPLICATION STUDIES 
 

Since the introduction in 1993 by Downs and Vogel, 
Tennessee Eastman (TE) process has been widely 
studied in the literatures (Ku 1995, Ricker 1996, 
Chiang 2000, Kano 2000, Russel 2000). The TE 
model includes 5 process units: a reactor, a 
condenser, a vapour-liquid separator , a recycle 
compressor and a product stripper. There are 41 
measurements and 12 manipulated variables. The 
process is open-loop unstable and requires regulatory 
controllers. TE process includes 20 programmed 
disturbances including composition step change in 
reactants, random react cooling water inlet 
temperature random disturbance and valve sticking 
etc. Detailed description about the operation of the 
TE process can be found in Downs (1993). 
 



In this paper, Ricker’s TE simulator based on 
Matlab® 6.5 was used to generate the data set. The 
closed-loop control strategy of Ricker (1996) was 
also adopted. The reference dataset to construct NOC 
model includes 2000 samples of 22 continuously 
measured variables which were recorded at 0.1 h 
interval. 
 
It is somewhat cumbersome to plot the ACFs of all 
the 22 variables. In Fig.2, only the auto correlation 
coefficients of variables are illustrated. It can be seen 
that ten variables are strongly auto correlated 
including feed A (1), reactor pressure (7), purge rate 
(10), separator temperature (11), separator pressure 
(13), stripper pressure (16), stripper temperature (18), 
compressor power (20), reactor outlet coolant 
temperature (21), separator outlet coolant 
temperature (22). 

 
PCA was first applied to the NOC data and 15 scores 
which explain 87.6% of total variation were retained. 
The auto correlation coefficients of scores are 
illustrated in Fig.3. As described in section 3.2, not 
only the variation information but also the dynamics 
information are concentrated in the first 5 scores.  
 

 
Based on the criterion presented in section 3.2, a 
5-order state-space model was identified to remove 
the dynamics efficiently. Fig.4 confirms that 
residuals are no longer auto or cross correlated. In 

contrast, the ARMA-PCA had to use as high as 20 
order filters to remove the auto correlations of the 
first two scores. 
 
To demonstrate the capability of SI-PCA to detect 
abnormal behaviour, excessive variation of the 
reactor cooling water temperature was simulated 
(disturbance type 11) to generate a fault dataset. The 
fault dataset also contains 2000 samples and the fault 
was injected after the 1000 sample. 
 
The T2 control chart is presented in Fig.5 and the 
data around the control limit are zoomed in Fig.6 for 
clear illustration. The last 1000 values of T2 statistic 
produce an excessive number of violations. So 
SI-PCA detects the out-of-control situation correctly. 
 

 
5. CONCLUSIONS 

 
This paper studies the influences of process 
dynamics on false alarms rates of statistical process 
control. It is shown that the presence of cross 
correlation will also cause false alarms. Applications 
illustrate that two improved PCA methods, dynamic 
PCA and ARMA-PCA, do not remove the effects of 
time-series structures of variables.  
 
Motivated by above facts, a subspace identification 
approach based PCA (SI-PCA) is proposed to 
remove the auto & cross correlations of score 
variables simultaneously. Akaike information like 
criterion is introduced to determine the state-space 
model. 
 
Application in TE process fault detection reveals that 
the SI-PCA is efficient in removing the auto & cross 
correlation among variables and detecting the 
process abnormal behaviour. 
 
This paper focus on the behaviour of T2 statistic and 
the influence of auto & cross correlations on SPE 
statistic is also worth further study. 
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variables 
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Fig.3 Auto correlation plots of PCA scores for TE 

process 

-1

0

1

e 
1

-1

0

1

e 
2

-1

0

1

e 
3

-1

0

1

e 
4

-50 0 50
-1

0

1

e 1

e 
5

-50 0 50
e 2

-50 0 50
e 3

-50 0 50
e 4

-50 0 50
e 5

Fig.4 ACFs of residuals by SI-PCA (TE process) 



REFERENCES 
 

Callao M.P., A. Rius (2003), Time series: a 
complementary technique to control charts for 
monitoring analytical systems, Chemometrics 
and Intelligent Laboratory Systems, Vol.66, 
79-87. 

Chen J., K. Liu (2002), On-line batch process 
monitoring using dynamic PCA and dynamic 
PLS models, Chemical Engineering Science, 
Vol.57, 63-75. 

Chiang L.H. (2000), Fault detection and diagnosis in 
industrial systems. Springer-Verlag, Heidelberg. 

Cinar A., Cenk U. (1999). Statistical process and 
controller performance monitoring: A tutorial on 
current methods and future direction, 
Proceedings of American Control Conference, 
2625-2639. 

Downs J.J., E.F. Vogel (1993), A plant-wide 
industrial-process control problem, Computers 
and Chemical Engineering, Vol.17, 245-255. 

George B., M.J. Gwilym, R. Gregory (1994), Time 
series analysis: forecasting & control (3rd 
edition), Prentice Hall, Englewood Clifs. 

Jackson J.E (1991), A user’s guide to principal 
components, Wiley Inter-science, New York. 

Kano M., K. Nagao, S. Hasebe, I. Hashimoto, et al 
(2000), Comparison of statistical process 
monitoring method: application to the Eastman 
challenge problem, Computers and Chemical 
Engineering, Vol.24, 175-181. 

Kruger U., Y. Zhou, W.I. George (2004), Improved 
principal component monitoring of large-scale 
processes, Journal of Process Control, Vol.14, 
879-888. 

Ku W., R.H. Storer, C. Georgakis (1995), 
Disturbance rejection and isolation by dynamic 
principal component analysis, Chemometrics 
and Intelligent Laboratory Systems, Vol.30, 
179-196. 

Larimore, W. E. (1983), System identification, 
reduced order filtering and modeling via 
canonical correlation analysis, Proceedings of 
the American Control Conference, 445-451. 

Ljung L. (1999), System identification – theory for 
the user, Prentice Hall, Englewood Clifs. 

Ljung L. (2002), System identification toolbox – for 
use with MATLAB, Mathwork, Natick. 

Negiz A, A. Cinar (1997), Statistical monitoring of 
multivariate dynamic processes with sate-space 
models, AIChE Journal, Vol.43, 2002-2020. 

Nomikos P., MacGregor, J. F. (1995), Multivariate 
SPC charts for monitoring batch processes. 
Technometrics, Vol.37, 41-59. 

Overschee P.V. (1996), Subspace identification for 
linear systems: Theory Implementation 
Applications, Kluwer Academic Publishers, 
Boston/London/Dordrecht. 

Ricker N. L.(1996), Decentralized control of the 
Tennessee Eastman challenge process, , Journal 
of Process Control, Vol. 6, 205-221. 

Russell E.L., L.H. Chiang, R.D. Braatz (2000), Fault 
detection in industrial processes using canonical 
variate analysis and dynamic principal 
component analysis, Chemometrics and 
intelligent laboratory systems, Vol.51, 81-93. 

Simoglou A., E.B. Martin, A.J. Morris (2002), 
Statistical performance monitoring of dynamic 
multivariate processes using state space 
modeling, Computers and Chemical Engineering, 
Vol.26, 909-920. 

Venkatasubramanian V., R. Rengaswamy, S.N. 
Kavuri, K. Yin (2003), A review of process fault 
detection and diagnosis Part III: Process history 
based methods, Computers and Chemical 
Engineering, Vol.27, 327-346. 

Wise B, N.B. Gallagher (1996), The process 
chemometrics approach to process monitoring 
and fault detection, Journal of Process Control, 
Vol.6, 329-348. 

 

0 200 400 600 800 1000 1200 1400 1600 1800 20000

500

1000

1500

2000

2500

3000

3500

4000

T2  V
al

ue

Samples
200 400 600 800 1000 1200 1400 1600 1800 2000

0

20

40

60

80

100

120

Samples

T2  V
al

ue

 
Fig.5 T2 control chart for reactor faults by SI-PCA Fig.6 Zooming in the data of Fig.10 around the 99% 

control limit (Solid line) 


