
     

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
PID-P CONTROLLER FOR TITO SYSTEMS 

 
 

Padhy, P.K.1, Majhi, S.1 and Atherton, D.P.2
 
 

1Department of Electronics & Communication Engineering Indian Instutute of Technology 
Guwahati, Guwahati – 781039, Assam, India 

2Department of Engineering and Design, University of Sussex, Falmer,  
Brighton, BN1 9QT, UK 

 
 
 
 

Abstract: A simple closed loop identification method is proposed to design a PID-P 
controller for TITO systems. A pair of relays is simultaneously connected in parallel with 
the PID controllers. Based on the limit cycle data, a diagonal TITO transfer function 
model of the system dynamics are obtained. Then the PID parameters are estimated using 
the identified model and phase and gain margin design criteria. The effectiveness of the 
proposed control scheme is illustrated by a simulation study.  Copyright © 2005 IFAC 
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1. INTRODUCTION 
 
The main difficulties in controlling a multi input-
multi-output (MIMO) system are the interactions 
between the loops and among various plant 
variables. To avoid these difficulties the control 
loops are often independently tuned as SISO 
systems. The commonly used well-known form of 
a MIMO system is a TITO (two-input two-output) 
system. Many methods on the design of PID 
controllers for TITO systems have been discussed 
in the literature (Maciehowski, 1989; Palmor, et al., 
1995; Zhuang and Atherton, 1994; Padhy and 
Majhi, 2005a, b). 
 
The general approach often adopted is to find a 
model for the plant and design a controller based 
on this model. A decentralized relay test can be 
used for the identification of a plant model without 
prior knowledge of the plant dynamics. In this 
paper, a new identification technique for a TITO 
system with significant interaction is proposed. 
During identification, a PID-P type controller is 
used where the PID controller remains in the feed 
forward path and the P-controller in the inner 

feedback path. A pair of relays is used in parallel 
with the PID controllers for limit cycle experi-
ments. The P controller in the inner feedback loop 
is used to make the system relatively more stable 
and to reduce the interaction between the loops. An 
advantage of the technique is that the inner P-
controller can be used to stabilize an unstable plant 
transfer function (Majhi and Atherton, 2000). 
Technical difficulties associated with robust 
performance of the system are presented in section-
2. Section-3 describes the identification technique 
to estimate the plant transfer function model 
parameters. A method to estimate the steady state 
gain of the plant model is given in section-4. 
Section-5 includes the PID controller design 
method given in (Padhy and Majhi, 2005b). A 
simulation study is considered in section-6. Finally, 
conclusions are given in section-7.  
 

2. P-CONTROLLER FOR REDUCTION OF 
INTERACTION 

 
Fig.1 shows the control structure of the TITO plant 
with PID-P controllers. Here a proportional 
controller is connected in the inner feedback path. 



 

     

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Fig. 1. PID-P control scheme 
 
Fig.2 has two relays in parallel with the PID 
controllers for inducing a limit cycle. The limit 
cycle parameters (Ai and ωu), the amplitudes of the 
limit cycle at the two relay inputs and the limit 
cycle frequency, are measured in the experiment. 
From the measured parameters a linearized model 
is identified and the controller parameters are 
calculated. The feedback proportional controllers 
make the system relatively more stable and can 
also be adjusted to reduce the interaction between 
the loops. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Fig. 2. Redrawing of Fig.1. 
 

Fig.2 can be redrawn as in Fig.3 for a better 
understanding of the advantages of the proposed 
identification method.
 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 3. Redrawing of Fig.2 

 
From Figs.2 and 3, one obtains 
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where  is the original plant 

model and . Then, 
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In the above expressions the complex variable‘s’ 
has been omitted for ease of presentation. 
Assuming q1 = q2, at steady state condition (from 
Fig.3) we have 
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where  are the steady state values 

of the plant ‘G’. 
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Here same values of q1 and q2 are chosen to reduce 
the values of off-diagonal elements of P. As the 
values of off-diagonal elements are decreased, the 
interaction is reduced. With higher values of q1 and 
q2, the values of off-diagonal elements can further 
be reduced. Let the input signal X be sinusoidal and 
the relay elements be described by the describing 
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Then, for a limit cycle  
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Assuming the limit cycles of the loops are at the 
same frequency (ω), the input signal vector 
elements can be expressed as 
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Setting [ ])cos()cos( 21 ψωω += tAtAX , 
the values of  A1, A2 ,ω, and Ψ can be calculated 
from equations  (2) and (3). Also choosing a 
suitable suitable h1/h2 ratio one can find the 
approximate relationship between K1cr and K2cr as 
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where K1cr and K2cr are the critical gains and h1 and 
h2 are the relay amplitudes of loop-1 and loop-2, 
respectively. 
As the values of P12 and P21 are reduced for certain 
q1 and q2, P12 and P21 can be brought near to ‘zero’. 
So from equation (4), we have 
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For TITO systems two critical gains (K1cr, K2cr) are 
required for stability study. Three typical cases of 
stability limit are shown in fig.4. 
 

     

 
 
 
 
 
 
 
 
 
 
 
 
Fig. 5(a). Typical cases of stability limit 
 
Since the significant performance parameter is loop 
gain, the axes are Kicr Pii (0). Each point on the 
curves corresponds to a pair of gains (K1cr, K2cr) 
and a critical frequency (ωcr). If the system has less 
interaction i.e. either P12(s) or P21(s) or both zero, 
the stability limit takes the rectangular form (1 in 
Fig.4). In this case the two critical gains are 
independent of each other and the system will be 
unstable if one of the gains exceeds its critical 
value. The other two cases (2 and 3 in Fig.4) 
represent a system with interactions. 
 
The choice of DCP (desired critical point i.e. K1cr, 
K2cr, ωcr) depends on the relative importance of the 
two loops, which is expressed by weighting factor  
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where C is called a weighting factor of second loop 
with respect to the first loop. C > 1 means loop 2 
requires tighter control relative to first loop and 
vice versa. For satisfactory performance Cd (desired 
weighting factor) should be 1 i.e. φd = 45°. From 
equation (5) and (6) 
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1
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Therefore, error = εφφ ≤=− 0d  
So it is observed that the interaction between the 
loops is reduced due to inner P-controller. 
 
 

3. IDENTIFICATION OF PLANT MODEL 
 

The second order transfer function model with time 
delay has been found to be widely adequate for 
many industrial applications encountered. This 
choice of model also greatly facilitates the use of 
automatic control tuning approaches.   
 

Let   
⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡
=

)(0

0)(
)(

2

1

sG

sG
sG

p

p
p

be the plant model with diagonal elements  

)7....(
)1(

)( 2
s

i

pi
pi

ie
sT

K
sG θ−

+
=  

and  ⎥
⎦

⎤
⎢
⎣

⎡
=

)(0
0)(

)(
2

1

sG
sG

sG
c

c
c

be the PID controller with elements  

( ) )8.....(.111)( sT
sT

KsG id
iI

cici +⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛
+=  

where i =1, 2. Using the methods given by Padhy 
and Majhi (2005a), expressions for the parameters 
of the plant models can be written as 
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4. STEADY STATE GAINS 
 
Figs. 5(a) and 5(b) are the redrawing of Fig.1 to 
estimate steady state gains (Kpi). 
 

     

 
 
 
 
 
 
 
 
 

 

 
 
 
 
Fig. 5(a). Scheme to obtain steady state gain of Gp1 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Fig. 5(b). Scheme to obtain steady state gain of Gp2
 
Here C1 (s) and C2(s) control Gp1(s) and Gp2 (s) 
instead of G11(s) and G22(s) for good loop 
performance. The expression of Gp1(s) and Gp2 (s) 
can be written as  

)()(
)()()()(

22
1

2

2112
111 sGsC

sGsGsGsG p
+

−=
−

 

)()(
)()()()(

11
1

1

2112
222 sGsC

sGsGsGsG p +
−= −

. 

The steady state gains can be obtained from the 

ratio )0(
)0(
)0(

pi
i

i G
U
Y

≈ . 

As the controllers possess integrators, at steady 
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It is observed from the above expressions that the 
values of steady state gains are independent of the 
controller parameters. 
 

5. CONTROLLER DESIGN 
 
The inner feedback controllers, qi, are designed 
before the forward path PID controller. After 
setting the values of q1 and q2, the parameter of 
PID controller are tuned using the phase and gain 
margin based design criteria. 
 
 
5.1. Design of inner feedback P-controller 
 
To assist in seeing the design procedure for the 
inner feed back P-controller qi, Fig.1 has been 
redrawn and shown in Fig.6.  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Fig. 6. Scheme to obtain q1 and q2
 
The P-controller is replaced by two symmetrical 
relays to calculate two critical gains ( crcr KK 21 , ′′ ). 
Using generalized Ziegler-Nichols tuning rule for 
P-controller, the proportional gains become 
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where 5.05.0 ≤≤ ia . 

The critical gains icrK ′ can be related with qi as 
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where  21 ppp KKK +=  and . 2,1=i
 
 
5.2. Design of PID controller 
 
A set of PID controller tuning formulae have been 
derived by Padhy and Majhi (2005b) to achieve 
user-defined phase and gain margins. They give 
analytical relations between controller and 
identified plant parameters. As given by Padhy and 
Majhi (2005b), the expressions for the controller 
parameters are  
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and φmi and gmi are the phase margin and gain 
margin of ith  loop. 
 
 

6. SIMULATION STUDY 
 
Consider a fourth order plant with transfer function 
matrix (Zhuang and Atherton, 1994) 
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Choosing h1 = h2=5 and q1=q2=1, the error is found 
to be dφφ−  =0.5 0. The limit cycle outputs of the 
loops are shown in Figs. 7(a) and 7(b).  
 

 
Fig.7 (a). Limit cycle output of loop-1 
 

 
Fig.7 (b). Limit cycle output of loop-2 
 
The values of critical gains and frequency for the 
chosen relay heights are tabulated below.  

 
Table 1: Critical gains and critical frequency 

 

h1 h2 K1cr K2cr ωcr
dφφ−  in ° 

5 5 7.062 7. 471 12.146 1.6 
 

 
Using the method given by Padhy and Majhi 
(2005a), the identified plant transfer function 
becomes 
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Choosing φm=450 and gm=2 for both the loops, the 
parameters of the controller Gc1 were estimated as 
Kc1 = 2.7389, Td1 = 0.3163, Ti1 = 0.3163 and that of 
Gc2 were Kc2 = 2.8470, Td2 = 0.3226, Ti2 = 0.3224. 
For comparison of results, the design values 
suggested by two other methods are considered 
here. Zhuang’s CL method (Zhuang and Atherton, 
1994) suggests Kc1 = Kc2 = 5.830, Td1 = Td2 = 0.561 
and Ti1 = Ti2 = 0.140. Similarly Kc1 = Kc2 = 6.40, Td1 
= Td2= 0.364 and Ti1 = Ti2= 0.091 were estimated 
by the use of Ziegler-Nichols method (Zhuang and 
Atherton, 1994). The unit step input responses of 
the loops are shown in Figs. 8(a) and 8(b).  
 

 
Fig. 8(a). Unit step input responses of loop-1 
 

 
Fig. 8(b). Unit step input responses of loop-2 
 
It is evident from the figures that, improved 
performances in terms of overshoot, speed of 
response and settling time are achievable by the 
proposed identification and control scheme.  
In (Neiderlinski, 1971), for the above plant, the 
critical gains K1cr and K2cr are calculated as 8.25. 
So, using equation (10), the values of q1 and q2 will 
be 0.94. The unit step input responses for different 
values of q i.e. 0.5, 0.94 and 2 are shown in Figs. 
9(a) and 9(b). 

     



 
Fig. 9(a). Unit step input responses of loop-1 for    

q = 0.5, 0.94 and 2. 
 

 
Fig. 9(b). Unit step input responses of loop-2  for  
      q = 0.5, 0.94 and  2. 
 
It is observed from the above figures 9(a) and 9(b) 
that the value of q = 0.94 results in improved 
performance. 
 
 

7. CONCLUSION 
 

A new identification method based on relay 
experiment is presented in this paper. Two SISO 
second order transfer function models with delay 
are identified. Based on the identified models, the 
PID controller parameters are tuned. It is observed 
from the simulation studies that the proposed 
control method results in satisfactory time domain 
performances such as overshoot, speed of response 
and settling time. This method can also be extended 
to design PID controller for MIMO systems. 
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