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Abstract: In this paper we consider the construction of the robust root locus (RRL)
for the systems with ellipsoidally parametric uncertainties. By characterizing the
principal points of ellipsoidal parameter set Q associated with the root mapping
s(q) : Rm → C, we present a necessary condition for the point (s,q) ∈ C × Q
to satisfy p(s;q) = 0 and s ∈ ∂Z(p,Q), the boundary of the RRL Z(p,Q). This
condition renders analytic manifolds of dimension one in the domain C×Q. Hence,
the boundary of each section of the RLL Z(p,Q) can be accurately constructed via
tracing the manifolds by a path-following algorithm. This approach to constructing
the RRL provides an alternative way of verifying the robust stability of uncertain
systems with ellipsoidal perturbations. Copyright c©2005 IFAC

Keywords: Root locus, uncertainty, uncertain linear systems

1. INTRODUCTION

Since the inception of seminal Kharitonov’s stabil-
ity theorem (Kharitonov, 1979) on interval poly-
nomials, robust stability analysis for linear sys-
tems subject to parametric uncertainties has been
an active area of research in the last two decades.
Given a polynomial p(s;q) whose coefficients de-
pend smoothly on parameter vector q ∈ Rm

taking values in a bounded and closed domain Q
in Rm, the problem of robust stability analysis
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is to answer if all the roots of the polynomial
family p(s;Q) ∆= {p(s;q) : q ∈ Q} lie inside a
certain simply-connected region D in the complex
plane. In general, there are two research direc-
tions toward the solution of this robust D-stability
problem. The first research direction focuses on,
without actually finding part or all the roots of the
polynomial family p(s;Q), exploring a testable
subset of the polynomial family p(s;Q) whose
D-stability ensures the D-stability of the whole
polynomial family (Bartlett et al., 1988; Bhat-
tacharyya et al., 1995).



Instead of giving ‘yes’ or ‘no’ answer to whether
all the roots of the polynomial family p(s;Q) are
in D, the second research direction in the robust
stability analysis attempts to find the root distri-
bution of p(s;Q). This led to the so-called robust
root locus problem (Barmish and Tempo, 1990;
Barmish and Tempo, 1991; Cerone, 1997; Hwang
and Chen, 1999) or multi-parameter zero set prob-
lem (Fruchter et al., 1987; Walach and Zeheb,
1982). Since the knowledge of root distribution
of a parametric polynomial family allows one to
analyze not only the robust stability but also the
robust performance of an uncertain system, the
robust root locus problem has recently gained con-
siderable attention (Barmish and Tempo, 1990;
Barmish and Tempo, 1991; Cerone, 1997; Hwang
and Chen, 1999; Hwang and Yang, 2003; Yang and
Hwang, 2001). The methods recently proposed in
(Barmish and Tempo, 1991; Cerone, 1997; Hwang
and Chen, 1999) to solve the robust root locus
problem with linear or multilinear parameter de-
pendency are essentially based on performing zero
inclusion test for the value sets p(si;Q) with a
finite set of specially selected points si. All these
methods are applicable to the case where the
unertain parameter set Q is an m-D box.

In this paper we solve the problem of construct-
ing robust root locus for systems with ellipsoidal
parametric uncertianties because ellipsoidal un-
certainty descriptions arise naturally in the con-
text of set-membership parameter identification
using successive an ellipsoid-bounding algorithm
(Belforte et al., 1990). Such a problem has recently
been approached in (Hwang and Yang, 2003; Yang
and Hwang, 2001) with a method combining zero
inclusion/exclusion test, parameter domain sub-
division, and integer-labelled pivoting procedure.
Actually, a bisection-based box domain subdivi-
sion algorithm is used, the method presented in
(Hwang and Yang, 2003; Yang and Hwang, 2001)
is not efficient in the case when the parameter
set corresponding to an RLL boundary lies on the
ellipsoid. To avoid this disadvantage, we propose
in this paper an analytical characterization of the
boundary of the robust root locus. This character-
ization is based on the notions of principal points
(Kiselev et al., 1997) for characterizing the bound-
ary of the image of a convex compact set under
a smooth mapping. It allows one to construct the
boundaries of the RLL of an ellipsoidally uncer-
tain system by using a path-following algorithm.
Moreover, it provides a direct link between the
roots lying on the RLL boundaries and the un-
certain parameters in the ellipsoidal parameter
set. This link allows one to identify the worst or
critical case of the parametrically uncertain plant
set.

2. ANALYTICAL CHARACTERIZATION OF
VALUE-SET BOUNDARY

Let Q be a convex compact set in Rm and q ∆=
(q0, q1, · · · , qm−1)T ∈ Q, where the superscript T

denotes transpose. For a smooth mapping f
∆=

(f1, f2, · · · , fl)T : Rm → Rl, the image

f(Q) = {f(q) : ∀q ∈ Q} ⊂ Rl (1)

is often referred to as a value set. The construction
of the value set f(Q) plays a central role in
the robust stability and performance analysis for
control systems in the presence of parametric
uncertainties. In this section, we shall review some
existing results on the characterization of the
smallest testable set of points in Q whose image
under f covers the boundary of the value set f(Q),
denoted by ∂f(Q). By definition, a point z lies on
the boundary ∂f(Q) if every neighborhood of z
contains points from the value set f(Q) and its
set-theoretic complement.

We first give some definitions. A vector n is called
a normal vector to Q at the point q0 if the inner
product of the vectors n and q0−q is nonnegative.
All normal vectors to Q at q0 constitute a normal
cone N(q0). It can be shown that N(q0) = ∅
for an interior point q0 of Q. If q0 ∈ ∂Q, where
∂Q denotes the boundary of Q, the normal cone
N(q0) is nonempty. In particular, if the convex set
Q is defined by {q : φ1(q) ≤ 0, · · · , φν(q) ≤ 0},
where φi, i = 1, 2, · · · , ν, are convex differentiable
functions such that φk(q0) = 0,q0 ∈ ∂Q and
φk(q1) < 0 for an interior point q1 ∈ Q and a
k ∈ {1, 2, · · · , ν}, then

N(q0) =
{
λ∇φk(q0), 0 ≤ λ < ∞

}
(2)

where

∇φk(q0) =
(∂φk(q0)

∂q0
,
∂φk(q0)

∂q1
, · · · , ∂φk(q0)

∂qm−1

)T (3)

Now we quote the necessary condition given by
Kiselev et al. (1997) for characterizing the the
points in Q whose image under the mapping f
lie on value-set boundary ∂f(Q).

Theorem 1 (Kiselev et al., 1997). Assume
that q0 ∈ Q and f(q0) ∈ ∂f(Q). Then there
exists a nonzero y ∈ Rl such that [Jf (q0)]T y ∈
N(q0), where

Jf (q0) =




∂f1(q0)
∂q0

∂f1(q0)
∂q1

· · · ∂f1(q0)
∂qm−1

∂f2(q0)
∂q0

∂f2(q0)
∂q1

· · · ∂f2(q0)
∂qm−1

...
... · · ·

...
∂fl(q0)

∂q0

∂fl(q0)
∂q1

· · · ∂fl(q0)
∂qm−1




(4)



We outline in the following the consequences of
Theorem 1 for the case where f is a complex-
valued smooth function and the domain Q is an
m-ellipsoid, which is of particular interest to us in
this paper. In the sequel, f(q) is assumed to be a
complex-valued smooth function of q ∈ Rm and
gk(q) denotes the partial derivative of f(q) with
respect to qk, i.e.,

gk(q) := gk,r(q) + jgk,i(q)

= ∂f(q)
∂qk

, k = 0, 1, · · · , m − 1 (5)

where gk,r(q) and gk,i(q) are the real and imagi-
nary parts of gk(q), respectively. For an ellipsoidal
uncertainty set E, the following corollary charac-
terizes the value-set boundary ∂f(E).

Corollary 1. Let E be an m-ellipsoid in Rm

with the center qc = (qc
0, q

c
1, · · · , qc

m−1)T and the
positive axis lengths w = (w0, w1, · · · , wm−1)T :

E = {q : φ(q) =
m−1∑

k=0

(
qk − qc

k

wk
)2 − 1 ≤ 0} (6)

If f(q0) ∈ ∂f(E) for a point q0 ∈ E, then
there exists a nonzero g ∈ C such that for k =
0, 1, · · · , m − 1

|g|2=
{gk(q0)

g
}

=

{
0, q0 ∈ E\∂E

−∂φ(q0)
∂qk

, q0 ∈ ∂E
(7)

A point q0 belonging to the m-ellipsoid E while
satisfying condition (7) will be referred to as a
principal point associated with the mapping f .
The notion of principal points was introduced
in (Polyak and Kogan, 1995) to characterize the
value-set boundary and further generalized in
(Hwang and Chen, 1999) to facilitate the bound-
ary construction. Let the set of principal points in
E associated with the mapping f be denoted by P.
Since condition (7) is only a necessary condition
for the image of a point q0 ∈ E under the mapping
f to lie on the boundary of the value set f(E), the
image of the set of principal points P ⊂ E thus
covers the boundary of the value set f(E), i.e.,

∂f(E) ⊂ f(P) (8)

For a principal point q lying in the interior of the
m-ellipsoid E, it follows from (7) that there exists
a nonzero complex number g such that

=
{gk(q)

g

}
= 0, ∀k ∈ {0, 1, . . .¸ , m − 1} (9)

Hence the set of principal points in the interior of
the m-ellipsoid E are the one-dimensional mani-
folds defined by the following m − 1 equations:

∣∣∣∣
gl,r(q) gl,i(q)
gk,r(q) gk,i(q)

∣∣∣∣ = 0, ∀k ∈ {0, 1, . . .¸ , m − 1}\{l}

(10)

where l ∈ {0, 1, . . .¸ , m− 1}. On the other hand, if
a principal point q is on the surface

φ(q) = 0 (11)

of the m-ellipsoid E, then it satisfies the second
equation in (7), which is equivalent to

gν,r(q)yr(q) + gν,i(q)yi(q) = ∆l,k(q)∂φ(q)
∂qν

,

∀ν ∈ {0, 1, · · · , m − 1}\{l, k} (12)

where l, k ∈ {0, 1, · · · , m − 1}, and

∆l,k(q) =
∣∣∣∣
gl,r(q) gl,i(q)
gk,r(q) gk,i(q)

∣∣∣∣ 6= 0 (13a)

yr(q) =

∣∣∣∣∣∣

∂φ(q)
∂ql

gl,i(q)

∂φ(q)
∂qk

gk,i(q)

∣∣∣∣∣∣
(13b)

yi(q) =

∣∣∣∣∣∣

gl,r(q) ∂φ(q)
∂ql

gk,r(q) ∂φ(q)
∂qk

∣∣∣∣∣∣
(13c)

Hence the set of principal points lying on the ellip-
soidal surface are also one-dimensional manifolds
described by the m−1 equations in (11) and (12).

3. CHARACTERIZATION OF RLL FOR
SYSTEMS WITH ELLIPSOID UNCERTAINTY

DESCRIPTIONS

Consider a parametric polynomial

p(s;q) =
n∑

k=0

ak(q)sk (14)

where the real coefficients ak(q) depend smoothly
on the parameters q. The robust root locus (RRL)
of the polynomial family p(s;Q) with Q a com-
pact convex set in Rm is defined as

Z(p,Q) = {s ∈ C : p(s;q) = 0 for some q ∈ Q)

= C1 ∪C2 ∪ · · · ∪ Cµ, µ ≤ n (15)

It represents the smallest set of regions Ck ⊂
C, k = 1, 2, · · · , µ ≤ n in the complex plane within
which the roots of the polynomial members in
the set p(s;Q) lie. In the sequel, we shall call a
root region Ck a cross section of the robust root
locus of the polynomial family p(s;Q). Since the
roots of a polynomial are continuous functions
of its coefficients, a cross section of the robust
root locus is simply-connected. Moreover, under
the assumption that the polynomial family p(s;Q)



contains no members which have different degrees,
each cross section of the robust root locus is a
bounded region in the complex plane.

In this section, we shall characterize the smallest
testable subset M of the parameter domain Q
such that the robust root locus of the parametric
polynomial family p(s;M), Z(p,M), covers the
boundary of the robust root locus Z(p,Q), de-
noted by ∂Z(p,Q). The following theorem pro-
vides the desired characterization of the boundary
of the robust root locus.

Theorem 2. If z is a point on the boundary of
the robust root locus Z(p,Q), then there exists a
q ∈ Q such that the following two conditions hold

(i) p(z;q) = 0.
(ii) p(z;q) ∈ ∂p(z;Q).

Proof. Condition (i) follows from the definition
of RRL given in (15). In the following we prove
condition (ii).

Let z∗ be a point in the complex plane which does
not belong to the RRL of the polynomial family
p(s;Q), i.e., 0 /∈ p(z∗;Q). Since p(s;q) is a contin-
uous function of s, the distance between the origin
and the value set p(s;Q) varies continuously with
respect to s. Therefore, when z∗ approaches z, the
origin approaches the boundary of the value set
p(z;Q). Consequently, we have 0 ∈ ∂p(z;Q) and
from condition (i), p(z;q) = 0 ∈ ∂p(z;Q). This
completes the proof.

Note that Theorem 2 provides a necessary con-
dition for a point q0 ∈ Q with that some roots
of the polynomial p(s;q0) lie on the boundary of
the robust root locus Z(p,E). Following the con-
dition (ii) of Theorem 2 and the characterization
of principal points for the boundary of the value
set p(z;E), we see that the necessary condition for
a root z of the polynomial p(s;q0),q0 ∈ E to lie
on the boundary of the robust root locus Z(p,E)
is that the point q0 belongs to the set of principal
points P and satisfies the equation p(z;q0) = 0.
Hence, the smallest testable subset M of E such
that the robust root locus Z(p,M) covers the RLL
boundary ∂Z(p,E) is exactly the set of principal
points P associated with the complex-valued map-
ping p(s;E). As a result, the branches of the root
locus set ∂Z(p,E) can be constructed by tracing
the one-dimensional manifold defined by equation
p(z,q) = 0 and those for defining the principal
points in E.

4. AN ILLUSTRATIVE EXAMPLE

In this example, we apply the proposed analytical
characterization of value set boundary to generate
the robust root loci for the parametric polynomial
family

p(s;E) = {p(s;q) = s4 + q2
0q2s

3 + q1q
2
2s

2 + q2
1s

+q0q2 : q = (q0, q1, q2)T ∈ Q} (16)

where the parameter domain E is a 3-ellipsoid
define by

E = {(q0, q1, q2)T : φ(q0, q1, q2) ≤ 0} (17)

where

φ(q0, q1, q2) = (q0 − 0.8
0.1 )2 + (q1 − 0.3

0.5 )2

+(q2 − 0.7
0.3 )2 − 1 (18)

For a given complex number s = σ + jω, the set
of principal points associated with the mapping
p(σ + jω;q) includes the principal point (PP)
manifolds lying in the interior of the 3-ellipsoid
E and those on the ellipsoidal surface defined by
φ(q0, q1, q2) = 0. In the interior of the 3-ellipsoid
E, the PP manifolds in the domain C × E are
defined by

<{p(σ + jω;q)}= 0 (19a)

={p(σ + jω;q)}= 0 (19b)∣∣∣∣
g0,r(σ + jω;q) g0,i(σ + jω;q)
g1,r(σ + jω;q) g1,i(σ + jω;q)

∣∣∣∣ = 0 (19c)
∣∣∣∣
g0,r(σ + jω;q) g0,i(σ + jω;q)
g2,r(σ + jω;q) g2,i(σ + jω;q)

∣∣∣∣ = 0 (19d)

φ(q0, q1, q2) < 0 (19e)

On the elliptic surface, the PP manifolds are
defined by the following equations:

<{p(σ + jω;q)}= 0 (20a)

={p(σ + jω;q)}= 0 (20b)

φ(q) = 0 (20c)

g2,r(σ + jω;q)yr(σ + jω;q) + g2,i(σ + jω;q)

×yi(σ + jω;q) = ∆0,1(σ + jω;q)∂φ(q)
∂q2

(20d)

where

∆0,1(σ + jω;q) =
∣∣∣∣
g0,r(σ + jω;q) g0,i(σ + jω;q)
g1,r(σ + jω;q) g1,i(σ + jω;q)

∣∣∣∣
(21a)

yr(σ + jω;q) =

∣∣∣∣∣∣

∂φ(q)
∂q0

g0,i(σ + jω;q)

∂φ(q)
∂q1

g1,i(σ + jω;q)

∣∣∣∣∣∣
(21b)

yi(σ + jω;q) =

∣∣∣∣∣∣

g0,r(σ + jω;q) ∂φ(q)
∂q0

g1,r(σ + jω;q) ∂φ(q)
∂q1

∣∣∣∣∣∣
(21c)

Using a curve-following algorithm, we traced the
PP manifolds lying in the interior and on the



elliptic surface of the 3-ellipsoid described by (19)
and (20), respectively, and their corresponding
branches of root locus. Figs. 1 and 2 show the
traced PP manifolds and the corresponding two
cross sections of the robust root locus lying above
the real axis. Note that in Figs. 1a and 2a, points
on the ellipse

(q0 − 0.8
0.1 )2 + (q1 − 0.3

0.5 )2 = 1 (22)

are also the principal points. To let the Figs. 1
and 2 be more readable, some principal points and
their corresponding roots are labelled.

Fig. 1a. The projection of the PP manifolds asso-
ciated with the cross section of the robust root
locus of p(s;E) lying in the first quadrant of
the complex plane.

Fig. 1b. The cross section of the robust root locus
of p(s;E) lying in the first quadrant of the
complex plane.

Fig. 2a. The projection of the PP manifolds asso-
ciated with the cross section of the robust root
locus of p(s;E) lying in the second quadrant of
the complex plane.



Fig. 2b. The cross section of the robust root locus
of p(s;E) lying in the second quadrant of the
complex plane.

5. CONCLUSION

In this article, we have presented an analytical
characterization of the robust root locus of el-
lipsoidal parametric polynomial families. Based
on exploiting the notion of principal points for
characterizing the boundary of the image of a
convex domain under a differentiable complex-
valued mapping, we have derived necessary con-
ditions for characterizing the boundary of the
robust root loci for multi-parameter polynomial
families. The derived necessary conditions are
given in analytical expressions which describe one-
dimensional manifolds in the union of the complex
plane and the parameter domain. By tracing the
one-dimensional manifolds with an existing path-
following algorithm, we can obtain the boundary
of each robust root locus section. Although the
derivations are given for the case of ellipsoidal un-
certainty set, the obtained results can be readily
extended to systems with polytopical uncertainty
set. Hence, the proposed approach to constructing
robust root loci is a highly valuable and useful tool
for the robust stability analysis and control design
of linear systems having parametric uncertainties.

6. ACKNOWLEDGEMENTS

This work was supported by the National Sci-
ence Councils of the Republic of China under
Grants NSC92-2214-E-194-002 and NSC92-2214-
E-194-001.

REFERENCES

Barmish, B.R. and R. Tempo (1990). The robust
root locus. Automatica 26, 283–292.

Barmish, B.R. and R. Tempo (1991). On the
spectral set for a family of polynomials. IEEE
Trans. Automat. Control 36, 111–115.

Bartlett, A.C., C.V. Hollot and L. Huang (1988).
Root locations of an entire polytope of poly-
nomials: It suffices to check the edges. Math.
Control Signals Syst 1, 61–71.

Belforte, G., B. Bona and V. Cerone (1990).
Parameter estimation algorithms for a set-
membership description of uncertainty. Au-
tomatica 26, 887–898.

Bhattacharyya, S.P., H. Chapellat and L.H. Keel
(1995). Robust Control: the Parametric Ap-
proach. Prentice-Hall. Upper Saddle River,
NJ 07458.

Cerone, V. (1997). A fast technique for the gen-
eration of the spectral set of a polytope of
polynomials. Automatica 33, 277–280.

Fruchter, G., U. Srebro and E. Zeheb (1987).
On several variable zero sets and application
to mimo robust feedback stabilization. IEEE
Trans. Circuits Syst 34, 1208–1220.

Hwang, C. and J.J. Chen (1999). Plotting ro-
bust root loci for linear systems with multilin-
early parametric uncertainties. Int. J. Control
72, 501–511.

Hwang, C. and S.F. Yang (2003). The robust root
locus of polynomial families with multilin-
ear parameter dependence. Asian J. Control
5, 293–300.

Kharitonov, V.L. (1979). Asymptotic stability of
an equilibrium position of a family of systems
of linear differential equations. Differ. Equ.
14, 1483–1485.

Kiselev, O.N., H.L. Le and B.T. Polyak (1997).
Frequency responses under parametric uncer-
tainty. Automat. Remote Control 58, 645–
661.

Polyak, B.T. and J. Kogan (1995). Necessary
and sufficient conditions for robust stabil-
ity of linear systems with multiaffine uncer-
tainty structure. IEEE Trans. Automat. Con-
trol 40, 1255–1260.

Walach, E. and E. Zeheb (1982). Generalized
zero sets of multiparameter polynomials and
feedback stabilization. IEEE Trans. Circuits
Syst. 29, 15–23.

Yang, S.F. and C. Hwang (2001). Generation
of robust root loci for linear systems with
parametric uncertainties in an ellipsoid. Int.
J. Control 74, 1483–1491.


