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Abstract: The choice of the input signals has impact on the nonparametric frequency 
response function (FRF) measurements of a nonlinear MIMO system. It is shown that 
Gaussian noise, periodic noise, and random multisines are equivalent, yielding in the limit 
the same linear approximation to a nonlinear MIMO system. Even in the noiseless case, 
variability of the FRF is observed due to the presence of the nonlinearity and the 
randomness of the excitation. Based upon these effects a new class of equivalent input 
signals is proposed, decreasing essentially the variance of the nonlinear FRF 
measurements, while the same linear approximation is retrieved. Copyright © 2005 IFAC 
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1. INTRODUCTION. 
 
A SISO Volterra system, driven with a random 
multisine, i.e. a: 
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where kk ϕϕ −=− , the phases kϕ
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 are iid random 

variables uniformly distributed on [0, 2π[, the real 
amplitudes obey ,  and 

, can be modeled as a linear 
approximation followed by a nonlinear noise source. 
The nonlinearity is translated into systematic ‘bias’ 
and noise like ‘stochastic’ contributions (Schoukens, 
et al., 1998). This model has been extended to 
periodic noise (amplitudes  in (1) are random) 
and Gaussian noise. FRFs estimated with any of those 
signals tend in the limit (M→∝ ) to the same linear 
approximation of the SISO system, provided that the 
signal spectra are comparable (Pintelon and 
Schoukens, 2002). Although the bias on the FRF is 
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the same, it is not so with the nonlinear noise 
variance. Measuring with Gaussian noise introduces 
leakage. Periodic noise is leakage free, but its 
spectrum fluctuates from one realization to the other. 
Comparably, random multisines introduce least 
variance, consequently they are proposed as signals of 
choice in weakly nonlinear SISO measurements 
(Pintelon and Schoukens, 2001). 
 
This theory will be extended to MIMO Volterra 
systems with no feedback, i.e. where outputs can be 
investigated separately as MISO systems. In the time 
domain such system can be described as: 
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where the 2nd sum runs over all pure and mixed αth 
order kernels. A particular αth order kernel excited by 
input signals of indices j1 , j2 ,…, jα  is: 
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In the frequency domain this model becomes: 
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where U , l is the discrete 
frequency, l = Σ k

kj
skk eMlfUFMl ϕ)/(ˆ)/()( 2/1=

i, i=1…α, (Schoukens, et al., 1998).  
In Section 2 we examine the bias and the variance of 
the FRF approximation. In Section 3 MIMO 
equivalence of the signals mentioned above is proven. 
Section 4 introduces a new class of excitations with 
superior properties. Finally Section 5 provides some 
illustrative simulations and conclusions. 
 
2. SOME REMARKS ON BIAS AND VARIANCE 

 
Further on we omit the index of the output. Index k of 
the measured signal path is called reference input 
index. In practice all signal paths in a MISO system 
are computed simultaneously via a set of equations. 
For this purpose J experiments are made, cutting 
(after the transients settle) the successive records 
from the input and output signals. Signal amplitudes 
at frequency l are then arranged into:  
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(parentheses indicate the serial numbers of the 
experiments). The required FRF estimates can be 
computed as:  
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where ( )H means conjugate transpose. 
 
With the equivalence proven in the next Section it is 
actually also shown that in the limit (M → ∝ ) the 
output of the Volterra MIMO system, excited by the 
above mentioned input signals, can be written as:  
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where the so called related dynamic systems 
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 are linear approximations 
to the multidimensional Volterra series in the signal 
path , and  are biases introduced by the 
nonlinearity. The equivalent noise sources  
capture all the nonsystematic nonlinear effects. (6) 
yields the MIMO additive nonlinear noise source 
model, a straightforward extension of the SISO and 
two-input two-output (TITO) cases (Dobrowiecki and 
Schoukens, 2004a). 
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Even in the absence of measurement noise, FRF 
measurements will vary from one realization to the 
other for two reasons. One is the fluctuation of the 
inverse matrix in (7) due to the experiment design. 
Note that  fluctuates even when random 
multisines with constant amplitude spectrum are used, 
contrary to the case of SISO systems (Pintelon and 
Schoukens, 2001). Other problem is the nonlinear 

noise source  in (8), a zero mean stochastic 
contributions generated by the nonlinearity. Generally 
the variance on the measured FRF will depend on the 
used input signals (with the expected ranking of: 
Var

1)( −UUH
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Gaussian noise > Varperiodic noise > Varrandom multisine), the 
order and the particular composition of the kernels.  
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The aim is then to design experiments suitable for the 
nonparametric FRF identification of MIMO Volterra 
systems. They should yield low measurement 
variance (by reducing the random fluctuations of the 
inverse in (7) and the influence of ), while the 
computed FRF estimates  in (8) should be the 
same for all kinds of excitations. 
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3. BIAS EQUIVALENT INPUT SIGNALS 

 
We turn now to the equivalence of the measured 
MIMO FRF for signals evaluated in (Pintelon and 
Schoukens, 2002), i.e. random multisines (1) with 

, periodic noise with random spectral 
amplitudes 

()(ˆ
ˆˆ
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E , and Gaussian noise 
with power spectrum . For more 
technical details on these signals, see (Pintelon and 
Schoukens, 2002). The results can be collected in the 
following corollary: 

maxˆˆ /)( ffS UU

 
Assumption 1: Signals at different inputs are 
independent, their phases and (in case of periodic 
noise) spectral amplitudes are independent over the 
frequency. The signals have comparable spectral 
powers and are defined on the same frequency grid.  
 
Assumption 2: The MIMO system can be of arbitrary 
input dimension N and order of the nonlinearity 
(assuming that the sums in (2-5) converge).  
 
Corollary 1: Under Assumption 1 and 2, and for 
M→∝ , all of the mentioned signals yield exactly the 
same linear approximation to a nonlinear MIMO 
system modeled by series (3-5). The contributing 
kernels with nonzero expected values (with respect to 
the random parameters of the excitations) are only 
those odd order kernels, which contain the reference 
input an odd number of times, and any other input an 
even number of times, including 0. (For the sketch of 
the proof see App. A).  
 
Note that the SISO case is a special case with only 
reference input present). 
 

4. ORTHOGONAL RANDOM MULTISINES 
 
In the nonlinear measurements, only Gaussian signals 
in general, or multisines are assumed (note that all of 
the mentioned signals are Gaussian in the limit), see 
e.g. (Zi-Qiang and Billing, 2000). For linear MIMO 
systems (Briggs and Godfrey, 1966), later 
(Guillaume, et al., 1996) introduced orthogonal inputs 
based on the Hadamard matrix (9) to minimize the 
influence of the measurement noise by the 

     



For N = 4k a simpler choice is the Hadamard matrix, 
composed solely from ±1 entries. 

maximization the determinant of the input matrix. In 
nonlinear context it was criticized by (Dedene, et al., 
2002), as affecting the operating point of the system.  

 The procedure is thus to generate random excitations 
for the first experiment in the block of N experiments 
and to shift them orthogonally for the next N-1 
experiments, then start with another random choice 
for the next block. Due to the orthogonal properties of 

 (we omit the experiment index for clarity): W
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Considering that a linear approximation followed by a 
nonlinear output noise model had been extended to 
MIMO systems (8), Hadamard matrix inputs were 
investigated for cubic Volterra TITO system and 
shown to be bias equivalent to the random multisines 
with much less of the measurement variance 
(Dobrowiecki and Schoukens, 2004a). Further direct 
generalization to higher dimensions and orders failed 
(probably due to over constraining, as foreseen in 
(Dedene, et al., 2002)). A drawback of the Hadamard 
design is also the restriction of the input dimension to 
N = 4k. For other dimensions truncated Hadamard 
matrix are used as an ad hoc solution. 
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is a simple amplitude scaling. Furthermore from (7): 
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Our aim is to design inputs suitable for an arbitrary 
MIMO Volterra system, bias equivalent to other, 
traditionally used excitations, and yielding even less 
measurement variance. Maximum determinant 
problem has solution in complex numbers for 
arbitrary dimensions (DFT matrix, Brenner and 
Cummings, 1972). However substituting one 
orthogonal matrix for another is not enough to obtain 
bias equivalence (i.e. keeping intact the operating 
point of the system). 

computed without taking inverse from one block of N 
equations. Because (12) gets rid of random 
fluctuations, a reasonable drop in variance should be 
expected. Moreover orthogonal random multisines 
lead to exactly the same  as for other input 
signals. 

RG

  
Let us assume that J = NB ⋅ N experiments are made 
and let partition the N B× J input matrix  into N  
rectangular blocks as:  and 

 in a similar way. Instead of choosing: 

U
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Corollary 2: Under Assumptions 1 and 2 the 
orthogonal random multisines (11) are equivalent to 
the signals specified in the Corollary 1. When 
normalized to the same spectral behavior and in the 
limit M → ∝ , they yield exactly the same . (For 
the sketch of the proof see App. B). 
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Kernels with nonzero expected values contribute to 
the bias and those with zero expected values to the 
variance. A thorough analysis of the nonlinear kernels 
reveals that due to the orthogonal  a number of 
zero expected value kernels will become zero, 
depressing the level of the variance further. 

W
 

which requires independent excitations for every 
input and every experiment, we propose (11) where 
wij are entries of an arbitrary, deterministic, 
orthogonal (unitary) matrix: . IWWWW NHH ==  

Corollary 3: The orthogonal random multisines (11) 
generate least variance comparing to the signals 
mentioned in the Corollary 1. A number of zero mean 
kernels present usually in the nonlinear variance 
drops out due to the properties of the entries of the 
orthogonal matrix . (For the sketch of the proof see 
App. C

W
).  
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For  a DFT matrix can be chosen, i.e. the 
Vandermode matrix of the roots of unity 

. Consider e.g. a 3-
dim system. The basic input matrix could be: 

W

kn =[ ] Njnk /2)1)(1( exp, πωω =−−W

 
5. SIMULATIONS 

 
Nonlinear variance levels were measured on  of a 
3-dim MISO system, excited with Gaussian noise, 
periodic noise, random multisines, and orthogonal 
random multisines. For W

RG

 in (11) a DFT matrix is 
used. All signals were scaled to unit power and the 
number of experiments was with NB = 1, 2, 5, 10 
number of blocks respectively (J = 3NB now). The 
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 MISO system has a Wiener-Hammerstein structure 
with linear systems shown in Fig.1. The variance of 
the FRF of such systems follows their output 
dynamics (Dobrowiecki and Schoukens, 2002), 
consequently the comparison was based on the 
approximate level of the variance in the lower pass 
band of the system, and on the relative variance of the 
measurements with the signal S, with respect to that 
obtained with the orthogonal random multisines 
(OMS): 
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measured for the orthogonal multisines follow the 1/J 
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6. CONCLUSIONS  

 

 
Various practically important excitations yield the 
same linear approximation for the Volterra SISO 
systems. This equivalence is extended to the MIMO 
Volterra series. All excitations introduce however 
random fluctuations and an increased level of 
variance. With the new class of excitations the FRF 
measurements of the nonlinear MIMO Volterra 
system can be significantly improved in a sense that 
the equivalent linear approximations are measured 
with significantly less variance. Measurement 
procedure is easy, reducing further the computational 
burden.   Fig. 1. Linear dynamics of 3-dim Wiener-

Hammerstein system used in the simulations. 

     



 
Fig. 2. Variances measured from 10 averages of the 

FRF in signal path Y - U1, for NB=1, 2, 5, 10. 
 

 
Fig. 3. Approximate variance at the lower 10% of the 
pass-band. (a) Path Y-U1 and system (15): Gaussian 

(∗ ) and periodic noise (O), random (◊) and orthogonal 
multisine (). (b) System (16): random multisine, all 

paths (∗ ), orthogonal multisine, path Y-U2 (O), path Y-
U3 (), path Y-U1 (◊). 

 

 
Fig. 4. (a) Relative variance (13) for system (15): 

Gaussian (∗ ) and periodic noise (O), random 
multisine (◊). Note the loss for small number of data 
and the convergence to 0 for higher number of data. 

(b) Relative variance for the signal path Y-U1, system 
(16). Note no convergence to 0 for higher number of 

data. Compare with Fig. 3a. and 3b. 
 

APPENDICES 
 
App. A: Bias equivalence of the input signals. 
It is enough to investigate a single kernel in (2)-(5). 
Bias on the measured FRF is the sum of all systematic 

contributions with nonzero expected values. The 
nonlinear noise variance comes from all other zero 
expected value stochastic contributions. The detailed 
analysis is presented in (Dobrowiecki and Schoukens, 
2004b), only general ideas are explained here. The 
aim is to show that in every case kernels of exactly 
the same order and combination of inputs contribute 
to the bias. Scale factors based on the symmetry of 
the Volterra kernels and the frequency dependence of 
the kernels based on equivalent signal spectra lead in 
the limit M → ∝  to exactly the same bias expressions. 
Signals in the kernel will be grouped as: j1, … , j2, …, 
jK, where input j1 appears in the kernel M1 times, input 
j2 M2 times, etc., and  j1 < j2 < …< jK. Reference input 
index k will be identified usually with input j1. The 
FRF measured with Gaussian noise is: 
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If the reference input k is not in j1, …, jK, the expected 
value is zero, so let k = j1. Due to the independent 
inputs the expected value can be written as 
(simplifying the notation): 
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Each of the expected values in (20) is zero for odd 
number of terms. For even number of terms they can 
be decomposed into sums of combinations of pair 
wise correlations  (Schetzen, 1980; 
Pintelon and Schoukens, 2001). Consequently the 
order M

)( jiuu mn
R ττ −ΣΠ

...

...,1234G

1 of the reference signal in the kernel must be 
odd, and the orders Mn of other input signals even 
(e.g. in signal path with the reference index 1 kernels 

etc. will contribute to the bias, but 

kernels etc. not). For the final form 
of (18) we must take into account that by the 
symmetry of the kernels every combination of pair 
wise correlations leads the same bias term. The 
number of possible combinations for the left side of 
(20) is the product of the numbers of combinations at 
the right side, and we must introduce the frequency 
power spectrum via the Fourier transform, like in the 
SISO case. The final result is: 
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where 2β -1 = α = ΣMi +1. Multidimensional Volterra 
frequency kernel in (21) is defined as the Fourier 

     



transform of the time domain kernel from (2-3). For 
more details see (Pintelon and Schoukens, 2001). 
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 where the term within the expectation is δkn as the 
entry of a matrix multiplied by its inverse. Putting 
(29) into (28) we again obtain (25). For periodic noise 
the expectation in (28) must be analyzed acc. to (26), 
and here the entries of the inverse pose problems:  

Periodic noise and random multisines will be 
analyzed with the FRF measured first as: 
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The expectation of a particular kernel is: 
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Analysis of possible pairings toward nonzero 
expected value leads to the interim expression of: For random multisines the expectation in (24) applies 

only to the random phases. To yield nonzero expected 
value the reference input k must be present among 
inputs j1,…, jK, then it must be possible to pair the 
remaining inputs (phases of different inputs are 
independent). The condition on the kernel is 
consequently the same and with it the bias (23) is: 
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which with the comments made to (27) and (29) 
yields exactly the same expression of the bias as (25). 
 
App. B: Bias of the orthogonal random multisines. 
From (12-13) it is enough to show the equivalence of 
the FRF measured for a single block of data (J=N
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For M → ∝  the sum converges to the integral (21). 
For periodic noise the expectation in (24) applies to 
both amplitudes and phases: which with: U  and )()()( lUwl jnj
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can be written as: 
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Note here also that the reference input must be 
present (odd number of times) in the kernel and other 
inputs must appear in even numbers, otherwise the 
expectations are zero. In such case the denominator 
and phase expectation cancels and:  

 

For the expected value to be nonzero exactly the same 
conditions on the inputs are required as before. A 
represents dependency on the orthogonal matrix W: 
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For frequency pairings leading to the nonzero 
expected value, due to |wnk|2 = 1, A = 1 and the bias 
expression equals (25).  

 

The asymptotically vanishing term contains higher 
even order moments. With this the bias equals (25). 

  
App. C: Vanishing zero mean contributions. When (7) is used as the measurement procedure: 
For a particular kernel, A in (31) depends on the 
orthogonal matrix W, on the indices of the input and 
the reference signals and on the frequency pairing 
introducing complex conjugate for the negative 
frequencies. Three cases can be distinguished 
depending whether the term under the sum in (31) 
simplifies to wnp = 1, or to a wnp ≠ 1: 
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where: [ ]
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independent over frequency and with higher than 2nd 
order moments (pairing more than two frequencies 
together) leading to O(M-1) order contributions:  

a. A = 1 for all frequencies. Such kernel contributes 
fully to the nonlinear variance on the FRF. 
b. A = 0 for all frequencies. Such kernel drops out 
from the variance.  

c. A = 0 only for particular frequencies, when suitable 
pairing is possible. Such kernel contributes to the 
variance at those frequencies only.   
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