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Abstract: The aim of this study is to offer a comparison of the numerical procedures for 
an important problem, the determination of purely imaginary characteristic roots of LTI-
Time Delayed Systems (LTI-TDS). This problem, in fact, has a crucial role in assessing 
the stability of the general class of vector LTI-TDS )τ−+= (txBxAx& . There are many 
procedures discussed in the literature for this purpose. Those, which are exact, first 
determine the complete set of imaginary characteristic roots of the dynamics, as they 
constitute the only points where stability switching can take place. These approaches are, 
in fact, some variations of the five main methods, which may demand numerical 
procedures of different complexity and they may result in different precisions in finding 
the roots.  There is, however, no comparative case study known to the authors to 
demonstrate the strengths and weaknesses of these methods.  This document is prepared 
primarily for this purpose. We first present an overview of each of the five methods and 
then compare their numerical performances over an example case study. Copyright © 
2005 IFAC 
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1. INTRODUCTION 

 
The stability of linear time invariant retarded time-
delayed systems (LTI-TDS) has been a very active 
research topic for some time (Cooke and van den 
Driessche, 1986; Walton and Marshall, 1987; Hale 
and Verduyn Lunel, 1993; Chen, Gu et al., 1995; 
Niculescu, 2001). Numerous contributions by 
renowned investigators can be found in the literature 
on the subject. It is the authors’ belief that LTI-TDS 
field still remains rich with challenging and unsolved 
problems. Some existing methods, for instance, 
present new knowledge, which have not been 
recognized until recently (Gu and Niculescu, 2001; 
Olgac and Sipahi, 2002). Some others suggest 
variations on the earlier techniques to overcome 
some subtle and hidden impracticalities mainly from 
numerical deployment point of view (Thowsen, 
1981).  
 
The general dynamics in question is 

)τ−+= (txBxAx&   (1) 

where nℜ∈x , A  and nn×ℜ∈B  are known 
matrices with ranks n and )( np ≤ , respectively, 

+ℜ∈τ  and it is the only free parameter in equation 
(1). The question is to determine the stability outlook 
of the system in semi-infinite τ  domain. The 
characteristic equation of the system is 

0)(det),( =−−= − sessCE ττ BAI   (2) 
and it contains time delays of commensurate nature 
with degree p, i.e. there are ske τ− , pk ...,1,0=  terms 

in equation (2) with an assurance that spe τ−  term is 
present where nrankp ≤= )(B . The system is 
infinite dimensional and as such it possesses 
infinitely many characteristic roots. The question of 
stability translates into some conditions on τ  to 
guarantee that all of these infinitely many 
characteristic roots lie on the stable left half of the 
complex plane. 
 



     

When we study the existing procedures assessing the 
stability we observe a common thread, which has to 
do with the determination of purely imaginary roots 
of Equation (2) (Rekasius, 1980; Thowsen, 1981; 
Cooke and van den Driessche, 1986; Walton and 
Marshall, 1987; Hale and Verduyn Lunel, 1993; 
Chen, Gu et al., 1995; Su, 1995; Niculescu, 2001; 
Olgac and Sipahi, 2002). It is known for the retarded 
LTI-TDS, that the imaginary characteristic roots, 
when and if they exist, are the only possible 
transition points from stable to unstable behavior, 
and vice versa (Hale and Verduyn Lunel, 1993). This 
is known as the “stability switching” in the TDS 
literature. So, it is of utmost importance to determine 
all such roots, exhaustively and precisely. It is stated 
in the literature (Chen, Gu et al., 1995) that an n-
dimensional system with p-degree of commensuracy 
like in equation (2) cannot have more than np 
imaginary characteristic roots regardless of the 
particular composition of A and B matrices, and for 
all +ℜ∈τ  values. Additionally it is also a trivial 
observation that to any one of these crossings, 

is ωm= , infinitely many periodically distributed 
time delays are attributed. These time delays display 
an equidistant distribution given by 

ωπττ k20 += ,      ...,1,0=k   (3) 
where 0τ  is the smallest positive time delay causing 
a pair of crossings at iω . 
 
The determination of all the imaginary roots 
completely and precisely constitutes the common 
starting point for all the stability methodologies. And 
we direct the rest of the paper to review and compare 
these procedures. There are, in fact, five 
distinguishable approaches in the literature: 
 
a) Schur-Cohn method (Hermite matrix formation) 

(Barnett, 1983; Chen, Gu et al., 1995) 
b) Elimination of transcendental terms (Walton and 

Marshall, 1987) 
c) Matrix pencil, Kronecker sum method (Chen, 

Gu et al., 1995; Su, 1995) 
d) Kronecker multiplication and elementary 

transformation (Louisell, 2001) 
e) Rekasius substitution (Rekasius, 1980) 
 
As a side remark, we wish to state the following for 
the purpose of motivating the main problem. Once 
the complete set of purely imaginary roots are found 
for a given system using any one of the above 
methods, one can deploy a recent paradigm, Cluster 
Treatment of Characteristic Roots (CTCR) (Olgac 
and Sipahi, 2002; Sipahi and Olgac, 2003b). This 
paradigm suggests a crucial property, which was not 
recognized until recently (Olgac and Sipahi, 2002). It 
is called the invariance of the tendency of the 
characteristic root crossings. It ultimately results in 
the determination of the stable delay intervals, 
exhaustively in +ℜ∈τ  domain. 
 
We briefly review the five procedures leading to the 
complete set of imaginary roots in Section II. Section 
III contains a numerical comparison of these 
procedures from a practical perspective using an 

example case study. Section IV presents the 
conclusions. 
 
 
II. BRIEF REVIEW OF THE METHODOLOGIES 

 
In this section we revisit the five main methodologies 
mentioned to prepare for the comparative work. Let 
us take the expanded form of equation (2) 
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k esasCE ττ  (4) 

where )(Brankp = , np ≤  is the degree of 
commensuracy in the dynamics and )(sak  are 
polynomials of degree kn − . 

(a) Schur-Cohn Criterion as per (Barnett, 1983; 
Chen, Gu et al., 1995). The formation starts with 
rewriting the equation (4) multiplying it with ske τ , 

1,...,1,0 −= pk . This generates p equations in terms 

of ske τ , 1,2,...,1,0,1,..., −−−−= pppk , 
which are 2p linearly independent terms. Next let us 
consider the companion equation, 0),( =− τsCE , 
which is also satisfied for is ω=  due to the fact that 
the imaginary characteristic root iω  always appears 
as a complex conjugate pair,  
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where )()( sfsf −=  is indeed the conjugate 

operation when is ω= . We then multiply ),( τsCE  

with ske τ− , pk ,...,2,1= , generating another p 
equations in terms of the same 2p linearly 
independent terms ske τ , 1,...,1, −+−−= pppk . 
Both of these sets of p equations can be combined in 
a single matrix equation as 
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(6) 
011 =EA                         (7)

where ke  represents ske τ  as a shorthand notation to 
prevent cluttering the equation. If one rewrites this 
equation by rearranging the exponential terms, it can 
be cast in the form:               

0EA ==
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Obviously for a nontrivial solution of 2E  the A2 

matrix must be singular: 0)(det 2 =sA .  This 
matrix, A2, is known to be the Schur-Cohn matrix. 
Notice the favourable fragmentation of A2 into four 

pp ×  segments in the rearranged form as: 









= HH

12

21
2 ΛΛ

ΛΛ
A                         (9) 

where HΛ  implies the hermitian of Λ , and equation 
(9) presents a compact form adopted by (Barnett, 
1983; Chen, Gu et al., 1995)1. 1Λ  and 2Λ  are self 
evident matrices from equation (7).  
 
This method suggests that if equation (4) has any 
imaginary root pair is ωm= , it should also satisfy 
equation (8). Consequently, the question of finding 
all the imaginary roots of equation (2) reduces to 
finding the imaginary roots of equation (8), which is 
a polynomial of s with degree 2np. So the problem is 
cast into determining the purely imaginary roots of 
2np degree polynomial equation (8), which can 
produce maximum np pairs of imaginary roots.  
Evaluation of the )(det 2 sA , however, needs a 
symbolic operation, while 2p terms are multiplied 
and added 2p times for expanding the determinant. 
Each one of these 2p multiplications would create 
some round-off errors eventually resulting a 
polynomial of s with erroneous coefficients. This 
operation ultimately yields poor precision in 
determining the desired imaginary roots. 
 
Alternatively to this symbolic evaluation of a 
determinant one can determine the eigenvalues of a 
constant matrix (Theorem 2.1 (Chen, Gu et al., 
1995)). Namely, 

isn ωω
=

−≡− )(det)(det][det 2
1 APPI  (10) 

where 
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1 We wish to make a remark on the formation error 
of equation (3.79) and (3.80) in (Chen, Gu et al., 
1995), which needs to be corrected according to 
equation (7). 
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and ∑
=

=
p

k

k
jkj sasa

0
)(  which are the terms defined in 

equation (4). Notice that equation (10) indicates that 
the imaginary roots of 0)(det 2 =sA  are identical 
with the real eigenvalues of P, which is a constant 
matrix. So the numerical procedure is now converted 
into a simpler and more precise “real eigenvalue” 
determination of a constant matrix. 
 
(b) Elimination of transcendental terms as 
introduced by (Walton and Marshall, 1987) and 
utilized in (Arunsawatwong, 1996; Tissir and 
Hmamed, 1996; Naimark and Zeheb, 1997; Jalili and 
Olgac, 1999; Filipovic and Olgac, 2002; Tuzcu and 
Ahmadian, 2002). This procedure follows the similar 
starting premise as in Schur-Cohn methodology in 
(a). If ),( τsCE  of equation (4) has an imaginary 

root, corresponding ),( τsCE  of equation (5) should 
also have the same root. Multiplying equation (5) 
with spe τ−  we obtain 
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sp esasCEe
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)( 0)(),( ττ τ        (13) 

One can then eliminate the highest commensuracy 
term (i.e. spe τ− ) between equation (4) and equation 
(13) yielding a new equation 
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k

sk
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which is of commensuracy degree of 1−p . If one 
repeats this procedure of eliminating the highest 
degree commensuracy terms p times successively, 
one arrives at 

0)()( )(
0 == sasCE p

p                   (15) 
an algebraic characteristic equation with no 
transcendentality left. One can show that )()(

0 sa p  is a 

polynomial of degree pn 2 , of which purely 
imaginary roots are in question. Notice that due to 
the successive substitution of “s” with “-s” during the 
manipulations, the imaginary roots of the original 
characteristic equation CE  are preserved, although 
the degree of the s terms in polynomials )(sCEi  
continuously increases. Ultimately there remains 
only pn 2  finite roots of )(sCE p  instead of the 
infinitely many roots of the original ),( τsCE . It is 
guaranteed that only the imaginary roots of these two 
equations are identical. Therefore searching for the 
imaginary roots of )(sCE p  is the sufficient 
procedure for the mission. The practical usage of this 
analytically elegant procedure in the literature 
(Arunsawatwong, 1996; Tissir and Hmamed, 1996; 
Jalili and Olgac, 1999; Tuzcu and Ahmadian, 2002) 



     

is very limited because of the round-off errors it 
invites during the successive evaluation of )(sCE p

. 
 
Clearly for 2,1== pn  the degrees of the 
polynomials of equation (8) and equation (15) are 
identical, and it is equal to 2. For these cases 
equations are indeed identical. For 2>= pn  which 
implies the case of full rank B matrix ( np = ), 

222 nn n >  and clearly the procedure in (a) is much 
favorable proposition for determining the purely 
imaginary roots. Notice that the 222 nn n −  excess 
roots may also contain some false imaginary roots, 
which should not appear at all. We suppress the 
proofs of these statements, but we will revisit them 
for example case studies later. 
 
(c) Matrix Pencil, Kronecker Sum method 
introduced in (Chen, Gu et al., 1995; Su, 1995). The 
procedure departs from equation (2), which is 
rewritten as 

0])([det =+− zs BAI ,  sez τ−=             (16) 
Using the argument that if is ω=  is a root of 
equation (16) so is is ω−=  when z is replaced with 

z/1 . One can say that the eigenvalues of zBA +  

and 1−+ zBA  must be is ωm= , which can also be 
expressed using the property of the Kronecker sum 
(see Appendix for definition) of matrices. Commonly 
known property of this operation is that the 
eigenvalues of the Kronecker sum of two matrices 
are equal to the sum of the individual eigenvalues of 
the matrices (Brewer, 1978; Qiu and Davison, 1991). 
That is, at least one of the eigenvalues of  

)()( 1−+⊕+ zz BABA                 (17) 
has to be zero ( ⊕  is the Kronecker summation).   
In other words 

0)]()[(det 1 =+⊕+ −zz BABA            (18) 

which gives rise to a polynomial in z of degree 22n  
for pn = . One needs to solve the 22n  roots of 
equation (18) and determine those, which have the 
unity magnitude 1|| =z . For the roots, which satisfy 
this condition, one tries to solve next, the imaginary 
roots is ω=  from equation (16). Notice that 
substituting z as a complex number in equation (16) 
one obtains a polynomial with complex but constant 
coefficients. Therefore, most of the neat features of 
ordinary polynomials with constant coefficients 
disappear. For instance there is no guarantee of the 
complex conjugate feature of the roots. Therefore to 
decide whether an imaginary root εω += is , 1<<ε , 
is really an imaginary root except that it is displaced 
infinitesimally due to numerical/computational error, 
is not a trivial task. This particular point alone brings 
a weakness from the numerical deployment point of 
view. 
  
As we explained in methodology (a) one can convert 
the symbolic determinant evaluation of equation (18) 
in an equivalent eigenvalue determination of a 
constant matrix, Theorem 3.1, (Chen, Gu et al., 

1995). In this new form, a generalized eigenvalue 
problem 

0)]()[(det][det 12

=+⊕+=− −zzzz n BABAVU      (19) 

where 
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and TBIB ⊗=0 , TAAB ⊗=1 , IBB ⊗=1  

all of which are )( 22 nn × . Again the generalized 
eigenvalue operation is numerically much more 
reliable and efficient operation than evaluating the 
roots of the determinant in equation (18). 
 
(d) Kronecker multiplication /Elementary 
transformation method (Louisell, 2001) Before we 
proceed, we wish to define the elementary 
transformation, 12

: ×× → nnn CCξ  (Brewer, 1978; Qiu 
and Davison, 1991), which is the key step enabling 
the procedure. ξ  converts a matrix 
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ξ  and 

the multiplication of three nn ×  matrices P1, P2, P3  

into a Kronecker product of dimension 22 nn ×  
(Brewer, 1978; Qiu and Davison, 1991), which is 
given as follows 

231321 )()( PPPPPP ξξ T⊗=          (20) 
where (•)T  denotes the transpose of (•). The aim is to 
form a 321 PPP  product, which will then be mapped 
into the right hand side of (20). This mapping, as 
explained below, brings convenience in solving the 
pure imaginary roots of dynamics (1). 
 
The procedure departs from equation (1) for which a 
solution of the form vx stet =)(  is suggested, where 

(s, )1( ×nv ) is an eigenvalue-eigenvector (both 
complex in general) pair. Differentiating this 
expression and substituting in (1), one gets 

0)( =−− − vBAI ses τ               (21) 
which can be rewritten as 

vBvAI ses τ−=− )(                 (22)  
If is ω=  is a root of equation (22) so is its conjugate 

is ω−= . We can express this by conjugating the 
complex equation in (22) 

TsT es BvAIv ** )( τ=−−          (23) 
where (•)*   denotes the conjugate transpose of (•). 
One can now multiply (22) and (23) side-by-side to 
get 

TTss BVBAIVAI −=+− )()(       (24) 

with *)( vvV =×nn . This equation is exactly in the 
form to be transformed by using ξ  as defined in 
(20). It returns 
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For non-trivial solutions of 0V ≠ξ , the only way to 
satisfy (25) is to set 



     

0)(det =sλ                             (26) 
We can conclude that the desired imaginary roots are 
determined by solving a 22n  degree polynomial 
(26).  However, one should take notice that this root 
finding algorithm for higher dimensions ( 22n >10) 
becomes numerically unreliable due to repeated 
round-off errors in the determinant expansion 
procedure unless the operation is performed using 
very large number of significant digits. In that case, 
however, excessive computational cost will appear. 
In order to circumvent this difficulty using lower 
precision calculations, one can expand (25) using 
Kronecker product identities as defined in (Brewer, 
1978; Qiu and Davison, 1991). Outcome of this is a 
matrix polynomial 

21
2

0)( GGGλ ++= sss           (27) 
where IIG ⊗=0 , IAAIG ⊗−⊗=1 , 

AABBG ⊗−⊗=2 . Then this matrix 
polynomial can be linearized (Gohberg, Lancaster et 
al., 1982) on the fact that 0G  is an invertible 
matrix. The linearized form of (27) is expressed as 
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with IIT ⊗=0 , 1
1

01 GGT −= ,  2
1

02 GGT −= , 
where the zeros of 0))((det =sλ  are the eigenvalues 
of F, i.e., 0)(det))((det =−= FIλ ss . The 
imaginary roots of dynamics (1) have to be among 
the eigenvalues of F which can be computed by 
eig(F) subroutine of Matlab or eigenvalues(F) 
subroutine of Maple. Eventually, one can arrive at 
numerically more reliable set of imaginary roots of 
dynamics (1) as demonstrated in the example section. 
 
(e) Rekasius substitution introduced in (Rekasius, 
1980) and utilized by (Thowsen, 1981; Hertz, Jury et 
al., 1984; Olgac and Sipahi, 2002; Sipahi and Olgac, 
2003a). The critical procedure is an exact 
substitution in equation (4)  
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where 

])(tan[2 1 πω
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This exact substitution creates a new characteristic 
equation 
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Multiplying (31) with psT )1( + , one obtains 
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Considering that )(sak  are ordinary polynomials, 
equation (32) is nothing other than a polynomial in s 
with parameterized coefficients in (T). Since the 
system in equation (1) is retarded type, the highest 
degree term of s is n and it is in )(0 sa . Equation 
(32), therefore, is a polynomial of s in degree pn + . 
The question is to determine all ℜ∈T  values, which 
cause imaginary roots of is ω= . This can be 

achieved by forming the Routh’s array of the 
equation (32), and setting the only term in the 1s  row 
to zero (Sipahi and Olgac, 2003b; Olgac and Sipahi, 
2004a, 2004b, 2005). It can be shown that this 
polynomial is of degree pn  in T, of which only the 
real roots are searched. Once these roots are 
determined the corresponding crossing frequencies 
( is ω= ) can be found using the auxiliary equation, 
which is formed by the 2s  row of the Routh’s array 
(Sipahi and Olgac, 2003b; Olgac and Sipahi, 2004a, 
2004b, 2005). Notice that, the 2s  row has two terms, 
which are functions of T. They must agree in sign for 
those T values to yield imaginary roots. Final results 
are exhaustive in detecting all the imaginary 
characteristic roots we set out to solve. 
  
In the case of degenerate imaginary roots at the 
origin, is ω=  with 0=ω , one needs to check in 
addition, the constant term in equation (32) with no s 
term; if 

0)0(
0

=∑
=

p

k
ka                             (33) 

is satisfied or not. If it does there is at least one root 
at 0=s , which remains there for all +ℜ∈τ . It is 
easy to determine if this root is a multiple root for 
some τ  values. 
 
Notice the search domain of T is an open domain, as 
such it includes ∞= mT  as well. Understandably it 
is easy to check whether these unbounded T values 
are of interest to us or not. In that case, for ∞= mT , 

1−→− se τ  leaves ),( τsCE  as a simple polynomial 
of s. The roots of this polynomial can be found 
easily. If any one of these is purely imaginary, that 
root becomes part of the solution of interest as well. 
 

 
III. A NUMERICAL CASE STUDY AND 

COMPARATIVE OBSERVATIONS 

We now take an example case study to display a 
comparison among the five methodologies we 
discussed above. Consider the numerical example in 
(Olgac and Sipahi, 2002) which has 

nrankp === 3)(B . 
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    (34) 
The respective characteristic equation is 
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−−+

+++=

 (35) 

in which )(sak , 3,...,0=k  expressions are readily 
identified as represented in equation (4). For this 
system the following exhaustive list of ( ii ωτ ,0 ) is 
given in (Olgac and Sipahi, 2002), using 
methodology (e).  



     

 
On equation (35) we now start utilizing the five 
methodologies as described above. The critical point 
of comparison is to be able to declare the complete 
Table 1. In order to conserve space the numerical 
results are given in truncated forms at the fourth 
decimal except where necessary for the arguments. 

 

 
 (a) Schur-Cohn procedure: 1Λ  and 2Λ  matrices 
of equation (9) are readily formed using the terms of 

)(0 sa , … , )(3 sa . Notice that the degree of 
)(det 2A  of equation (8) is 182 =np . Thus the 

mission is to determine the purely imaginary roots of 

0101.0

72.29249s  1019.0s13.148284

s 1071.0s09.72932s  1094.0

s27.8671s 1041.0s83.330

s  35141.36s5.4s  248693.82-

s022.0s 18681.53-s103.0

s  165.81s101.0s )(det

13

2133

4125611

78109

101112

1314154

1617718
2

=+

+++

+++

+++

++

++

++=
−

−

s

A

(36) 

which displays two major obstacles:  
 
(i) Because of the accumulated numerical errors the 
imaginary roots shape up in the form of εω += is , 

1<<ε . For instance using 20 digits of precision in 
MAPLE, equation (36) gives the following, 
apparently imaginary roots:  

0.21  10-7 ± 0.8404 i, 0.28  10-6 ± 2.1109 i, 
-0.55  10-8 ± 15.5032 I -0.13  10-5 ± 2.9123 i, 
0.69  10-6 ± 3.0351 i  

As can be seen the numerical error in real parts 
(which are supposed to be zero) are at least in the 
order of 10 magnitudes larger than the computational 
precision. Therefore it is problematic to decide 
whether these roots, which are very close to the 
imaginary axis, are really imaginary roots or not. 
 
(ii) Equation (36) is expected to have only even 
powers of s. One cannot achieve this even with 60-
digit precision. The trial based determination of the 
significant digits necessary is an important 
hindrance. For comparison purposes, we consider the 
errors at the level of up to ¼ of significant digits as 
acceptable accuracy. Such as for 20-digit operation, 
any error of 1510−  and less is considered zero. 
 
An alternative but more reliable procedure on this 
line was described earlier. Accordingly, the real 
eigenvalues of the P matrix are evaluated. Notice 

that some of the ajk terms given in equations (11-12) 
are identified as 0 based on the special formation of 
Eq.(35). Finally one obtains the five crossing 
frequencies (i.e., the real eigenvalues of P) as 

i171044.08404.0 −− , i161066.01109.2 −+ , 

i151063.09123.2 −+ , i151068.00351.3 −+ , 

i171072.05032.15 −+  when 20 digits precision is 
used. These numbers are all acceptably close to the 
desired results under the ¼-digit rule expressed 
earlier. 
 
(b) Elimination of transcendental terms: Starting 
from the characteristic equation (35) and following 
the three steps as described in the above section, one 
can eliminate se τ3− , se τ2−  and se τ−  sequentially. 
Notice that these steps preserve the purely imaginary 
roots of the characteristic equation. The final form 
should contain only even powers of s and it does;  

01020

104401028010810

101201089010320

103901027010120

73882381220  )

16

216416615

81510131212

1410168187

202224

=

+

−−

−=

.+

  s.  s.+ s.+

  s.+  s.+  s.+

  s.+  s.  s.

  s.s.+s(sCE p

(37) 

The imaginary roots of the original system have to be 
among the roots of this polynomial. We again use 20 
significant digits of precision in MAPLE during the 
manipulations. The same level of precision is used in 
the following steps of root finding. A cautionary 
note; for the case of up to 18 digits of precision in 
MAPLE, one can observe odd powered terms 
appearing also.  
 
Equation (37) results in 24 symmetric roots with 
respect to the origin, of which only the purely 
imaginary ones are important. They are 
 ± 5.9977 i,  ± 3.9460 i,  ± 1.8587 i,    
± 0.8404 i,  ± 2.1109 i, ± 2.9123 i,         (38) 

 ± 3.0351 i, ± 15.5032 i     
It is easy to demonstrate that the first three roots on 
the 1st row are faulty findings and they do not 
represent true crossings. To see that one can 
substitute them into the original characteristic 
equation (35) and show that they do not satisfy this 
equation. On the other hand the remaining 5 roots do. 
They also yield some 1|| =− ie ωτ  from which one can 
determine the respective time delays2.  
 
One can also observe that the difference between the 
degrees of equation (36) and equation (37) is 6. In 
fact the relation between the two polynomials is 
described as 

 )det()(),( 21 AsPsCE p =τ                (39) 

                                                 
 
2 Incidentally, the procedure described in (Walton 
and Marshall, 1987), equation (48), yields incorrect 
time delays due to the accumulation of numerical 
error. Primarily an ill conditioning occurs due to 
some coefficients in equation (15) being 15-16 orders 
of magnitude apart from one another. 

5032.152219.0
0351.31624.0
9123.21859.0
1109.28725.0
8404.0208.7

]/[][0 srads ii ωτ

Table 1. The fundamental delays and the resonant 
frequencies 



     

where the 6)( degree 1 =P , and its roots result in the 
3 false pairs of imaginary roots, as explained above. 
 
(c) Matrix pencil, Kronecker sum application  

Deploying equation (18) we obtain 

)1017.0z 141137.96-z 1022.0

z 100.17z 1052.0z 100.81-

z 1062.0z 100.32-z 1043.0

z 1056.0z 100.43-z 10320.

z 1062.0z100.81-z1052.0

z 100.17-z 1023.0z 141137.96-

z 10(0.17
z
1)]()[(det

728

394959

697889

99109118

129139149

15916817

187
9

1

++

−+

+−

+−

++

+

=+⊕+ −zz BABA

(40) 

We are seeking the roots of equation (40) with 
magnitude equal to 1. There is a major difficulty, 
however, specifically in deciding the tolerance level 
of 1|| =z . This difficulty disappears when higher 
precision (above 20) is used. For example, using 20 
digits of precision the errors in magnitudes of the 
five roots become precisely zero. They are listed 
together with their corresponding 5 imaginary roots, 
which are obtained by replacing iez ωτ−= , 1|| =z , 
in equation (35) and solving for s 

 

Notice the cumulative effects of numerical error in 
iω , which are all acceptable at this precision level 

(in ¼-digit sense). However with up to 13 digits of 
precision, one observes relatively large accumulated 
errors (violating the ¼-digit rule) in the computation 
of imaginary roots. Therefore if a root of z displays 

ε=−1|| z  it is quite difficult to assess whether we 
should take it as an indicator of crossing or not. 
Similar question arises for εω += is . Does it 
represent a true imaginary root or not? This is a 
tough question to answer. Increasing the digits higher 
than 14 (obviously including 20) this concern is 
eliminated. 
 
When the more reliable procedure is followed, as 
mentioned in the description above, U and V 
matrices are trivially obtained from their definitions. 
The generalized eigenvalues of (U, V) pair that have 

unitary magnitudes (obtained with 20 digit-precision 
again) are given in Table 3. 
 
Interestingly on this implementation one can use 9 
digit-precision and can still obtain acceptable errors 
looking at the real parts of the imaginary roots. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
This table indicates that the generalized eigenvalue 
computation can be performed with a much smaller 
number of digits, such as 9, without sacrificing the 
accuracy of the roots. 
 
(d) Kronecker multiplication and elementary 
transformation method Following the procedure 
given in method (d) in Section II, one obtains 
equation (26), again with 20-digits precision, as 

0101.0s 1480s 1019.08.2097

s 1071.0s 51.3483s 1094.0

s 2.703s 1041.0s 97.12

s 49.51833s 16.0s 48.248693

0.000753.18681s 100.99

s 81.165s 100.3(s)det

132133

4125611

78109

101112

1314156-

1617-918

=++++

+++

+++

++−

+−+

++=

s

ss

sλ

(41) 

The roots of Eq(41) which are almost purely 
imaginary are the expected crossing frequencies as 
given in Table 5. With this precision level, the 
accumulated errors in real parts are relatively large 

||1 z−  iω  

0  i8404.01015.0 7 m−−  

810−−  i1109.21066.0 8 m−  

810−−  i9123.2104.0 7 m−  

71018.0 −− i0351.31042.0 7 m−−  

0  i5032.151027.0 7 m−  
 

Table 4. The tolerance in evaluation z’s and the 
corresponding frequencies 

||1 z−  iω  

0  i 0.8404+10  0.57- -19  

0  i 2.1109+10  0.47 -20  

0  i 2.9123+10  0.73- -19  

0  i 3.0352+10 0.5 -19  

0  i 15.503210- -21 +  
 

Table 2. The tolerances in evaluationg z’s and the 
corresponding frequencies 

||1 z−  iω  

171014.0 −− i8404.01025.0 17 m−−  

171034.0 −−  i1109.21027.0 17 m−  

161012.0 −  i9123.21018.0 16 m−  

171078.0 −− i0351.31031.0 16 m−  

18104.0 −  i5032.151095.0 18 m−−
 

Table 3. The tolerances in evaluating z’s and the 
corresponding frequencies. 



     

(in ¼-digit sense) in magnitudes as can be seen in 
this table. 
 
As mentioned in the earlier section, in order to 
improve the accuracy of the imaginary roots of (1), 
we pursue computing the eigenvalues of matrix F, 
eig(F). For this computation 10 and 20 digit-
precisions are used separately. These imaginary 
roots, which are formed, are tabulated on Table 6, 
with the error terms in real parts. They are all 
acceptably small deviations. Thus we conclude that 
this method can produce the imaginary roots 
accurately even with 10-digit operations. 

 

 

 
(e) Rekasius substitution In this procedure, at least 
13-digit of precision is required in order to obtain the 
crossing frequencies as listed in the beginning of this 
section. Characteristic equation of (35) turns out to 
be 

2.23)6.198.137(
)9.62.714.898(

)19.184.1624.171(

)31.172.253(

)31.5(),(

22
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52363

+++
+−+

+++−+

+++

++=

sT
sTT

sTTT

sTTT

sTTsTTsCE

  (42) 

for which we are looking for ℜ∈T  to cause 
imaginary roots. The numerator of the only term of 

the 1s  row of the respective Routh’s array on 
equation (42) is 

0)1120.01197.0
101025.0104011.0

101216.0101501.0

107869.0101060.0

105418.0104004.0(

2233

4455

6577

86973

=−+
−+

+−

−−

−

T
TT

TT

TT

TTT

       (43) 

Notice that we are seeking the real roots of equation 
(43) and 3 of them are at 0=T . Remaining ones, 
i.e., 9 (= 2n ) of them have to be solved. Out of these 
9 roots only five happen to be real and all five satisfy 
the sign agreement condition in the 2s  row of 
Routh’s array (see earlier note). They concur with the 
results of (Olgac and Sipahi, 2002) which uses a 
slightly different procedure to arrive at these T 
values. Auxiliary equation is formed by the terms of 
the row 2s  generating the crossing frequencies, ω . 
The T vs. ω  correspondence is shown in Table 7. 

 

Note that using T and ω , one can also find the 
respective delays, τ  as per equation (30). 
 

 
IV. COMPARATIVE COMMENTS AND 

CONCLUSIONS 
 
The five procedures described above reduce the 
problem at hand to the solution of 
(a) Schur-Cohn: 22n  degree of complex polynomial 

for purely imaginary roots. 
(b) Elimination of transcendental terms: nn2  degree 

real polynomial for imaginary roots. 
(c) Kronecker sum: 22n  degree polynomial for 

complex roots with 1|| =z . 

(d) Kronecker multiplication: 22n  degree 
polynomial is solved for imaginary roots. 

(e) Rekasius: 2n  degree polynomial for real roots 
( ℜ∈T ). 

 
From the perspective of developmental steps, the 
least involved path appears to be in (e). Nevertheless, 
utilizing the appropriate matrix operations the 
methods (a), (c) and (d) prove to be equally potent 
producing the desired results. In fact for the example 
case method (d) generates the results with the 
smallest number of significant digits among the five. 
Method (b) is the one that requires special attention 
avoiding the false solutions. As the dimension, n, 
increases method (b) becomes more problematic to 

iω  

i 0.840410  0.1 -8 m  

i 2.1109+10  0.13 -7  

i 2.9123+10  0.82- -7  

i 3.0352+10 0.53 -7  

i 15.5032100.1- -9 +  
 

Table 5. Crossing frequencies 

10 digit precision 20 digit precision 

iω  iω  

i.. 840401088470 15 m−  i 0.840410  0.88 -18 m  

i.. 11092101110 13 m−  i 2.1109+10  0.1- -18  

i.. 912321018560 12 m−− i 2.9123+10  0.19 -16  

i.. 03513101720 12 m−  i 3.0352+10 0.19- -16

i.. 503215103550 14 m−− i 15.5032100.66 -17 +
 

Table 6. Crossing frequencies 
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Table 7. Rekasius substitution results 



     

process leaving the other 4 methods as very attractive 
paths to follow.  
 
We wish to mention two attractive features of 
method (e): First, the degree of the polynomial in 
question is considerably smaller than all the other 
four. Second, we seek the real roots (T) only, not 
complex ones. This is a great relief as complex 
(particularly purely imaginary) roots are very hard to 
detect when numerical errors creep in. Similar 
hardship appears when the test of 1|| =z  is 
performed. 
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APPENDIX 

Let l×ℜ∈= k
ija ][A , nm

ijb ×ℜ∈= ][B . Then the 
Kronecker product of A and B, denoted by BA ⊗ , 
is defined as follows: 
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111

 (A1) 

If l=k  and nm = , the Kronecker sum of A and B, 
denoted by BA ⊕ , is defined by 

mkmk
km

×ℜ∈⊗+⊗=⊕ BIIABA  (A2) 
 
 
 


