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Abstract: We consider the problem of optimizing the terms of a contract between
a supplier and a buyer to minimize overall system costs. The supplier seeks to
minimize inventory costs in a supply chain which includes assembly operations and
features stochastic models of available capacity at its various stages. The buyer
needs to satisfy demand which is modeled as a rather general stochastic process and
requires from the supplier the enforcement of certain Quality of Service constraints.
We build on our earlier work for solving the supplier’s inventory control problem
and develop an algorithm that enables supplier and buyer to jointly optimize
contract parameters. This can be done in a distributed fashion without revealing
to each other their corresponding cost structures. Copyright c©2005 IFAC.
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1. INTRODUCTION

We study a contract model between one supplier
and one buyer. The supplier provides a product to
the buyer under explicit Quality of Service (QoS)
constraints that provide probabilistic guarantees
on satisfying demand. The buyer provides to the
supplier a stochastic model of demand based on
which the supplier organizes the supply chain. Our
objective is to find a mutually beneficial demand
model, namely, a model that minimizes overall
system costs incurred by both the supplier and the
buyer. There is a large literature on supply chain
contracts; contributions can be roughly split into
two classes; see (Corbett and Tang (1999)) for a
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review. The first assumes that the contract terms
are fixed and explores agents’ (i.e., supplier’s and
buyer’s) optimal actions under these terms. The
impact of contract parameters on agents’ costs
and profits are mostly explored. The second class
assumes agents’ optimal policies under a contract
as given and explores whether the terms of the
contract can be modified to improve the supply
chain. Our model lies within this second category.

Under the contract model we consider the sup-
plier inventory problem is solved minimizing in-
ventory costs while providing QoS guarantees to
the buyer. In two previous works an approach
for solving the supplier’s inventory problem has
been developed: in (Paschalidis and Liu (2003))
for a serial supply chain and in (DelVecchio and
Paschalidis (2003)) for the more general case of
supply chains involving assembly operations. In
this paper, we analyze the economic incentives the
contract can provide. Our analysis allows demand
and production to be modeled by autocorrelated
stochastic processes, in order to capture strong
temporal dependencies that are often observed
in these processes (e.g., due to seasonal effects,



sales events, weather patterns, machine failures,
etc.). Moreover, we capture QoS guarantees by
requiring stockout probabilities to stay bounded
below a given desirable level. We will refer to such
constraints as QoS or service-level constraints. We
believe that they provide a more direct way of tak-
ing QoS considerations into account rather than
penalizing backorders or lost sales (as it is done
in most of the literature). Under our modeling as-
sumptions analyzing supplier stockout probabili-
ties exactly is intractable. In our previous work we
relied on large deviations techniques which yield
asymptotically tight approximations of the stock-
out probabilities as they approach zero. These
approximations also gave rise to an analytical
approximation of expected inventory costs. Then,
the overall inventory problem can be transformed
to a deterministic (nonlinear) optimization prob-
lem whose objective function (inventory cost) and
constraints (service-level constraints) are given by
closed-form analytical expressions. Solving this
problem using standard optimization techniques
yields the supplier stock levels we seek.

Building on this work, we estimate the derivative
of the supplier inventory cost with respect to
demand model parameters and use it to evaluate
contract incentives in order to achieve a demand
configuration that can lead to lower supply chain
costs. The algorithm we propose to that end can
be followed in a distributed fashion with neither
the supplier nor the buyer revealing to each other
their corresponding cost structures.

The remainder of this paper is organized as fol-
lows. In Sec. 2 we introduce the manufacturer
inventory cost problem and present the large devi-
ations approach. In Sec. 3 we present the contract
model. Numerical results are in Sec. 4. We con-
clude with some brief remarks in Sec. 5.

2. SUPPLY CHAIN CONTROL
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Fig. 1. A supply chain with assembly operations.
The system forms a tree rooted at stage 1.

The supplier’s production process consists of an
assembly network that produces a single product
and is formed by N production facilities or stages
(see Fig. 1). Buyer demand is met from the
finished goods inventory maintained in front of
stage 1 and is backordered if inventory is not

available. Each stage has exactly one successor
stage so that the assembly system forms a tree
rooted at stage 1. Except from the most upstream
stages (the leaves of the tree) which are fed with
an infinite supply of raw material, every stage
requires one unit of intermediate product (i.e.,
a component) from each immediate predecessor
stage in order to assemble one product unit (e.g.,
in the system of Fig. 1 one unit of finished product
requires one intermediate product unit from stage
2 and one from stage 3). That is, we assume
(without lost of generality) that exactly one unit
of each component is required for producing one
unit of finished product.

We use the following notation. S(i) denotes the
unique immediate successor of stage i, i =
1, . . . , N , where S(1) = 0. A(i) denotes the set of
all successors (immediate and more downstream)
of stage i, i = 1, . . . , N , where A(1) = {0}. We let
P (i) denote the set of immediate predecessors of
stage i, i = 1, . . . , N , where P (i) = ∅ for all stages
i that are leaves of the tree. B(i) denotes the set of
all predecessors (immediate and more upstream)
of stage i, where again B(i) = ∅ for all leaf stages
i. F denotes the set of all leaf stages, that is stages
i for which P (i) = ∅. We assume that F contains
at least stage N . Finally, N = {1, . . . , N} denotes
the set of all stages of the assembly network.

We assume a periodic review policy where time
is divided into time slots of equal duration. Let
Bi

n, i = 1, . . . , N , denote the amount that the
facility of stage i can produce during time slot n.
D1

n denotes the amount of external orders arriving
at stage 1 during time slot n. Each stage has an
inventory buffer for its final product and from
which the successor stage draws material for its
production. We let I i

n, i = 1, . . . , N , denote the
inventory in front of stage i at the beginning of
time slot n. In intermediate stages, i = 2, . . . , N ,
the inventory is constrained to be nonnegative.
Inventory at stage 1 can take negative values to
denote backordered demand, in particular, when
I1
n is negative −I1

n is equal to the amount of
backordered demand. We denote by X i

n the sum
of the inventory of stage i and of all its successors
at time n, i.e., X i

n = Ii
n+

∑

k∈A(i) Ik
n. We will refer

to this quantity as the stage-i echelon inventory.
We assume that all stages adopt an echelon base-
stock policy: stage i produces when X i

n falls below
a certain threshold wi and idles otherwise. It is
implied that wi ≤ wk for all i ∈ N and k ∈ P (i).

The demand process {D1
n; n ∈ Z} and the pro-

duction capacity processes {Bi
n; n ∈ Z}, i =

1, . . . , N , are mutually independent, possibly au-
tocorrelated, arbitrary stationary stochastic pro-
cesses satisfying certain mild technical conditions
(a large deviations principle) that hold for renewal
processes, Markov-modulated processes, and gen-



eral stationary processes with mild mixing condi-
tions. For stability purposes assume

E[D1
n] < min

i=1,..,N
E[Bi

n], (1)

which by stationarity carries over to all time slot
n. Stability can be shown under the base-stock
policy we consider by using techniques from (Bac-
celli and Liu (1992)). On a notational remark,
in the sequel we will denote by Λ∗+

D1(a) (resp.
Λ∗−

D1(a)) the large deviations rate function asso-
ciated with the tail probability P[

∑n

i=1 D1
i ≥ na]

(resp. P[
∑n

i=1 D1
i ≤ na]). We adopt similar nota-

tion for all production processes as well.

In what follows we will show how to find the
safety stocks wi for each stage that minimize
the manufacturer’s expected inventory costs and
guarantee that for all stages i the steady-state
stockout probabilities P[X i

n ≤ 0] do not exceed
desirable small values εi, respectively.

Echelon inventory levels in the assembly network
evolve as follows:

Xi
n+1 = min {Xi

n − D1
n + Bi

n, wi, min
k∈P (i)

{Xi
n

−D1
n + Ik

n}}, i ∈ N \ F ,

Xi
n+1 = min {Xi

n − D1
n + Bi

n, wi}, i ∈ F

Define the shortfall of the echelon inventory as:

Y i
n = wi − Xi

n, i ∈ N .

In terms of the shortfalls the dynamics of the
system can be written as:

Y i
n+1 = max {0, Y i

n + D1
n − Bi

n, max
k∈P (i)

{Y k
n

+D1
n − (wk − wi)}}, i ∈ N \ F , (2)

Y i
n+1 = max {0, Y i

n + D1
n − Bi

n}, i ∈ F . (3)

2.1 Large Deviation Analysis of the Stockout
Probability

In this section we briefly present the large de-
viations result for the steady state probability
P[Y 1 ≥ w1], which is equal to the steady-state
stockout probability P[X1 ≤ 0]. In the interest of
space we only state the main theorem. A proof can
be found in (DelVecchio and Paschalidis (2003)).

In what follows we will be using

Oi =
{

(ξi, ξA(i)) | ξi ∈ [0, 1], ξA(i) ∈ [0, 1]|A(i)|,

ξi + ξ′
A(i)e = 1

}

, ∀i ∈ N ,

where |A(i)| denotes the cardinality of the set
A(i), e is the vector of all ones, and prime denotes
transpose. Moreover for any stage i let A(i) =
{1, . . . , |A(i)|} and we will be writing ξA(i) for the
vector (ξ1, . . . , ξ|A(i)|).

Theorem 1. Assume the hedging points w1, w2,

. . . , wN in the assembly system satisfy

wi = βiw
1, i = 2, . . . , N,

where βi are constants and 1 ≤ βh ≤ βi for all
h ∈ A(i) (β1 , 1). The steady state shortfall Y 1

of the assembly system satisfies

lim
w1→∞

1

w1
log P[Y 1 ≥ w1] = −θ∗G,1, (4)

where θ∗G,1 is given by

θ∗G,1 = min

[

inf
a>0

1

a
inf

x0−x1=a
(Λ∗+

D1(x0) + Λ∗−
B1(x1)),

min
2≤i≤N

{

inf
a>0

1

a
inf

x0−
∑

h∈A(i)
ξhxh−ξixi=aβi

(ξi,ξA(i))∈Oi

(

Λ∗+
D1(x0) +

∑

h∈A(i)

ξhΛ∗−
Bh(xh)

+ ξiΛ
∗−
Bi (xi)

)}]

. (5)

Thm. 1 provides the asymptotic decay rate for the
overflow probability of the shortfall at stage 1 as
its base-stock level grows large. More intuitively,
the stockout probability can be approximated as:

P[X1 ≤ 0] = P[Y 1 ≥ w1] ∼ e−θ∗
G,1w1

. (6)

The result of Thm. 1 can be easily generalized to
other stages as follows.

Corollary 2. Assume the safety stock levels wk,
for k ∈ B(i), in the assembly network satisfy
wk = βik

wi, k ∈ B(i), where βik
are constants

and 1 ≤ βil
≤ βik

for all l ∈ A(k) and k ∈ B(i).
The steady-state shortfall Y i satisfies:

lim
wi→∞

1

wi

log P[Y i ≥ wi] = −θ∗G,i (7)

where θ∗G,i is determined by

θ∗G,i = min

[

inf
a>0

1

a
inf

x0−xi=a
(Λ∗+

D1(x0) + Λ∗−
Bi (xi)),

min
k∈B(i)

{

inf
a>0

1

a
inf

x0−
∑

h∈A(k)\A(i)

ξhxh−ξkxk=aβik

(ξk,ξA(k)\A(i))∈Ok

(

Λ∗+
D1(x0) +

∑

h∈A(k)\A(i)

ξhΛ∗−
Bh(xh)

+ ξkΛ∗−
Bk(xk)

)}]

. (8)

To make this approximation more accurate, es-
pecially for relatively large stockout probabilities
(i.e., small safety stock w1), we will introduce a
prefactor in front of the exponential. We will use
the following refined approximation:

P[Y 1 ≥ w1] ≈ f1(w
1,β)e−θ∗

G,1w1

, (9)



where the prefactor f1(w
1,β) is a function of

w1 and β = (β2, . . . , βN ) = (w2

w1 , . . . , wN

w1 ). No-
tice that both the prefactor and the exponent
are functions of the hedging point vector w =
(w1, . . . , wN ). 4 We elect to use a function
f1(w

1,β) which is piecewise linear in w1 and β

because it is easier to obtain and yields very
satisfactory results. Some computational remarks
and details on the prefactor evaluation can be
found in (DelVecchio and Paschalidis (2003)) and
in (Paschalidis and Liu (2003)). Similar arguments
also lead to an appropriate prefactor in approxi-
mating stockout probabilities at stages 2, . . . , N
using Corollary 2.

2.2 Approximating the expected inventory cost

We will now turn our attention to approximating
expected inventory costs. We assume a linear
cost structure. Let hi be the holding cost for
echelon-i inventory for all i = 1, . . . , N . Noting
that expected echelon-i inventory is given by
hi(E[Ii] +

∑

h∈A(i)\{1} E[Ih] + E[(I1)+]) where

(I1)+ = max(I1, 0), the total expected inventory
cost is given by:

( N
∑

i=1

hi

)

E[(I1)+]+

N
∑

i=2

hi

(

E[Ii] +
∑

j∈A(i)\{1}

E[Ij ]

)

. (10)

We have

E[(I1)+] = E[(w1 − Y 1)+]

= w1 − E[Y 1] + E[max(0, Y 1 − w1)].
(11)

Using the tail distribution of Y 1 given in Eq. (9)

E[max(0, Y 1 − w1)] =

∫ ∞

0

P[Y 1 − w1 > y]dy

≈ f1(w
1,β)

e−θ∗
G,1w1

θ∗G,1

. (12)

For all i ≥ 2 we have I i = (wi − Y i) − (wS(i) −
Y (S(i)), which implies:

E[Ii] = (wi − E[Y i]) − (wS(i) − E[Y S(i)]). (13)

Thus, combining (10), (11), (12), and (13) we
obtain the following expression for expected in-
ventory costs:

N
∑

i=1

hi(w
i −E[Y i]) +

( N
∑

i=1

hi

)

f1(w
1,β)

e−θ∗
G,1w1

θ∗G,1

.

(14)

4 θ∗
G,1

(cf. (5)) is a function of w also.

To obtain an analytical approximation for the
inventory cost we are left with computing E[Y i].
We will establish some structural properties for
E[Y i]. To this end for each stage i (i ∈ N ) we
define ∆i , (wi − wS(i)); this is a well defined
quantity as each node has only one successor (we
set ∆1 , 0). In the following proposition we
state that for each stage i, E[Y i] is a convex,
monotonically nonincreasing, function of all ∆k

with k ∈ B(i). Again, the proof is omitted due to
space limitations.

Proposition 3. Consider the assembly system and
let w1, . . . , wN be the corresponding hedging
points satisfying 0 ≤ wk ≤ wi with k ∈ A(i).
For all stages i which do not have any predecessor
(i.e., i ∈ F), E[Y i] is a constant function of
(∆2, . . . ,∆N ). Furthermore, for all stages which
have at least one predecessor (i.e., i ∈ N \ F),
E[Y i] is a function of ∆k for all k ∈ B(i), and
it is convex and monotonically nonincreasing in
every coordinate.

Motivated by these properties of E[Y i] we will
approximate it using a piecewise linear convex
function gi which is a function of ∆k for all k ∈
B(i). More specifically we will use the following
approximation

E[Y i] = gi(∆B(i)(1) , . . . ,∆B(i)(|B(i)|)), (15)

where B(i)(j) denotes the jth element of B(i). As
before, we refer to (DelVecchio and Paschalidis
(2003)) for details on how to obtain gi(·).

2.3 The inventory optimization problem

We can now pose the problem of optimizing ex-
pected inventory costs subject to maintaining ser-
vice level constraints. Using the approximating
expression for the expected inventory cost in (14)
we have the following optimization problem.

min

N
∑

i=1

hi(w
i − gi(∆B(i)(1) , . . . ,∆B(i)(|B(i)|)))

+

( N
∑

i=1

hi

)

f1(w
1, . . . ,

wN

w1
)
e−θ∗

G,1w1

θ∗G,1w
1

(16)

s.t. P[Y i ≥ wi] = e−θ∗
G,iw

i

fi(w
i,

wB(i)(1)

wi
, . . . ,

wB(i)(|B(i)|)

wi
) ≤ εi, ∀i

wi ≤ wk, ∀i and ∀k ∈ P (i).

The decision variables are the hedging points wi

and the constraints correspond to service level
constraints imposed at all nodes of the assem-
bly network. This problem can be solved ana-
lytically using standard nonlinear programming
techniques.



3. THE CONTRACT MODEL

Next we put forth our contract model. The buyer
and the supplier interact as follows. The buyer
determines (a model of) the demand D1

n according
to market conditions and associates a cost (not
necessarily monetary) to any change in demand
parameters. The supplier production process is
an assembly network following a base stock pro-
duction policy. Safety stocks are set to minimize
inventory costs – the cost function in problem (16)
– using as input the buyer’s demand model, the
service level agreement – the constrain in prob-
lem (16) – and (a model of) the production capaci-
ties Bi

n, i = 1, . . . , N . Supplier and buyer share in-
formation on their demand parameters and service
level constraints, as well as on their cost functions.
We will explore how demand parameters can be
adjusted according to both supplier and buyer
cost structures so that any generated savings can
be shared among the two.

We assume that the buyer’s demand is an m-
state Markov-modulated process, with transition
probability matrix PD and demand levels at each
state given by the vector rD. The manufacturer’s
production capacity at each node i of the assem-
bly network is modeled by an mi-state Markov-
modulated process with transition probability ma-
trix PBi and capacities at each state given by the
vector rBi , i = 1, . . . , N . We will also assume that
any mutually agreed adjustments in rD keep the
mean demand E[D] constant since otherwise the
retailer would be unable to satisfy demand in the
long term. We denote by E[D] this constant value.

We denote by CR(rD) the retailer cost associated
with any change of rD. In particular,

CR(rD) =

m
∑

i=1

ζi(rD,i − rD,i)
2, (17)

where ζi expresses the retailer’s cost for changing
the demand level in the ith state of the demand
process. rD is the vector of demand levels initially
determined and to which the retailer associates
zero cost. The manufacturer’s inventory cost func-
tion, CM (rD), is the optimal value function of
problem (16). Our objective is to find the vector
rD that solves the following problem:

min f(rD) = CR(rD) + CM (rD) (18)

s.t. E[D] = E[D]

rD,i ≥ 0, i = 1, . . . ,m.

We indicate by Ξ the polyhedron containing all
feasible rD for problem (18), i.e.,

Ξ = {rD| E[D] = E[D], rD,i ≥ 0 ∀i}.

Problem (18) is a nonlinear optimization problem
over a convex set and can be solved using the con-
ditional gradient method in (Bertsekas (1999)).

The method consists of generating sequences of
feasible points rk

D by searching along descent di-
rections. Hence, the vector of demand levels rD

changes according to the following algorithm:

rk+1
D = rk

D + αk(r̄k
D − rk

D), k = 0, 1, . . . , (19)

where r̄k
D − rk

D is a feasible direction of descent.
More specifically, it satisfies the descent condition
∇f(rk

D)′(r̄k
D − rk

D) < 0 and, assuming that rk
D is

feasible, the vector rk+1
D remains feasible for small

enough stepsizes αk. The most straightforward
way to generate feasible descent directions is to
solve the optimization problem:

min ∇f(rk
D)′(rD − rk

D) (20)

s.t. rD ∈ Ξ,

and obtain r̄k
D as the solution, that is,

r̄k
D = arg min

rD∈Ξ
∇f(rk

D)′(rD − rk
D).

Since Ξ is a polyhedron, problem (20) is a lin-
ear programming problem which can be solved
very efficiently (in polynomial time). Finally, the
stepsize αk in expression (19) is determined using
Armijo’s rule; see (Bertsekas (1999)) in order to
guarantee convergence to a local minimum.

To apply the conditional gradient method to prob-
lem (18) we need the cost function gradient. The
gradient of the buyer’s cost can be easily derived
from (17). We evaluated the gradient of the man-
ufacturer inventory costs using finite differences.

It is interesting to observe that the above algo-
rithm can be used in a distributed fashion. In par-
ticular, the buyer can take charge of performing
iteration (19) and solving subproblem (20). At
each iteration, the buyer presents the manufac-
turer with the new demand levels rk

D and the man-
ufacturer responds with the gradient ∇CM (rk

D) of
its cost function. This gradient information can be
provided in the form of appropriate incentives to
the buyer. The buyer uses this gradient informa-
tion to solve subproblem (20) and compute rk+1

D .
Note that neither the manufacturer nor the buyer
need to know each other’s cost structures.

We notice that in the contract model we presented
we evaluated changes in the demand parameters,
while we can also consider changes in other con-
tract parameters, such as the service levels. In that
case the retailer cost function would be a function
of the εi’s and the manufacturer would evaluate
inventory costs savings due to less strict service
levels parameters. The contract model analysis for
this case is similar and straightforward.



Table 1. The number of iterations is reported in the 1st column. Columns 2–4 report
the demand levels. The 5th column reports the cost f(rD) (cf. (18)). Columns 6–8
provide ∇f(rD). Finally, the last column lists the corresponding optimal hedging

points obtained by solving (16).

Demand Vector Cost derivative vector
Iteration r1 r2 r3 Total costs ∇frd1

∇frd2
∇frd3

w∗

1 2 8 0.5 230.94 126.00 141.73 161.13 (63.87, 123.56, 63.87)
5 2.37 5.89 1.31 161.13 −5.62 34.73 36.32 (37.66, 97.36, 37.67)
10 2.11 4.73 2.06 133.43 −29.88 −1.96 0.62 (26.76, 86.46, 26.77)
15 2.43 4.56 1.93 132.71 −5.57 3.94 6.57 (26.37, 86.05, 26.37)
20 2.19 4.06 2.35 126.64 0.19 −2.36 0.74 (23.96, 83.67, 23.88)
25 2.12 4.23 2.27 125.80 0.15 −2.29 0.72 (23.76, 83.46, 23.77)
30 2.11 4.32 2.26 125.71 0.13 −2.24 0.71 (23.76, 83.46, 23.77)
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Var[B3]=2.0

Fig. 2. Example 1.

4. NUMERICAL RESULTS

In this section we present numerical results we
obtained solving the problem (18) by applying
the algorithm (19). The supplier production pro-
cess consists of three assembly phases. The ini-
tial retailer demand vector and the production
capacity parameters of the supplier production
stages are depicted in Fig. 2; all processes are
Markov-modulated and a service level constraint
with ε = 1e − 5 has been imposed. The retailer’s
cost parameters are equal to ζ = (0.5, 0.3, 0.2).
Numerical results after 30 iterations (where the
algorithm reached a local minimum) are reported
in Table 1. Clearly, our approach can lead to
significant cost savings.

5. CONCLUSIONS

We presented an approach for a supplier and a
buyer to interact in order to satisfy the buyer’s
demand and minimize the supply chain inventory
costs. We assumed a rather general setting where
(i) the supply chain includes assembly operations,
(ii) demand and production capacity models are
stochastic and accommodate strong temporal de-
pendencies, and (iii) the supplier maintains prob-
abilistic service level constraints. In this setting,

we prescribed how the supplier and the buyer can
minimize their overall costs in order to satisfy
demand and efficiently operate the supply chain.
Our approach relies on asymptotically tight ap-
proximations of inventory stockout probabilities
which were developed drawing from the theory of
large deviations. These approximations transform
an inherently stochastic problem into a determin-
istic one which enables the use of well-developed
optimization techniques.
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