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Abstract: This paper considers an optimal control problem for switched nonlinear
systems. The objective is to minimize an associated cost functional, by finding an
appropriate continuous control input and location switching strategy. We propose
an extension of an algorithm based on strong variations to handle constraints on
both locations and switching instants. Numerical experiments testify the viability
and the tractability of such a scheme. Copyright c©2005 IFAC
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1. INTRODUCTION

Switched systems are one of the most impor-
tant classes of mixed continuous discrete dy-
namical systems known as hybrid systems. This
class includes applications from power systems,
automotive control, consumer electronics, petro-
chemical industry and networked control systems.
The theoretical foundations for such systems are
now enough mature as evidenced by the pub-
lished literature. The lack is the availability of
general computational schemes, mainly computa-
tional optimal control methods. Although a great
effort has been dedicated to this subject in the
last decade, to the best knowledge of the au-
thors no algorithm can handle all the features of
hybrid systems. However, some promising design
methodologies appear for the switched systems
class. These include the two stages optimization
approach initiated independently in (Cassandras
et al., 2001) and (Xu and Antsaklis, 2002). At
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the first stage the aim is to find an optimal con-
tinuous control and the switching instants while
the second allows the variation of the sequences
of active locations and the number of switches.
Several works have been done in this direction
(Xu and Antsaklis, 2003) and (Gokbayrak and
Cassandras, 2000), see also (Egerstedt et al., 2003)
where a simple gradient formula is derived to
update the switching instants.

With the advent of new versions of the Minimum
principle due in part to (Sussmann, 1999; Pic-
coli, 1999) and recently (Riedinger et al., 2003),
a computational framework is set up in (Shaikh
and Caines, 2003b) for fixed switching schedules.
Some guidelines are also given to tackle the not à
priori known switching schedule using a combina-
torial search technique. This is further extended
in (Shaikh and Caines, 2003a) where extended
partitions of the time-state space parallel to those
in (Bemporad et al., 2002) are used.

Another important methodology is the one based
on the Mixed Logical Dynamical (MLD) mod-
elling framework initiated in (Bemporad and



Morari, 1999). This framework handles complex
systems where constrained dynamics and logics
are interacting. Such systems include a large class
of hybrid systems where the continuous dynamics
can be expressed or at least finely approximated
by Piece Wise Linear functions. A mixed integer
predictive controller is developed to stabilize MLD
systems on desired reference trajectories. The re-
sulting on line optimizations are solved through
mixed integer quadratic programming.

The problem is also investigated in the context
of singular arcs in (Bengea and DeCarlo, 2003)
without any assumption neither on the number of
switches nor on the sequence of active locations.
The authors express some sufficient conditions for
the existence of an optimal solution by making use
of an embedding technique similar to the one used
in (Alamir and Attia, 2004) where the problem
of optimal control of switched systems is solved
using a strong variation approach. This alleviates
the combinatorics associated with hierarchical al-
gorithms like those developed in e.g, (Gokbayrak
and Cassandras, 2000; Xu and Antsaklis, 2002).

We propose here an extension of the algorithm
developed in (Alamir and Attia, 2004) that deals
with the case of locations constraints, this is
actually the case in many systems for instance,
in a geared car, the switch from gear 1 to 4 is not
allowed. Moreover, in order to further limit the
number of switches, constraints are introduced on
the switching candidates instants. The algorithm
complexity is shown to be linear in the number
of locations which makes it very appealing from a
computational view point.

This paper is organized as follows : section 2
presents basic definitions of switched systems.
Section 3 is devoted to the algorithm formula-
tion and complexity studies. In Section 4 some
validating simulations are reported. Finally, some
conclusions and future orientations are given in
section 5.

2. BASIC DEFINITIONS

Definition 1. Switched system

A switched system is a tuple S = (D,F) where

• D = (Q, E) is a directed graph representing
the discrete structure of the system. The
node or location set Q = {1, 2, . . . , Q} is
the set of indices for the configurations. The
directed edge set E is a subset of the carte-
sian product Q×Q which contains all valid
controlled transitions represented by the ele-
ments (events) of the type (q1, q2) meaning
that a switching from location q1 to location
q2 is allowed.

• F = {fp : R
n × R

m → R
n, p ∈ Q} is a set of

vector fields, so that the system wherein loca-
tion p is described by the following dynamics
ẋ = fp(x, u) where x ∈ R

n is the state vector
and u ∈ Up ⊂ R

m is the control input, Up is
some set of admissible controls (generally a
compact set). The vector fields in F are twice
continuously differentiable w.r.t the states x.

For a switched system S, the control inputs con-
sist of a continuous input u and a switching strat-
egy q.

Definition 2. For a switched system S, an admis-
sible switching strategy or profile q(·) with K ∈ N

switches is a piecewise constant function defined
for all t ∈ [t0, T ) as

q(t) =



















q0 t0 ≤ t < t1
q1 t1 ≤ t < t2
...

...
qK tK ≤ t < tK+1

(1)

where t0 < t1 < t2 . . . < tK < tK+1 are
the switching instants with tK+1 = T , and
(qk, qk+1) ∈ E for all k ∈ K := {0, 1, 2, . . . ,K}.
Define also Σ[t0, T ] , {q(·) in [t0, T )}.

For a switched system to be well posed, patholog-
ical phenomenon like Zeno, i.e, accumulation of
location switchings at finite time, have to be ex-
cluded. In this paper, time discretization is used in
conjunction with the following constraints defined
by one of the sets Σ1 and Σ2

Σ1 = {q(·) ∈ Σ[t0,T ]|∀k ∈ K, ∃j ∈ Z
+ :

tk+1 − tk = j × dtmin > 0} (2)

Σ2 = {q(·) ∈ Σ[t0,T ]|∀k ∈ K :

tk+1 − tk ≥ dtmin} (3)

where
dtmin = N × h (4)

with N ∈ Z
+ and h is a decision sampling period.

Remark 1. The sets defined in (2) and (3) allow
only a finite number of switches in any finite time
interval. For (2) the decision to stay further in
a location or to leave it is made possible every
dtmin unlike (3) where some location dwell time
is specified.

Definition 3. For a switched system S, an admis-
sible control set Ūq associated to an admissible
switching profile q(·) is defined as

Ūq =
{

u(·)|∀t ∈ [t0, T ), u(t) ∈ Uq(t)

}

(5)

Problem 1. Consider a switched system S =
(D,F). Given a fixed time interval [t0, T ], find



a switching sequence q(·) ∈ Σ1 (or q(·) ∈ Σ2) and
an associated control input u ∈ Ūq such that the
cost functional

J =

∫ T

t0

L(x(t), u(t), q(t))dt (6)

is minimized under q(t0) = q0 and x(t0) = x0.

Let us also define the following family of indexed
sets {Ap}p∈Q as

Ap = {s ∈ Q : (p, s) ∈ E} (7)

a set Ap represents a one step ahead reachable
locations from the actual one p.

3. ALGORITHM FORMULATION

If no constraints are present neither on locations
(meaning that E = Q × Q) nor on the switch-
ing instants, the Pontryagin Minimum principle
(Pontryagin et al., 1962) still holds for switched
systems (with controlled switches).
This can be seen by taking binary valued vari-
ables αp ∈ {0, 1} each one corresponding to a
location (where well posedness properties impose
∑Q

p=1 αp = 1 at each instant), as a part of
the control vector and writing down the dynam-
ics of the switched system as a unique system
∑Q

p=1 αpfp(x, u). This embedding makes possible
the use of algorithms for partially non convex
control sets to solve optimal control problems, see
(Alamir and Attia, 2004) where this is exploited.

Now if one considers constraints on locations
(E ⊂ Q × Q). The αp’s time evolution will in-
volve a memory map, i.e, the set of admissible
controls cannot be defined independently from
information about the corresponding switching
strategy, leading to a violation of the hypotheses
upon which the Minimum principle is built. Until
one considers a fixed switching profile, see, e.g
(Sussmann, 1999; Piccoli, 1999) where these argu-
ments are explored. Here the Minimum principle
is used only to orient the search for an optimal
solution, and thus the trajectories obtained are by
essence suboptimal. Let us define the Hamiltonian
function associated to a switching profile q(·) as

Hq(x, u, λ) = Lq(x, u) + λ′fq(x, u) (8)

and the Hamiltonian system as

ẋ =
∂Hq

∂λ
, λ̇ = −

∂Hq

∂x
(9)

The pointwise minimization in the Minimum prin-
ciple (Pontryagin et al., 1962) and for the case of
full accessibility of the locations is equivalent to
activating the location with the least value of the
Hamiltonian at each instant. This is exploited in

the following algorithm to extract a suboptimal
solution to the problem 1 under consideration.

Let Nd be a positive integer (Nd > 1), h = T−t0
Nd−1

be a sampling period and define the sampling
instants ti+1 = ti + h. Define also piecewise
constant controls as u(ti + τ) = ū(i) and q(ti +
τ) = q̄(i) for all i ∈ {1, 2, . . . , Nd} and τ ∈ [0, h).
The finite dimensional approximations x̄ and λ̄
are defined by integrating (9) using e.g, a second
order Runge-Kutta method, this is shortly written
as (with x̄(1) = x0, λ̄(Nd) = 0 and q̄(1) = q0)

x̄(i + 1) = RKF
2 (x̄(i), ū(i), q̄(i)) (10)

λ̄(i − 1) = RKB
2 (λ̄(i), x̄(i), ū(i), x̄(i − 1),

ū(i − 1), q̄(i)) (11)

where the superscripts F and B stand respectively
for forward and backward. The following approx-
imation of the performance index is used

J̄ = J̄(ū, q̄) = h

Nd−1
∑

i=1

L(x̄(i), ū(i), q̄(i)) (12)

Before we proceed further, let us define the fol-
lowing discrete metric dd : Q×Q → {0, 1} by

dd(q1, q2) =

{

0 if q1 = q2

1 if q1 6= q2
(13)

Consider now the following algorithm pseudo
code.

Algorithm Pseudo Code

Step 0 : Fix some small εu, εJ , some integer lmax

and the reals dµ , γ > 1, µ0, choose some initial
guess q̄0 ∈ Σ1 (or q̄0 ∈ Σ2) and ū0 ∈ Ūq̄0 under
the initial condition q0

Step 1 : Compute x̄0 solution of (10) with ū =
ū0, q̄ = q̄0 and let l := 1,

Step 2 : Compute λ̄l−1 solution of (11) with
ūl−1, x̄l−1 and q̄ = q̄l−1

Step 3 :

for i = 1 to Nd do begin

If (i × h is a candidate instant) then

• Compute (q̄l(i), ūl(i)) and x̄l(i) such that
x̄l(i) is solution of (10) with ū(i) = ūl(i) and
q̄(i) = q̄l(i) such that

(q̄l(i), ūl(i)) :=

arg min
s∈A

q̄l(i−1)

{

min
u∈Us

[

Hs(x̄
l(i), u, λ̄l−1(i))

+ µl−1‖u − ūl−1(i)‖2+

µl−1dd(q̄
l−1(i), s)

]

}

(14)

else



• Compute ūl(i) and x̄l(i) such that
x̄l(i) is solution of (10), with u(i) = ūl(i) and
q̄(i) = q̄l(i) such that

q̄l(i) := q̄l(i − 1), ( q̄l(0) = q0) (15)

ūl(i) := arg min
u∈U

q̄l(i)

[

Hq̄l(i)(x̄
l(i), u, λ̄l−1(i))

+µl−1‖u − ūl−1(i)‖2
]

(16)

end if

end

Step 4 : If
(

J̄(ūl, q̄l) > J̄(ūl−1, q̄l−1) − εJ

)

and
(

‖ūl − ūl−1‖ + max(d(q̄l, q̄l−1)) > εu

)

then let
µl−1 = max(µl−1 + dµ, γ × µl−1)), and return
to Step 3,

Step 5 : µl−1 = max(0,min(µl−1 − dµ, µl−1/γ))
Step 6 : If (l > lmax) Then Stop else let l := l+

1 and return to Step 2.

X The algorithm is essentially composed of two
parts, the second part of the if bloc in step 3 per-
mits only the update of the continuous input for
a frozen location so that at this stage we solve a
conventional optimal control problem (a succes-
sion of nonlinear programming problems), while
the first uses a unified updating scheme for both
the continuous input and the switching profile,
this is in fact possible only for time instants
that satisfy the constraints (2) or (3) leading to
a limitation of the number of switching which
is in general imposed by the user or by the
application under consideration. More details
on the internal structure of the algorithm can
be found in (Alamir and Attia, 2004).

X Like any numerical scheme, the algorithm
parameters are chosen on a trial-error basis.
For a large number of problems, the following
values have shown good convergence properties
µ0 = 10, γ = 1.5 and dµ = 0.5.

3.1 Algorithm complexity

Once the method of minimizing the penalized
Hamiltonian has been chosen (the optimization
stage of step 3), the worst case complexity
(because card(Ap) is location dependent and
card(Ap) ≤ card(Q)) is given by

[

(η − 1) card(Q) + η(N − 1) + 1
]

× CNLP (m)

+ 2 × CRK(n) (17)

where η = Nd

N
, N = dtmin

h
defined in (4), CNLP (m)

denotes the complexity of the nonlinear program-
ming algorithm and CRK(n) the complexity of the
Runge-Kutta method. Two extreme cases can be
distinguished namely η = 1 and η = Nd. The first
case corresponds to the one where only a location
is fired and thus corresponds to a complexity of
solving a conventional optimal control problem,

this can also seen by putting card(Q) = 1 in (17),
while the second corresponds to the case reported
in (Alamir and Attia, 2004) for a frozen initial
location. This upper bounds holds both for Σ1

and Σ2 switching types strategies. There are no
exponential terms in n, Q or Nd.

4. COMPUTATIONAL RESULTS

The following example is taken from (Xu and
Antsaklis, 2002). The system dynamics are

Location 1 :

{

ẋ1 = −x1 + 2x1u
ẋ2 = x2 + x2u

(18)

Location 2 :

{

ẋ1 = x1 − 3x1u
ẋ2 = 2x2 − 2x2u

(19)

Location 3 :

{

ẋ1 = 2x1 + x1u
ẋ2 = −x2 + 3x2u

(20)

with the following cost functional

J =
1

2
(x1(T ) − 2)2 +

1

2
(x2(T ) − 2)2 +

1

2
∫ T

0

[

(x1(τ) − 2)2 + (x2(τ) − 2)2 + u2(τ)
]

dτ

(21)

x(0) = (1, 1)
′

, T = 3 sec and |u| ≤ 2. The
first simulations concern the case where an initial
condition q0 is imposed on the location. The algo-
rithm parameters ;when not specified elsewhere;
are the same in all the simulations and are taken
as µ0 = 10, u0(·) = −1, dµ = 0.5 and γ = 1.5.
In table 1 are indicated the performance indices
achieved for different initial locations.

q0 J̄ Execution times

1 0.3541 2.63 sec

2 0.6212 3.37 sec

3 0.3873 4.04 sec

Table 1. Performance index achieved for
different initial locations

In figure 2 is shown the convergence history for
the case q0 = 1, roughly speaking the key point
is that if the algorithm internal variable µl con-
verges to 0 then one can show that the continuous
control profile at the last iteration satisfies the
Minimum principle (Alamir and Attia, 2004) (for
a final fixed switching strategy). Consider now
the case where the need is to identify critical
locations. This can be the case when the designer
has to choose whether to include components into
a system or not, or the case where we have a
finite set of control input and we have to choose
the components of this vector that contributes
the most to a performance index, e.g, networked
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Fig. 1. Switching strategy, continuous input and
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control systems.
As evidenced in figure 1 the jump from location 1
to location 3 dominates the switching behavior.
In the next simulation we ban this switch by
properly adjusting the set E and taking µ0 and
u0 as µ0 = 10000 and u0(·) = 2, the results are
shown in figure 3. Here we see clearly that in order
to maintain acceptable performance more control
effort u is used, the performance index achieved is
J1−3 = 0.8152 in 98 iterations is still acceptable.

Next we investigate the case where we simply
eliminate locations. The results are given in table
2. Recall that the three last problems are conven-
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Fig. 3. Switching strategy, continuous input and
the states, with jump 1-3 prohibited

Eliminated location u0(·) µ
0 J̄ l

none -0.5 10 0.2366 26

1 -1.5 10 2.6140 16
2 2.0 100 0.5676 35
3 1.0 10 7.69 17

1 ∧ 2 -2.0 10 12.45 14
1 ∧ 3 0.0 10 7.539 23

2 ∧ 3 1.0 200 8.049 26

Table 2. Identification of critical loca-
tions

tional optimal ones since only a location is fired
along the time window. The problem correspond-
ing to the first row is solved in (Xu and Antsak-
lis, 2002) by allowing only two switches (because
of the combinatorics involved), the performance
index achieved is more than 15 times the one
reported here. From table 2, one concludes that
the location 3 is somehow the most critical node
in the system, this stems from the fact that the
performance index varies from 0.3541 to 7.69, a
ratio of approximately 22, see figure 4. Finally,
the number of switches can be implicitly bounded
by constraining the system to switch every N × h
with N properly chosen. Suppose that the number
of allowed switches is Nswitching so that N can be
computed as N = Nd

Nswitching
. Figure 5 gives some

indications on the evolution of the performance in-
dex versus the number of switches. For the exam-
ple under study, the performance remains almost
constant when the number of switches exceeds 25.

5. CONCLUSIONS

In this paper, an extension of an algorithm based
on strong variations is developed. Simulations re-
sults are reported showing the efficiency of such
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algorithms to solve control problems for switched
systems. The complexity is shown to be reason-
able and state dimension independent except for
the integration scheme.

Future work concerns the comparison of this
approach to other dynamic programming based
methods, where the aim will be to measure the
performance loss against the complexity and the
computational burden associated to a dynamic
programming approach.
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