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Abstract: Using instrumental variable methods to estimatethe parameters of dynamic
errors-in-variables systems with a periodic input signal is the focus in this paper. How to
choose suitable instrumental variable vectors is the key point. Two variants are proposed;
both of them can generate consistent estimates. An analysisshows that the best accuracy
is achieved by using a specific overdetermined instrumentalvariable vector. Numerical
illustrations demonstrate the effectiveness of the proposed Extended IV method for both
white and colored measurement noise. It is superior to alternative methods under low
signal to noise ratios.Copyright c2005 IFAC
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1. INTRODUCTION

The problem of identification of dynamic errors-in-
variables (EIV) systems appear in very wide scien-
tific areas, such as time series modelling, array signal
processing for direction-of-arrival estimation, blind
channel equalization, multivariate calibration in ana-
lytical chemistry, image processing, astronomical data
reduction, etc. A number of methods were elaborated
in the past few decades. For example, attempts using
instrumental variable estimates (Söderström and Sto-
ica, 1983) or the Frisch scheme (Beghelliet al., 1990)
and other bias-compensating of the least-squares esti-
mates were developed. Other methods are based on the
frequency domain (Pintelon and Schoukens, 2001), or
use higher-order statistics (Tugnait and Ye, 1995). It is
also possible to apply the maximum likelihood and the
prediction error approaches (Söderström, 1981). Some
comparison between different approaches are given in
(Söderströmet al., 2002).

For a system, when data are measured from a num-
ber of independently repeated experiments, the iden-
tification process can be designed under the periodic
excitation condition. Periodic input signals offer in-
teresting advantages over non-periodic excitations not
only in frequency domain but also in time domain
identification, see (Schoukenset al., 1997), (Forsellet
al., 1999). For example, in (Forsellet al., 1999), the
periodic excitation was utilized to separate the driv-
ing signal and noise. Estimated noise models can be
further exploited as pre-whitening filters implemented
before the estimation. In this paper, instrumental vari-
able (IV) methods will be considered because IV esti-
mators are computationally inexpensive and are appli-
cable under fairly general noise conditions. Our main
motivation is to analyze what type of instrumental
variables should be chosen to maximally utilize the in-
formation of periodic measurement data to achieve the
optimal estimation accuracy. The derived IV estimator
shows considerably improved accuracy compared to
traditional ones.



The outline of this paper is as follows: Section 2 gives
some assumptions and preliminary issues regarding
errors-in-variables models. Two instrumental variable
variants are also proposed in this section. Consistency
and accuracy of these IV estimators are analyzed in
Sections 3 and 4. Simulations are given in Section 5.
Finally, some conclusions are drawn in Section 6.

2. PRELIMINARIES

Consider the system depicted in Figure 1.B(q�1)A(q�1)- -- ? ?
Æ�� Æ���� u(t)uo(t) yo(t) y(t)~y(t)

~u(t)
Fig. 1. The basic setup for a dynamic errors-in-

variables problem.

The system is given by the difference equationA(q�1) yo(t) = B(q�1)uo(t) (1)

where A(q�1) = 1 + a1 q�1 + : : :+ an q�n (2)B(q�1) = b1 q�1 + : : :+ bn q�n
are polynomial in the backward shift operatorq�1, i.e.q�1 x(t) = x(t�1), andyo(t), uo(t) denote the noise
free output and input, respectively.

It is generally assumed that the system is asymptoti-
cally stable and that the model ordern is known. The
model can easily be extended by allowing different
degrees ofA andB and by introducing a further delay.
To keep the treatment reasonably simple these exten-
sions are not dealt with here.

The input and the output are not directly available,
but can be measured with some noise:~u(t) and~y(t),
respectively. It is the noise corrupted measurementsu(t) andy(t) that are available.

We next introduce some general assumptions.

A1.The noise free signaluo(t) is a periodic function.
The length of the period is denotedN . It is assumed
thatm periods of the datau(t); y(t) are available. In
each perioduo(t) is a stationary process.

A2. The measurement noise signals~u(t) and~y(t) are
uncorrelated with the noise free inputuo(s) for all t
ands. Further, the measurement noise signals within
different periods are uncorrelated.

For simplicity we will generally assume that all sig-
nals have zero mean values.

Next introduce the regressor vector'(t) as'(t) = [�y(t� 1) : : :� y(t� n) u(t� 1) : : : u(t� n)℄T
(3)

We can then form a linear regressive model asy(t) = 'T (t)� + "(t) (4)

where the parameter vector� is� = [a1 : : : an b1 : : : bn℄T (5)

Due to the presence of noise in bothy and u, a
linear least squares estimate of� will be biased and
not consistent. Instead we will consider instrumental
variable estimates, which are obtained by correlating
the model with a vectorz(t) of instruments:Xt z(t)y(t) �= "Xt z(t)'T (t)# � (6)

The vectorz(t) must have at least as many elements
as�. Whenz(t) is larger, we solve (6) in a weighted
least square sense to get�̂=argmin� k "Xt z(t)'T (t)# � � "Xt z(t)y(t)# k2Q

(7)

leading to �̂ = (R̂TQR̂)�1R̂TQr̂ (8)

withR̂ = 1Nm NmXt=1 z(t)'T (t) r̂ = 1Nm NmXt=1 z(t)y(t): (9)

In (7), (8)Q is a positive definite weighting matrix.
The summations in (6)-(9) are over all time points (in
them periods), that is,t goes from1 toNm.

Next we introduce some more detailed notation, where
we exploit the periodicity of the noise free datauo(t),yo(t). In periodj (where1 � j � m), we write the
regressor vector as'j(t) = '0(t) + ~'j(t) t = 1; : : : ; N (10)

where'0(t) contains the noise free data and~'j(t)
denotes the noise contributions. Similarly,zj(t) (for1 � j � m) will denote the instrumental vector for
periodj.
We proceed to give two variants of instrumental vari-
able vectors.

IV. It is natural to let the vectorzj(t) be formed by
regressors other than'j(t). A simple choice is to takezj(t) = � 'j+1(t) j = 1; : : : ;m� 1'1(t) j = m (11)�



In the above examplezj and'j will have the same
dimensions. Then̂R in (8), (9) will be a square matrix
and the weightingQ becomes superfluous.

Extended IV. Consider an overdetermined instrumen-
tal variable vector asz1(t) = �'T2 (t) : : : 'Tm(t) �Tz2(t) = �'T3 (t) : : : 'Tm(t) 'T1 (t) �T

...zj(t) = �'Tj+1(t) : : : 'Tm(t) 'T1 (t): : : 'Tj�1(t) �T (12)�
For a general case we introduce the following assump-
tion:

A3. The instrumental vectorzj(t) is uncorrelated to
the measurement noise in periodj. Further, the covari-
ance matrix ofzj(t) has rank at least equal to dim(�).

It will be convenient to further introduce the following
matrices�(t) = ['1(t) : : : 'm(t)℄ t = 1; : : : ; NZ(t) = [z1(t) : : : zm(t)℄ (13)

and the vectorY (t) = � y1(t) : : : ym(t) �T t = 1; : : : ; N (14)

whereyj(t) is the output at timet within periodj:yj(t) = y(t+ (j � 1)N): (15)

The the basic equation (6) can be compactly written as" NXt=1 Z(t)�T (t)# � �= " NXt=1 Z(t)Y (t)# (16)

We write the estimate as, see (8)�̂ = (R̂TQR̂)�1R̂TQr̂ (17)

where nowR̂= 1Nm NXt=1 Z(t)�T (t) = 1Nm mXj=1 NXt=1 zj(t)'Tj (t)
(18)r̂ = 1Nm NXt=1 Z(t)Y (t) = 1Nm mXj=1 NXt=1 zj(t)yj(t)
(19)

When analyzing the general estimate (17), it is worth
noticing that the underlying model equation (16) take
the form of a multivariable instrumental variance es-
timate (Söderström and Stoica, 1989, page 262). This
observation will be useful when examining the statis-
tical properties of the estimate (17).

In the analysis, we generally assume that the model
structure captures the true dynamic. More precisely,
we assume that there is a true parameter vector�0 such
that y(t) = 'T (t)�0 + v(t) (20)

wherev(t) = A0(q�1)~y(t)�B0(q�1)~u(t): (21)

Introduce the vectorV (t) similarly toY (t), (14). The
relation (20) now simplifies toY (t) = �T (t)�0 + V (t) (22)

Inserting (22) into (19), and combining this with (17)
gives �̂ � �0 = (R̂TQR̂)�1R̂TQ~̂r (23)

where ~̂r = 1Nm NXt=1 Z(t)V (t) (24)

3. CONSISTENCY ANALYSIS

To analyze consistency (i.e. limN!1 �̂ = �0),
it follows from (23) and standard conditions, see
(Söderström and Stoica, 1983), (Söderström and Sto-
ica, 1989) that consistency is guaranteed iflimN!1 R̂ �= R (25)

has full rank and limN!1 ~̂r = 0 (26)

To examine these conditions further, note that the left
hand side of (26) can be writtenlimN!1 ~̂r = limN!1 1Nm mXj=1 NXt=1 zj(t)vj(t)= 1m mXj=1Ezj(t)vj(t) (27)

Hence, (26) follows as the instrumental variables are
constructed such thatzj(t) is uncorrelated withvj(t),
see Assumption A3. Under Assumption A2 this holds
for all the variants of choosingZ(t) which were
considered above.

To examine the condition (25) introduce the covari-
ance matrixR0 of the noise-free regressor vector'0(t): R0 = 1N NXt=1 '0(t)'0(t)T (28)

whereR0 is assumed to be positive definite. Note that
this assumption is basically a condition on persistent



excitation of the noise-free input signalu0(t), see
(Söderström and Stoica, 1989).

We find from (18) thatR= limN!1 1Nm mXj=1 NXt=1 zj(t)['0T (t) + ~'Tj (t)℄= 1m mXj=1 limN!1 1N NXt=1 zj(t)'0T (t) (29)

aszj(t) is uncorrelated with the noise during periodj.
(see Assumption A3).

We next evaluate the limit matrixR in (29), for the
instrumental vectors introduced in (11) and (12). For
IV we getR= 1m mXj=1 limN!1 1N NXt=1['0(t) + ~'j+1(t)℄'0T (t)=R0 (30)

which is nonsingular and of full rank sinceR0 is
positive definite. For Extended IV we getR= 1m mXj=1 limN!1 1N NXt=1f264'0(t)...'0(t) 375+ 2666666664 ~'j+1(t)

...~'m(t)~'1(t)

...~'j�1(t)
3777777775g�'0T (t) = 264R0

...R0 375 = em�1 
R0 (31)

whereem�1 = (1 : : : 1)T has dimension(m � 1) �1, and
 denotes Kronecker product. Apparently, the
matrixR is of full rank in (31).

4. ACCURACY ANALYSIS

It follows from the general theory of instrumental vari-
able estimation for multi-variable system (Söderström
and Stoica, 1983), (Söderström and Stoica, 1989), that
the estimation error is asymptotically Gaussian dis-
tributed aspmN(�̂ � �0) dist�! N (0; P ) (32)

whereP = P (Q) = (RTQR)�1RTQSQR(RTQR)�1
(33)

andS =E 24 1Xj=0Z(t+ j)Hj35�" 1Xk=0HTk ZT (t+ k)#
(34)

In (34) fHjg1j=0 and � are defined by a spectral
factorization:�V (w) = H (eiw )�H � (eiw) (35)

along with the condition thatH0 = I; H (q�1 ) =P1j=0Hjq�j and H�1 (q�1) being asymptotically
stable. In (35),�V (w) denotes the spectral density
matrix of the vectorV (t), see (22). Note that all quan-
tities in (35) as well asfHjg arem�m matrices.

Due to Assumption A2, the measurement noise se-
quences in different periods are uncorrelated. Hence
the componentsvj(t) of V (t) are uncorrelated. There-
fore the spectral density matrix�V (w) is diagonal,
and in fact, its diagonal elements are equal. We write
this as �V (w) = �v(w)I (36)

It follows that the spectral factorization on (35) can be
substituted by a scalar spectral factorization:�v(w) =H(eiw)�2H(e�iw) (37)H(q�1) = 1Xk=0 hkq�k; h0 = 1 (38)

It then follows thatHk = hkI� = �2I (39)

Therefore, the matrixS in (34) can be simplified:S =E 24 1Xj=0 hjZ(t+ j)35�2I " 1Xk=0 hkZT (t+ k)#=E�2 1Xj=0 1Xk=0 �hkZ(t0 � k)hjZT (t0 � j)�= �2E �H(q�1)Z(t)� �H(q�1)Z(t)�T (40)

4.1 Optimal weighting

The covariance matrixP in (33) apparently depends
on the weighting matrixQ. There is in fact an op-
timal choice of the weighting matrix. It is shown in
(Söderström and Stoica, 1989) thatP � P opt (41)

meaning that the differenceP � P opt is nonnegative
definite whereP opt = (RTS�1R)�1 (42)

Further, equality holds in (41) ifQ = S�1 (43)

The weighting matrixQ is irrelevant in IV, but does
appear explicitly for Extended IV. We next examine
how to compute the matrixS when the instruments



are chosen as in Extended IV. First the noiseV (t), see
(21), has to be considered. Its spectral density�v(w)
is factorized to giveH(q�1) and�2, see (39). This
is a standard procedure, see for example (Söderström,
2002). Next we find from (13) and (40)SEIV = �2E �H(q�1) [z1(t) : : : zm(t)℄��H(q�1) [z1(t) : : : zm(t)℄�T (44)

Split the instrumental vectorzj(t) into a noise-free
part and a noise contribution as, see (12),zj(t) = z0j (t) + ~zj(t)= em�1 
 '0(t) +0BBBBBBBB� ~'j+1(t)

...~'m(t)~'1(t)

...~'j�1(t)
1CCCCCCCCA (45)

We then have

Lemma Consider the instrumental vectors chosen in
Extended IV. It holds thatSEIV = �2em�1eTm�1 
 C1 + �2Im�1 
 C2(46)

whereC1 = E �H(q�1)'0(t)� �H(q�1)'0(t)�TC2 = E �H(q�1) ~'j(t)� �H(q�1) ~'j(t)�T (47)

Furthermore, the optimal covariance matrix becomes
in this caseP optEIV = �2R�10 �C1 + C2m� 1�R�10 (48)

Proof. See (Söderström and Hong, 2004).

The expression (48) gives the asymptotic covariance
matrix of the parameters estimates when the optimal
weightingQ = S�1is applied. It hence provides a
lower bound on the achievable accuracy for a large
class of estimators.

Next we examine whether the lower bound can be
achieved for otherQ. Let us evaluate the degradation
of using Q = I . Due to the general form of the
covariance matrix P in (33), it follows thatP (I) = (RTR)�1RTSR(RTR)�1: (49)

By inserting (31) and (46) in the (49), we findPEIV (I) = �2R�10 �C1 + C2m� 1�R�10 : (50)

Proof. See (Söderström and Hong, 2004).

Comparing (50) with (48), we find that the optimal
performance is in fact achieved also withQ = I .
The choiceQ = I is to be preferred, as it leads
to significantly simpler computations than the choice
(43).

4.2 Comparing the asymptotic covariance matrix of
the parameters for different estimates

For IV, the covariance matrix of̂� is:PIV = �2R�10 (C1 + C2)R�10 (51)

Proof. See (Söderström and Hong, 2004).

From the explicit expressions (48), (50), (51) we can
easily reestablish (41):PIV � PEIV = P opt (52)

Further,PIV does not depend onm, the number of
periods, whilePEIV decreases withm. The noise
contribution inPEIV is reduced a factor1=(m� 1).
One of the important advantages of using periodic
excitation is that signal-to-noise ratio can be improved
by averaging overm periods. In Extended IV, this
averaging benefit was obtained by choosing the over–
determined instrumental variable vector. Form pe-
riods data, as long as the Assumption A3 is met,
there are totally(m � 1)m different combinations
of 'k(t) that can be exploited for forming the in-
strumentszj(t). We may choose instrumental vectorZ(t) as gathering all these(m � 1)m corporations
of data. Using this kind of instrumental vector was
proved to have the same estimation accuracy as that of
using Extended IV (see (Söderström and Hong, 2004)
for details). As Extended IV is computationally the
simplest alternative, it is the appropriate choice (withQ = I) for achieving optimal accuracy.

5. NUMERICAL ILLUSTRATIONS

5.1 Simulation results of proposed IV methods

To illustrate numerically the identification methods
introduced in the previous section, we consider a
second order system withA(q�1) = 1� 1:5q�1 + 0:7q�2B(q�1) = 1:0q�1 + 0:5q�2 (53)

The true inputu0(t) is an ARMA process given byu0(t) = 1 + 2q�1 + q�21� 1:8q�1 + 0:9q�2 e(t) (54)

wheree(t) is a zero mean white noise sequence with
variance 0.25. The number of data pointsN in each
period is 1024, and the number of periodsm is 6. For
each simulation 500 realizations are done.

As long as Assumption A2 is met, there is no specified
restriction on the correlation of~u(t) and ~y(t) within
a period. We first let the noise signals~u(t) and ~y(t)
be mutually uncorrelated white noise signals. The
variances of the measurement noise sequences~u(t)
and~y(t) are both equal to 10.



Simulation results of the IV estimates using the instru-
mental variable vectors as IV and Extended IV are
numerically summarized in Table 1. It is clear that
the theoretical analysis in the above section is well
supported by the Monte-Carlo simulation. We also
compared these two IV estimators for both small and
large amounts of measurement noise. The benefit of
using the overdetermined instrumental variable vector
in Extended IV is more obvious in small SNR condi-
tions.

Table 1. Simulation results with the white
measurement noise,SNRinput = 13dB.

(s)= simulation, (t)= theory

Estimate a1 a2 b1 b2�̂IV Mean -1.500 0.700 1.001 0.499
std(s) �0.0099 �0.0033 � 0.137 � 0.197
std(t) �0.0091 �0.0032 �0.129 �0.185�̂EIV Mean -1.499 0.700 0.996 0.507
std(s) �0.0058 �0.0030 �0.064 � 0.093
std(t) �0.0054 �0.0028 �0.063 �0.090

Next, we let~u(t) and ~y(t) be mutually uncorrelated,
but colored measurement noise. It was found that both
the IV estimators also work well in the colored noise
case.

5.2 Comparison with other EIV methods with periodic
data

Compensated least squares (CLS) and Compensated
total least squares (CTLS) are two algorithms for dy-
namic EIV system identification using periodic exci-
tation signals presented in (Forsellet al., 1999). To
remove the bias in the least squares estimation, these
two methods first subtract away the disturbances by a
non-parametric noise model, estimated directly from
the measured data (based on averaging or FFT idea),
and then use the least squares or total least squares
estimation. For comparison, we run the Extended IV
method of this paper under the same conditions as in
(Forsell et al., 1999). The results of a Monte-Carlo
simulations are shown in the Table 2. We note that
the Extended IV method works better than CLS and
CTLS.

Table 2. Comparing simulation results with
other algorithms.

Estimate a1 a2 b1 b2�̂CLS Mean -1.4991 0.6992 0.9970 0.5058
std(s) �0.0246 �0.0238 �0.0586 �0.0647�̂CTLS Mean -1.5102 0.7131 1.0170 0.4698
std(s) �0.0255 �0.0235 �0.0636 �0.0634�̂EIV Mean -1.5005 0.7006 1.0015 0.4983
std(s) �0.0145 �0.0141 �0.0318 �0.0367

6. CONCLUSIONS

The motivation of this paper was to show how the
information of periodic measurement data could be

used in identifying the system with errors-in-variables
models by using the instrumental variable estimates.
Two different instrumental variable vectors are con-
sidered. Consistency and accuracy analysis shows that
both of these IV methods would give consistent esti-
mates.

The best accuracy is achieved when using an overde-
termined instrumental variable vector. The optimal
weighting matrix and the lower bound of the accu-
racy were discussed. The theoretical results are further
supported by Monte-Carlo simulation for both white
and colored measurement noise conditions. For low
SNR, the advantages of using the extended instrumen-
tal variable vector is more manifest. The Extended
IV estimator proposed in this paper achieves better
estimation accuracy in examples than CLS and CTLS
methods previously proposed in the literature.
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