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Abstract: This paper considers the problem of passing from anonlinear simple-structure
model to a low-order approximation by preserving simplicity. The approximation problem
is often best posed as an`2 optimization problem. This optimization problem is the core
of our order reduction method so-called system matrices optimization. The simplification
is formulated as special secondary conditions which can be added to the original
optimization problem. In order to find the simplest reduced order model a search
process should be performed that an appropriate and effective fitness function and some
techniques for shrinking the search space and acceleratingthe search process is presented.
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1. INTRODUCTION

Typical nonlinear dynamical systems are modelled
by means of a set of first order coupled differential
equations or a set of partial differential equations. The
models which are described with partial differential
equations can be also solved numerically by first spa-
tially discretizing them by means of finite element,
boundary element and similar methods which leads to
a set of ordinary differential equations. In the first case
the order of the system (number of state variables)
depends on the quality of modelling and complexity
of the system, but in the second case it depends on the
quality of discretization.

Recent advances in hardware and software technol-
ogy provide this ability to solve very large systems
of ordinary differential equations. Nevertheless, typi-
cally these calculations need parallel processing which
increases the cost of simulation drastically, and as
a result, limits simulation applicability considerably.
Therefore the complexity of simulation, analysis and

controller design of a system depends directly on the
complexity of the corresponding system model. In or-
der to face this dilemma, there are two popular meth-
ods: order reduction and structure simplification. The
idea behind order reduction is to approximate a dy-
namic system with a model with less number of state
variables. Although there are different methods for
order reduction of general nonlinear systems such as
Proper Orthogonal Decomposition (Volkwein 1999),
System Matrices Optimization (Lohmann 1995b) and
Nonlinear Balancing and Truncation (Scherpen 1994),
but they generally result in reduced systems with high
number of internal interconnections, i.e. the model
structures are complex. The idea behind structure sim-
plification is simplifying the relations and coupling
among the state variables. This idea was first intro-
duced by (Buttelmann, M. and Lohmann, B. 2000) and
it was developed in later publications.

The problem that we address through this paper is a
combination of these two ideas in one algorithm. Start-
ing from the system matrices optimization method,



secondary conditions can be formulated to calculate
reduced systems with simpler structures. One of the
methods to find these secondary conditions is exploit-
ing genetic algorithm in order to perform a global
search within the search space. In this paper a mod-
ified fitness function is presented, which simplifies the
search procedure and enormously reduces the compu-
tation effort. Also a method for omitting improper can-
didates is suggested that accelerates the whole search
process by shrinking the search space. It should be
also noted here that one of the advantages of the new
method in comparison to the old ideas issimulation
free concept. In this algorithm only the snapshots of
the original system are required and no further simula-
tion of the original system or the reduced order system
is necessary. Our method includes three major steps
are as follows:

(1) Order reduction using system matrices optimiza-
tion method,

(2) Simplifying the reconstruction matrix (Wnc),
(3) Simplifying the reduced order system matrices

(Ẽnc).

They will be elaborated in the proceeding sections.

2. ORDER REDUCTION

The first step is reducing the number of state variables.
In order to put this idea into practice we use the system
matrices optimization method. This method has first
been proposed by (Lohmann 1995b) and it can be
exploited for nonlinear systems with the following
representation:

S :

{
ẋ(t) = Ax(t) + Bu(t) + Fg(x(t),u(t))
y(t) = Cx(t)

(1)

Fig. 1. Step I: system matrices optimization method

whereg(x(t),u(t)) comprises the nonlinear part of
the differential equations. Using this method we find
a system of lower order̃n which delivers an approx-
imation of the dominant state variables. These dom-
inant state variables are chosen by the designer and
are combined in the vectorxdo which is related to
the original vectorx by xdo = Rx. Based on the
given system (1) and the dominant state variables,
the system matrices optimization method calculates
matricesE = [Ã, B̃, F̃] and W such that they op-
timally fit the snapshots of the dominant state vari-
ables of the original system. In fact this method tries
to minimize the errorse1 ande2 (shown graphically
in Figure (1)) without any additional constraints and
for some typical input signals. Assume that matri-
cesχ, χdo, χ̇do ,Ψ andΓ are the snapshots of the
original system for typical inputs which respectively
show the numerical values of state variables, dominant
state variables, derivative of dominant state variables,
inputs and nonlinear part. For evaluating matricesE

andW, the following optimization problems should
be solved (The notation‖A‖ in this paper is the square
of the Euclidian (Frobenius) norm of matrix A and is
defined as

∑√

diag(ATA) ):

min
E

‖ χ̇do − [Ã B̃ F̃ ]
︸ ︷︷ ︸

E





χdo

Ψ
Γ





︸ ︷︷ ︸

M

‖,

min
W

‖ χ − Wχdo‖ (2)

which is equivalent to solvingn + ñ independent
optimization problems as follows (for the proof refer
to (Yousefi, A.et al.2004)):

Wnc = min
wi

‖ xT
i − wT

i χdo‖, i = 1, 2, . . . , n (3)

Ẽnc = min
eT

i

‖ ẋT
doi

− [Ãi B̃i F̃i]
︸ ︷︷ ︸

eT

i





χdo

Ψ
Γ





︸ ︷︷ ︸

M

‖,

i = 1, 2, . . . , ñ (4)

where ẋT
doi

is the snapshots of derivative of theith
state variable,̃Ai, B̃i and F̃i are theith row of the
reduced order system matrices̃A, B̃ and F̃ respec-
tively, xT

i is the snapshots ofith state variable andwT
i

is the ith row of matrix W. The indexnc means no
constraints is applied to the optimization problem. In
fact Ẽnc andWnc are the best answers (with respect
to accuracy criterion) that can be resulted from system
matrices optimization method. The optimal solution
can be evaluated using (5).

eT
opti

= ẋT
doi

MT(MMT)−1

wT
opti

= xT
i χT

do(χdoχT
do)−1 (5)

Exploiting the result of (5) the reduced system is com-
pletely determined and in addition to dominant state



variables the non-dominant state variables are approx-
imated usingW. By assuming̃x as the approximation
of xdo, the reduced system is set up as follows:

Sred :

{
˙̃x(t) = Ãx̃(t) + B̃u(t) + F̃g(Wx̃,u)

y(t) = C̃x̃(t)
(6)

Accordingly, the vectorg of the nonlinearities is taken
over from the original system (1) into the reduced
order system and no additional nonlinearities are in-
troduced. With respect to the fact that typically all the
elements of matricesEnc andWnc are nonzero, in the
proceeding steps of our algorithm we will try to sim-
plify (removing the coupling elements) the reduced
order nonlinear system in order to increase the sparsity
(higher number of zeros) of system matrices.

2.1 Secondary Conditions

The general linear equality constrained minimization
problem can be written as follows:

Find X such that it minimizes‖AX − B‖ and
fulfills the equalityCX = D

whereA is an m-by-n matrix (m ≤ n) andCX =
D defines a linear equality constraint. In (Lawson,
C.L. and R.J. Hanson 1974, Fletcher 1980) some
methods for solving this optimization problems are
proposed. The ability to solve optimization prob-
lems with constraints can be used to combine some
additional features to system matrices optimization
method for order reduction and structure simplifica-
tion. In (Lohmann 1995b) this basic idea is used for
improving the steady state performance. The applica-
tion of secondary conditions to structure simplification
is elaborated in the next subsection.

2.2 Application of Secondary Conditions to Structure
Simplification

Since each non-zero element represents one internal
coupling within the system, it is therefore appropriate
to not only reduce the system order but also to keep
the reduced system simple by aiming at a significant
number of zero elements inE and W. In order to
achieve this, we first formulate complexity constraints
on the reduced model (6) by the following secondary
conditions:

eT
i he,i − le,i = 0T, wT

i hw,i − lw,i = 0T (7)

whereeT
i is the ith row of matrix E andwT

i is the
ith row of matrix W. It is very easy to prove that
for instance for forcing a zero at the first element in
the second row of matrixA (a12), we can choose the
following secondary conditions for the second row of
matrixE (eT

2 ):

he,2 = [1, 0, . . . , 0]T , le,2 = [0]

The optimization problems (4) with secondary condi-
tions of type (7) results in optimal solutions (8):

eT
opti

= ẋT
doi

MT(MMT)−1+

+(le,i − ẋT
doi

MT(MMT)−1he,i)·

·(hT
e,i(MMT)−1he,i)

−1hT
e,i(MMT)−1

wT
opti

= xT
i χT

do(χdoχT
do)−1+

+(lw,i − xT
i χT

do(χdoχT
do)−1hw,i)·

·(hT
w,i(χdoχT

do)−1hw,i)
−1hT

w,i(χdoχT
do)−1

(8)

Using secondary conditions presented in (7), we can
force any element of system matrices to zero deliber-
ately. But the problem is that we don’t know which
elements are not significant and can be replaced with
zeros. Therefore we should search between the possi-
ble options to find the elements that can be substituted
with zeros. Often there are a large number of different
choices to carry out this task and this number is related
directly to the size and complexity of the original sys-
tem. In fact it is not sometimes possible to check every
single option independently and find the best solution,
therefore some methods for pioneered searching such
as genetic algorithm is demanded. But if the suitable
complexity constraintsl andh are found, the opti-
mization problems (3,4) with secondary conditions of
type (7) result in a reduced simplified model.

3. SIMPLIFYING THE RECONSTRUCTION
MATRIX WNC

Each row ofWnc shows the optimal estimation of
the corresponding state variable in the original system
based on the state variables of the reduced order
system. In the case that the original state variable be
one of the dominant state variables, the corresponding
row of W has very simple structure as follows:

wido
=

(
0 . . . 0 1

︸︷︷︸

ithcol.

0 . . . 0
)

therefore no further simplification is applicable. But
other rows need to be checked for the possibility of
simplification. For instance if one of the rows ofWnc

looks like the following row vector:

wj =
(
4 3 × 10−17 −7 3 × 10−14 10−14

)

our method tries to replace the very small elements
with zeros and simultaneously examine precisely the
effects of this replacement on the approximation error.
In order to carry out this task we define an acceptable
error range (accuracy criterion) for each row as fol-
lows:

Error Range= [ErrorminWi
, (1 + k)ErrorminWi

]

ErrorminWi
= ‖ xT

i − wT
nci

χdo‖ (9)



Fig. 2. Step II: structure simplification flow chart using
genetic algorithms for each row ofW.

where parameterk can be any value greater than zero.
The typical value of k is around 0.1 which shows
losing the accuracy not less than 10 percent of the
optimum answer, of course this value can be changed
with regard to the application. Then our algorithm
replaces some elements with zeros by adding the cor-
responding (zero forcing) secondary conditions to (3)
and solving it. Then if the added secondary condition
results in an approximation error in theError Range
(accuracy criterion), it calculates a simplicity cost us-
ing the following cost function:

F = number of nonzero elements (10)

otherwiseF will be set to zero. For small matrices
it is possible to check all the possible (zero forcing)
secondary conditions and compare all the correspond-
ing resulted rows which have an approximation error
in the acceptable error range with respect to their
simplicity cost. Thus the row with the higher cost
function has the highest simplicity and at the same
time it doesn’t lose much accuracy. But when the num-
ber of different options exceeds a limit, our method
uses genetic algorithm to carry out a pioneered search
among different options. The steps and algorithm of
this search is depicted in form of a flowchart in Figure
(2).

3.1 How Does Genetic Algorithm Help Structure
Simplification?

With respect to the previous section, suitable choices
of l andh are needed as candidates for the optimal
simplified reduced order system. Genetic algorithms
can be used to search between different options. In this
method each option is presented in form of a bit string
(so-called individual) that only consists of ones and
zeros and ones show the places that zeros should be
inserted in the corresponding row of matricesE and
W. For instance suppose the second row of matrixW

is equal to the following row vector:

W2 = [ 2.1 5.10−5 6.10−17 ]

The constraint for the genetic algorithm that forces the
elementw23 of of matrixW to zero, can be presented
by the following row vector:

gT
W2

= 0
︸︷︷︸

1st col.

0
︸︷︷︸

2nd col.

1
︸︷︷︸

3rd col.

= 001

Consequently every row vector that has the length
three and contains only ones and zeros corresponds
to a simplified row of matrixW. In this method the
starting population is selected randomly and the tour-
nament selection, two point cross over and normal
mutation are used as genetic operators (Mitchell 1996)
and the genetic algorithm produces new generations
with better and better individuals as long as the break-
ing condition (number of produced generations) is not
fulfilled.

4. SIMPLIFYING THE REDUCED ORDER
SYSTEM MATRICES (̃ENC)

Each row ofẼnc shows the optimal estimation of the
corresponding state variable’s derivative in the origi-
nal system. Similar to the previous step, our method
tries to replace the very small elements of each row of
Ẽ with zeros and simultaneously examine the effects
of this replacement on the approximation error. In
order to carry out this task an acceptable error range
for each row is defined as follows:

Error Range= [Errormin
Ẽi

, (1 + k)Errormin
Ẽi

]

Errormin
Ẽi

= min
eT

i

‖ ẋT
doi

− ET
nci





χdo

Ψ
Γ





︸ ︷︷ ︸

M

‖ (11)

At first our algorithm replaces some elements with ze-
ros by adding corresponding (zero forcing) secondary
conditions to (4) and solving it. Then it checks the
accuracy criterion and calculates the cost function:

F = number of nonzero elements (12)

Depends on the dimension of the problem sometimes
it is possible to check all the possible (zero forcing)



Fig. 3. Step III: structure simplification flow chart
using genetic algorithms for each row ofẼ.

secondary conditions and find the simplestẼ that
fulfills the accuracy criterion. But when the number
of different options exceeds a limit, our method uses
genetic algorithm, to carry out a pioneered search
among different options. The steps and algorithm of
this search is depicted as a flow chart in Figure (3).

5. NUMERICAL RESULTS

5.1 Combustion Engine with An Eddy Current Break

One of the systems that was used for implementation
of our methods is combustion engine which is shown
in figure (4). It is a test bed for a combustion engine
linked to an eddy current break with a flexible shaft.
The break stator is linked with a spring damper unit
to the foundations (more details in (Lohmann 1994)).
The system has a 7th order model and is used as
the reference model in the fitness function and order
reduction. The dimension of system matrices is shown
in Table 1. The dominant states of the original model
are selected asxdo = [x1, x3, x4]. Starting the order
reduction method without any secondary conditions
delivers a model of 3rd order, but with a high complex-
ity. The dimension of reduced order matrices is shown
in Table 2. In order to achieve a simplified reduced
model, using the old method results in a search space
with 4.3×1012 elements. But by exploiting the new al-
gorithm in this paper, it breaks into ten smaller search

Fig. 4. A 7th order model of a combustion engine with
an eddy current break

spaces with maximum27 elements. In Table(3) the
general formula for the search space size is presented.
As it is shown in Table 3 in this example the search
space shrinks to three smaller search spaces of order
27 and seven search spaces of order23.

Table 1. The dimensions of system matrices

A B F

Model of order n n.n n.b n.f

Example 1(7)
Combustion Engine

7 × 7 7 × 2 7 × 2

Example 2(10)
Vehicle Suspention

10 × 10 10 × 2 10 × 5

5.2 Hydropneumatic Vehicle Suspension

Another system that was used for further implemen-
tation of the methods is an active hydropneumatic
suspension. This device increases comfortableness
and safety by significantly reducing the incongruous
movements of the car body compared to a traditional
passive spring shock-absorber system. The inputs of
this system are the in and outflow of oil in the hydrop-
neumatic system which should be regulated by the
controller using measurement data from the sensors.
Figure(5) shows the mechanical construction of the
suspension for a single wheel and the related part of
the car body (more details in (Lohmann 1995a)). The
dimension of system matrices is shown in Table(1).
The system has a 10th order model and there exist
seven dominant state variables, so the reduced order
model of order 7th can be calculated.

Car Body
 suspension

storage
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baffling unit


oil flow Q


A
KS


Control Voltage


Servo

Valve
 to pressure
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steel

spring


bearing


piston

chamber


Fig. 5. Construction of hydropneumatic suspension



Table 2. The dimensions of reduced order
system matrices

Ã B̃ F̃ W

Model of order n
to orderñ (n → ñ)

ñ.ñ ñ.b ñ.f n.ñ

Example 1(7 → 3)

Combustion Engine
3 × 3 3 × 2 3 × 2 7 × 3

Example 2(10 → 7)

Vehicle Suspention
7 × 7 7 × 2 7 × 5 10 × 7

The dimension of reduced order matrices is shown in
Table 2. By applying order reduction the approxima-
tion of the reduced order system is good, but the com-
plexity of the model is very high. In order to achieve a
simplified reduced model, using the old method results
in a search space with3.7 × 1050 elements. But by
exploiting the new algorithm in this paper, it breaks
into ten smaller search spaces with maximum214 el-
ements. As it is shown in Table 3 in this example the
search space shrinks to seven smaller search spaces of
order214 and ten search spaces of order27.

Table 3. The search space dimension in the
old and new method

Search Space

Size (old)

Search Space

Size (new)

Model of order n

to orderñ (n → ñ)
2ñ×(ñ+b+f+n)

(ñ) × 2(ñ+b+f)

+(n) × 2ñ

Combustion Engine

(7 → 3)
4.3 × 1012

(3) × 27

+(7) × 23

Vehicle Suspention

(10 → 7)
3.7 × 1050

(7) × 214

+(10) × 27

6. CONCLUSION

The reduction scheme presented in this paper delivers
models of reduced order AND simple inner structure
at the same time. Model structures are coded in bi-
nary strings and are optimized using Genetic Algo-
rithms, whereas the reduced model’s system matrices
(respecting the structure constraints) are calculated by
explicit formula (8). Due to the specific optimization
criterion (2), the huge search space can be separated
into n + ñ subspaces that are independent of each
others. In other words: if the optimum within each
subspace can be found (being within the error ranges
and with maximum number of zero elements), then the
global optimum is found. It is this fact that reduces the
computational effort drastically while still delivering
good approximation results in practice.

Future work shall focus on the suitable choices of
starting populations of the genetic algorithm, gained
from the original model for instance, and on the ap-
plication of the method to even larger and more chal-
lenging practical engineering problems.
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