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Abstract: Since the online measurement of melt index (MI) of polyethylene is difficult, a 
virtual sensor model is desirable.  However, a polyethylene process usually produces 
products with multiple grades.  The relations between process and quality variables are 
highly nonlinear.  In addition, a virtual sensor model in the real plant process with many 
inputs has to deal with the collinearity and the time-varying issues.  A new recursive 
algorithm, which models the multivariable, time-varying and nonlinear system, is 
presented.  Principal component analysis (PCA) is used to eliminate the collinearity.  
Fuzzy c-means (FCM) and fuzzy Takagi-Sugeno (FTS) modeling are used to decompose 
the nonlinear system into several linear subsystems.  The effectiveness of the proposed 
method is demonstrated using the real plant data from a polyethylene process.  Copyright 
© 2005 IFAC 
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1. INTRODUCTION 

 
Generally, the product quality variables of 
polyethylene (PE) are the density and the melt index 
(MI).  Kiparissides (1993) stated the density of PE 
inversely proportions to the reaction conditions and 
the MI directly proportions to the exponents of the 
operating conditions.  Therefore, the variation of MI 
is more significant than density.  This is consistent 
with the real plant experience, which maintaining the 
MI specification is more difficult than density.  
Besides, while the measuring of MI is regulated, the 
density is on the product specification in the most of 
cases.  Efficiently stabilizing the variation of MI has 
to rely on on-line analyzer.  However, the hardware 
sensor is not so popular in plants.  In the absence of 
on-line analyzer, the laboratory measurements of MI 
are performed every 2-4 hours; it makes the 
regulation of operating conditions is more difficult.  
Therefore, it is desirable to develop a virtual sensor 
model that uses the process variables to predict the 
MI for quality control.  Such a virtual sensor model 
must be able to describe the nonlinear relations 
between process variable inputs and the MI, be 
applicable to the different grades of PE, and be easily 
updated to accommodate the time varying nature of 
the plant. 
 
Qin (1998) proposed a block-wise recursive PLS 
algorithm to update the PLS model using the new 
data.  Essentially PLS is a linear regression model.  

To introduce nonlinearity, the inputs can be 
transformed using the nonlinear functions.  However, 
there is no general guideline to determine the 
linearization functions. 
 
Alternatively, nonlinear relations can be 
approximated by a number of local linear functions.  
Takagi and Sugeno (1985) suggested that fuzzy 
systems consisting of linguistic If-Then rules can be 
used to divide a nonlinear system into the several 
linear subsystems.  The rules can be extracted either 
using the knowledge of exports or through the cluster 
analysis from process data, e.g.: the fuzzy c-means 
method.  
 
In this paper, the fuzzy TS modeling and the 
historical data are used for building a piecewise 
linear virtual sensor model for inferring the MI using 
process input variables.  Before building the 
inferential model, PCA is applied to remove the 
collinearity within inputs and alleviate the 
complexities of the fuzzy clustering.  When the data 
for new events cannot be explained by the PCA 
subspace, the subspace has to be reconstructed to 
cover all of events.  The fuzzy rules and the 
inferential models have to be updated to the new 
PCA subspace, and then, a recursive least square 
algorithm and the data for new events are used to 
correct the regression matrices. 
 



 

     

This paper is divided into five sections.  Section 2 
presents the basic theories of PCA, fuzzy c-means 
and fuzzy TS modeling.  A new recursive algorithm 
for updating the fuzzy models to the new PCA 
subspace is proposed in section 3.  In section 4, the 
real plant data from polyethylene process are applied 
to demonstrate the effectiveness of the proposed 
method.  The conclusions are given in the last section. 
 
 

2. BASIC THEORY 
 
2.1 Principal Component Analysis 
 

Consider the data matrix ×m nR∈W  with m rows of 
observations and n columns of variables.  Each 
column is normalized to zero mean and unit variance: 

( )T 1−= −X W 1W S  where W  is a mean vector, 1 is 

a column vector which elements are one, and S  is a 
diagonal matrix of standard deviation.  The 
eigenvectors (P) of the covariance matrix can be 
obtained from the normalized dataset.  The score 
vectors are the projection of the data matrix X  to 
each eigenvector. 
 

i i=t Xp , i=1…n (1)  
 
The data matrix X  can be decomposed as: 
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with X̂  being the projection of the data matrix X 
onto the subspace formed by the first K eigenvectors 
and E being the remainder of X that is orthogonal to 
the subspace.   
 
The statistic Q is defined in order to examine the new 
data can be explained by the PCA subspace or not. 
 

$( ) $( ) ( )T
T T T

K KQ = = − − = −ee x x x x x I P P x  (3) 

 
The loading vectors ×m K

K R∈P  are the first K terms 
of eigenvectors of the covariance matrix.  The 
statistic Q is a measure of approximation error of the 
new data with the PCA subspace.  The confidence 
limit of Q is defined as follows (Jackson, 1991): 
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The percentile α  is the probability of a type I error 
in hypothesis testing and cα  is the integral of the 
normal probability density function from α  to ∞ .  
Another measure of the difference between new data 
and the PCA subspace is the statistic 2T . 

 
2 1 T T

K KT −= xP Λ P x  (5) 
 
The diagonal matrix Λ  is the first K terms of 
eigenvalues, [ ]1 2diag K...= λ λ λΛ .  The 2T -
confidence limit is defined as: 
 

( )2
K,m-1,

K m-1
T F

m- K
=α α  (6) 

 
where K,m-1,F α  is an F distribution with degrees of 
freedom K and m-1.  The new data belong to the 
PCA subspace in the α  confidence limit only when 
Q Qα<  and 2 2T Tα< . 
 
 
2.2 Fuzzy C-Means Clustering  
 
The objective of fuzzy clustering is to partition the 
dataset T  into c clusters with vague boundaries.  
The fuzzy clustering algorithm is based on 
minimization of the cost function ( )J ; ,T U µ  with 
respect to the degrees of membership U  and the 
cluster centers µ  (Bezdek, 1981).  The object 
function is defined as: 
 

( ) ( ) 2

1 1

c m q

ij ij ,, i j

min J ; , u D
= =

= ∑∑ ΣU µ
T U µ  (7) 

( ) ( )T2 1
ij , j i j iD −= − −Σ t µ Σ t µ  

 
with subject to the constraints: 
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where iju  is the membership value of the jth data 
point sharing with the ith cluster, the score vectors T  
are used in fuzzy clustering instead of the original 
data.  The fuzzifier q determines the fuzziness of the 
resulting clusters, when it is closer to 1 the 
boundaries of the clusters are crisper.  The different 
types of distance ( 2

ij ,D Σ ) can be used to measure the 
distance between the jth observation and the ith cluster 
center.  A common choice is =Σ I , which induces 
the 2

ij ,D I  is the Euclidean norm.  The cluster shapes 
are hyperspherical, i.e., the clusters whose surfaces 
of constant membership are hyperspheres.  If the 
covariance of the dataset is chosen to measure 

distances, i.e. 
1

1 m

j j
jm =

= ∑ TΣ t t , the 2
ij ,D Σ  is the 

Mahalanobis norm that generates hyperellipsoidal 
clusters whose orientations are all the same with the 
data spread.  Gustafson and Kessel (1979) proposed 
each cluster has its own norm-inducing matrix in 
order to reflect the clusters of different geometrical 



 

     

shapes in one dataset.  The object function in Eq. 7 is 
modified as: 
 

( ) ( ) 2

1 1
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c m q

ij ij ,, , i j

min J ; , , u D
= =

= ∑∑ ΣU µ Σ
T U µ Σ  (9) 

 
Using the Lagrange multiplier method, the 
Gustafson-Kessel algorithm can be derived: 
 
1. Randomly initialize the degrees of membership 

following the constraints in Eq. 8. 
2. Compute the cluster centers and covariances: 
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3. Compute the distances and update the degrees of 

membership: 
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4. If the norm of the membership changes is larger 

than the predefined tolerance ( ε ), i.e., 
( ) ( )1

1 1

m c
k k

ij ij
j i

u u −

= =

− ≥ ε∑∑ , k=k+1 back to step 2. 

 
 
2.3 Fuzzy TS Modeling 
 
Takagi and Sugeno (1985) proposed a fuzzy rule-
based model, which decompose a nonlinear system 
into c fuzzy rules: 
 

( ):  1 1i j i j i jR is A f , i ...c , j ...m= = =If x then y x  

 (14) 
where xj, yj are the jth inputs and outputs, iA  and if  
respectively are the antecedent fuzzy set and the 
consequence inferential function of the ith rule ( iR ).  
In all the rules, the structures of the inferential 
functions are equal and the parameters are different 
to approximate a nonlinear system. 
 
In this paper, fuzzy clusters extracted from data are 
considered as the rules of the fuzzy TS model.  For 
each rule, the differences between score vectors and 
the cluster center are considered as the inputs of the 
inferential function.  The outputs can be evaluated 
from the inputs and the regression matrix of the ith 
rule, iB . 
 

( ):  i j i ij j i iR is A = −If t then y t µ B  (15) 
 
where ijy  is the inference of the jth outputs using the 
ith rule.  The outputs can be obtained by 
defuzzification. 
 

1 1

1
c c

j ij ij ij
i i

u u , j ...m
= =

= =∑ ∑y y  (16) 

 
If the dimensions of the PCA subspace are 
determined only by the inputs, the correlations 
between the inputs and the outputs are not taken into 
account.  It may cause that the number of principal 
components (PCs) can properly explain the inputs, 
but some of information about the outputs are 
correlated with the “noises” beyond PCA subspace 
are neglected.  Therefore, the number of PCs is 
determined by cross-validation in this paper.  The 
data are split into the training and test sets.  The 
relative root-mean-square errors (RRMSEs) of the 
test set are as a function of the number of PCs 
retained in the regression model formed with the 
training set. 
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The optimum number of PCs is the number of PCs 
that produces the minimum RRMSEs of the test set.  
However, this method will determine more PCs than 
only using the data of inputs. 
 
 

3. UPDATE INFERENTIAL MODEL 
 
The PCA subspace has to be reconstructed in order to 
explain the data for new events.  Liu (2004) proposed 
a method that updates the trained clusters to the new 
PCA subspace; eventually only the data for new 
events need to be clustered on the new subspace.  
Since the updated clusters may be compatible with 
the new clusters, the similarities between clusters 
have to be measured.  If the similarity degree is high 
enough, the compatible clusters need to be merged.  
Besides, the fuzzy TS models are also adapted for a 
time-varying process.  The regression matrices of all 
rules not only are updated, but also are corrected 
using the recursive least square algorithm with the 
new data.  
 
 
3.1 Update Fuzzy Clusters to the New Subspace 
 
Consider the addition of data for new events to the 
original data matrix.  The number of observations is 
increasing from m to m*.  The data matrix 

*T T T
new =  W W W  is normalized as 

( )*T* * * 1−= −X W 1W S .  The mean vector and the 

standard deviation matrix are 
*

W  and *S .  The 



 

     

loading vectors *P  and the correspondingly score 
vectors *T  can be determined by assuming 0* ≈E .  
Since the original data can be explained by both of 
the subspaces. 
 

T *TT * *T *≈ + ≈ +W 1W TP S 1W T P S  (18) 
 
Hence the relation between the scores in the new and 
old subspaces is given by: 
 

T* * 1 *−≈ + ∆T TA 1 W S P  (19) 
T * 1 *−≡A P S S P , 

*
∆ ≡ −W W W  

 
The above equations show that the scores for the old 
data can be transfer to the new subspace through a 
linear operation with the coordinate rotation (A) and 
shifting (

T * 1 *−∆W S P ).  Therefore, the center of any 
class j in the original subspace ( jµ ) can be 
transferred to the newer subspace: 
 

T 1* * *
j j

−≈ + ∆µ µ A W S P  (20) 
 
Assuming that there are mj observations in class j, 
the covariance matrix ( jΣ ) on the original subspace 
is: 
 

( ) ( ) ( )T
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1
1
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j i j i j
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= − −
−

∑Σ t µ t µ  (21) 

 
And the covariance on the newer subspace is: 
 

( ) ( ) ( )T

1

1
1

jm
* * * * *
j i j i j

ijm =

= − −
−

∑Σ t µ t µ  (22) 

 
By substituting eqs 19-21 into the above equation, 
the covariance on the new subspace can be estimated 
from that of the original subspace as: 
 

* T
j j≈Σ A Σ A  (23) 

 
The centers and covariances of clusters of the 
original data can be updated to the newer subspace 
using Eq. 20 and 23.  Only the data for new events 
need to be clustered on the new subspace.  After that, 
the degrees of membership are recalculated from Eq. 
12 and 13 using all of the clusters. 
 
 
3.2 Merge Compatible Clusters 
 
Frigui and Krishnapuram (1996) proposed a measure 
of cluster similarity it needs to be used in order to 
merge these clusters.  The measure depends on the 
degree of sharing of each observation among all 
clusters.  Let { }0* *

i k ikG u= ∈ >t T  denote the set of 

all score vectors belonging to the ith cluster, where 

*T  are the score vectors of all observations on the 
new subspace.  The similarity measure between 
cluster i and cluster j can be defined as 
 

1 k i j

k i k j

ik jk* G G
ij

ik jk* G * G

u u
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u u
∈ ∪

∈ ∈

−
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+

∑
∑ ∑

t

t t

 (24) 

 
When 1ijSIM = , cluster i and cluster j are identical, 
on the other hand 0ijSIM = , cluster i and cluster j 
are disjointed, i.e., i jG G∩ = ∅ .  A threshold value 

thrSIM  is used to determine whether two clusters 
should be merged.  When ij thrSIM SIM≥ , cluster i 
and cluster j are merged to a new cluster with the 
center and covariance as follows: 
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3.3 Update and Correct Fuzzy TS Model 
 
There are two steps for adapting the fuzzy TS model.  
Firstly, the regression matrix Bi of the rule i is 
updated to the new subspace without recalculating 
the trained data.  After that, using the recursive least 
square algorithm and the addition of data whose 
number of observation is (m*-m) correct the 
regression matrices. 
 
Classify the new quality data newZ  into each class, 
denoted *

iZ  is the quality data of the ith class, i.e., 
*T T T 1i i i,new ,i ...c = = Z Z Z .  Recalculate the average 

of quality data for each class; 
*
iZ , take the 

differences between the measures and average as 
outputs of fuzzy TS model, 

T**
ii i= −Y Z 1Z .  

Assuming that there are mi observations in the ith 
class before adding the new data, the regression 
function is 
 

( )( ) ( ) ( ) ( )i i i i

* * *
i , m i , m i i , m i , m− +Y = T 1µ B E  (27) 

 
where ( )ii , mE  is the regression error.  From above 

equation, the regression matrix ( )i

*
i , mB  can be derived. 

 

( ) 1*T *T
( ) ( ) ( ) ( ) ( ) ( ) ( )i i i i i i i

* * * * *
i , m i , m i , m i , m i , m i , m i , m i,

−
= ≡ −B C C C Y C T 1µ

 (28) 
 
The inverse matrix ( ) 1*T

( ) ( )i i

*
i , m i , m

−
C C  can be obtained 

from the model in the old subspace if the number of 
PCs has not increased: 



 

     

 

( ) ( ) ( )1 11 T*T T -1
( ) ( ) ( ) ( )i i i i

*
i , m i , m i i i ii , m i , m

− −−  = − − C C A T 1µ T 1µ A

 (29) 
 
After updating the fuzzy TS model for the old event 
data to the new subspace, the regression matrices 
need to be corrected using the addition data.  
Assuming that there are im∆  observations are added 
into the class i, *

i i im m m∆ ≡ − .  The matrix is 
corrected using the new data and the recursive least 
square algorithm (Ljung, 1999). 
 

( ) ( )( )( )( *) ( ) ( )i i ii i

* * * * *
i , m i , m i i , mm m∆ ∆= + − −B B D Y T 1µ B  (30) 

( ) ( ) ( ) ( ) ( )( ) 11 1*T * *T T
( ) ( ) ( ) ( )i i i ii i i

* * * *
i , m i , m i , m i , mm m m

−− −

∆ ∆ ∆≡ +D C C T I T C C T

 
where ( *)i

*
i , mB  and ( )i

*
i , mB  are the regression matrices 

respectively with *
im  and im  observations. 

 
 

4. ILLUSTRATING EXAMPLE 
 
The polyethylene plant used for this example is 
located in Kaohsiung, Taiwan.  In Fig. 1, the process 
flow diagram has been shown; the detailed 
description can be found in the previous work (Liu, 
2004).  In that paper, the reactor feeding temperature 
(TIC-001) was not taken into concern for process 
monitoring.  However, the disturbance of feeding 
temperature is an important factor affecting the 
variation of MI through the change of reactor 
temperature profile.  Hence it is included in this 
study as one of the input variables. 
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Fig. 1: Process flow diagram of high-pressure 

polyethylene plant.  
 
The data of fourteen process variables in Fig. 1 and a 
quality variable (laboratory MI) are collected.  Since 
the laboratory MI is measured every 4 hours, the data 
collection period are three months in order to collect 
enough data to reasonably represent the process 
behavior.  There are 512 observations in the dataset 
for the first time modeling.  Using cross-validation in 
section 2.3, the optimal number of PCs is found to be 
eight.  There are 485 observations can be explained 
by the PCA subspace with 99% confidence limits.  
The clustering result of projection of first two score 
vectors is shown in Fig. 2.  The data of inputs can be 
clustered into three groups; the solid lines represent 

the limits of Mahalanobis distances equal to 1, in Eq. 
12.  In that period there are three different production 
grades labeled as #1, #2 and #3 in Fig. 2.  The 
comparison of the regression results using the 
proposed method and the PLS model is shown in Fig. 
3.  For confidentiality, the values of logarithm of MI 
are presented in arbitrary units.  The PLS results 
using a single linear model are also presented in Fig. 
3.  It is obvious that only one set of parameters of the 
linear model cannot properly explain outputs with 
three different grades of products. 
 
Before on-line predicting the MI, it must be verified 
that process variables are in the control limits, i.e. the 
inputs are on the current PCA subspace.  If either the 
statistic Q or T2 are out of the control limits, the 
operators will be informed to elucidate the operating 
condition (Liu, 2004).  In practices, the inferring 
model is periodically updated and corrected by the 
proposed method in order to cover all of events on 
the PCA subspace.  The additional 119 observations 
in one month following the period of the above 
training data were used for testing.  The 100 
observations of the dataset can be explained by the 
PCA subspace with 99% confidence limits.  In Fig. 4, 
the model predictions of the proposed method and 
the PLS model without coefficient updating are 
shown.  It is found that predicted MI using PLS, are 
higher than measured values for the products with the 
lowest MI, but lower for products with the other two 
MI specifications.  For the product with the highest 
MI specifications, the PLS model errors become very 
large because the MI is proportional to the exponents 
of the operating conditions.  Hence, the errors are 
exponentially amplified.  In this test dataset, the 
RRMSEs of FTS and PLS are 12.58% and 38.38%.    
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Fig. 2: Clustering results for grade #1, #2 and #3 in 

the PCA subspace. 
 
A second test dataset is collected after first one; the 
period is also one month; there are 122 observations 
in the dataset, 110 observations among data can be 
explained by the PCA subspace, reconstructed with 
the data for new events, in 99% confidence limits.  
The FTS model is updated to the new PCA subspace 
and corrected using the previous test dataset.  A new 
PLS model is also generated using the block-wise 
recursive PLS.  The prediction results are shown in 
Fig. 5.  The RRMSEs of the proposed method are 



 

     

5.45% which is significantly better than that of the 
RPLS, 28.64%.   
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Fig. 3: Comparison of the regression results using 

proposed method and PLS. 
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5. CONCLUSIONS 
 
A real plant process, the quality variables are 
affected by a number of process variables with 
collinearity.  PCA can be used to eliminate the 
collinearity and reduce the system dimensions.  
Besides, the nonlinearity exists between inputs and 
outputs especially when there are multiple 
production grades.  In this paper, FCM is used to 
decompose the operating space into several regions.  
Fuzzy TS model is used to build a local linear model 
for each region.  In addition to nonlinearity, the 

input/output relations may also be time-varying.  
When the data for new events cannot be explained by 
the current PCA subspace, the subspace has to be 
reconstructed.  The classification and regression 
coefficients have to be updated as well.  In this paper, 
a recursive algorithm for updating parameters of all 
the linear models is proposed.  The proposed method 
is applied to the MI prediction of a polyethylene 
plant.  Results show that nonlinearity and time 
varying characteristics of the polyethylene process 
plant can be dealt with effectively. 
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