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Abstract: The formulas for data-based LQ synthesis are modified to allow for the
reduction in noise-induced design error. Modification in the design formulas includes the
introduction of a linear filter that enhances the auto-regressive nature of the optimal
control input solution. Copyright © 2005 IFAC
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1. INTRODUCTION

Despite being a renowned method for modern
control synthesis, the linear quadratic (LQ) design
(Kalman, 1960; 1963) is known to suffer from two
major problems: the need for a mostly unavailable
information of the system states to implement the
control law (Doyle and Stein, 1979; Maciejowski,
1989), and the need for an uncertain plant model for
the synthesis of the control law (Gever, 1983).

Recently, Chan (2000) has proposed an output
feedback design that duplicates the closed-loop
response of a state feedback control law regardless of
the initial state of the system. As a result, state
information is no longer needed. In addition, the
introduction of a data-based synthesis of this output
feedback LQ regulator (Chan, 1999, 1996) also
obviates the need for a parametric plant model.

However, any noise signal in the test data induces
error into this data-based LQ (DBLQ) design. In
general, the noise-induced error causes the data-
based solution to deviate from an auto-regressive
(AR) sequence with which a true LQ solution would

comply. In order to suppress this design error, a
linear filter that enhances the AR nature of the data-
based solution is incorporated into the data-based
design formulas. It will be shown that the modified
DBLQ formulas enable significant reduction in the
noise-induced designed errors.

THE BASIC DBLQ FORMULAS

Consider a linear discrete system with output y ,
input u , and

)()(),()()1( kCkykBukAk xxx  (1)
where 1 nRx is the state vector, and nnRA  ,

1 nRB , and nRC  1 are constant matrices. The
following performance index will be optimised for
some integer 0N :
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For a 1N , the following optimal control input
solution will result:

).()()(),()( kKkrkukuku x (3)
where nRK  1 is a state feedback gain and r is a
command.



A data-based version of (2) can be constructed,
permitting data-based computation of )(ku . Using
the input data )(kq and the output data )(ky from
the open-loop test, computation of )(ku can be
performed as follows (Chan, 1996):
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where I denotes a NN  identity matrix,
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and )(kh , the kernel of (1), is obtained from
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Note that the )(ku in (4) corresponds to r being an
unit impulse command at 1k ; hence, 1)1( u .
In addition, data for the optimal system output,
denoted as y , can be computed from )(ku and

)(kh as follows
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where it is noted that 0)( ku for all 1k .

An output feedback design to implement the optimal
control law can then be synthesized using the
computed data of )(ku and )(ky (Chan, 1996).


3. NOISE-INDUCED ERROR IN THE DESIGN

Any noise signal in )(ky will be carried into )(kh
through (5). This induced noise in )(kh then enters
(4) and corrupts the computed data of )(ku .

Because the noise enters (4) into the information
matrix which is then inverted, the distortions in the
computed data of )(ku will not be a simple additive
induced error. In general, the sequence of )(ku
computed from a noise-corrupted test data becomes
erratic and no longer comply with an AR
characteristic as would a true LQ solution. This
observation suggests that a reduction in the noise-
induced design error may be achieved by enhancing
the AR nature of the solution for )(ku . This design
concept is put to work through the introduction of an
auxiliary term in the DBLQ formulas.


4. MODIFIED FORMULA FOR NOISY DATA


4.1 The generalized AR sequence annihilator.

For any AR sequence, collectively denoted as )(kd ,
there exists appropriate complex numbers, tpp ,,1 
and t ,,1  for some integer 0t such that.
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When filtered by a filter,
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where m is some positive integer, it turns out that
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Note that the symbol,  )()( kdzF  , denotes the
operation of )(zF on )(kd .

In general, tpp ,,1  represents the characteristic
poles of )(kd . In this discussion, all involving data
sequences are discrete output of some finite-speed
continuous process. For sufficiently small sampling
times, it is therefore reasonable to assume for all

ti ,,1 that iip 1 for some complex number
i satisfying 1i . Then, the fact that
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implies   0)()( kdzF  for a sufficiently large m .

This result suggests that it will be possible to
annihilate )(kd by filtering the sequence with )(zF
for some appropriate value of m . In Table 1, the
signal annihilation power of )(zF for various values
of m is demonstrated on a linear and time invariant
discrete process:.

4.2 The auxiliary homogeneous equation for AR
sequences.


Because of (10), it becomes possible to enhance the
AR characteristics of a data sequence, say )(kd , by
introducing the following auxiliary homogeneous
equation:
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Note that we need mk  in (11). Moreover, the m̂
zero columns of G exclude the first m̂ data of )(kd ,
which can not be annihilated when the sequence is
not proper.

Table 1 The signal annihilation power of F(z)

 )()()(~ kdzFs  ,
)9.0)(95.0(

)8.0(
)(





zz

z
zd 

)1(~s )2(~s )3(~s s~ †

1m 5.00e-2 3.75e-2 2.66e-2 2.31e-2
2m 1.25e-2 1.09e-2 9.43e-3 3.43e-3
3m 1.63e-3 1.44e-3 1.28e-3 5.37e-4
5m 1.91e-5 1.71e-5 1.54e-5 6.91e-6
10m 2.00e-10 1.80e-10 1.62e-10 7.30e-10

† s~ : The root-mean-square average of 20 data of
s~ starting from )4(~s .



In this discussion, a data sequence is proper if its
z transform contains less nonzero terms in its

numerator than in its denominator. In general, a non-
proper data sequence can be differentiated into a
proper sequence following one or several consecutive
impulse signals of appropriate amplitudes. When
such a non-proper sequence is filtered with )(zF ,
the impulse signals survive because of their infinite
convergent speed. As a result, the first several data of
the filtered sequence may remain large for all values
of m (Table 2).

Details on the selections of m and m̂ for the design
will be deferred until Sections 4.4 and 4.5.

Table 2 The annihilation of non-proper signal
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)1(~s )1(~s )1(~s s~

2m 1.8500 8.45e-1 5.00e-4 2.29e-4
4m 2.6950 8.45e-1 5.00e-5 2.29e-5
6m 3.5395 8.45e-1 5.00e-6 2.29e-6
8m 5.2284 8.44e-1 5.00e-8 2.29e-8
10m 9.4506 8.44e-1 5.00e-13 2.29e-13

4.3 The modified DBLQ formula.

Because the auxiliary equation is homogeneous, the
incorporation of (11) into the DBLQ formula only
changes the information matrix of (4), as is shown in
the following. Firstly, (4) implies that

ZHUIHH ')'(   (12)
From (11) and keep in mind that )(kd represents all
AR sequences including )(ku , we also have

0UG (13)
As a result, the following equation for U holds true:
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Then, the following modified formula of (4) results:
ZHGGIHHU ')''( 1  (15)

On the other hand, no change in (5) is necessary, as
its information matrix is noise-free.

A value of m and a value of m̂ are needed in (15) in
order to prepare the GG' matrix. A guideline to the
selection of these two parameters are given next.

4.4 The selection of m .

In general, a large m enhances signal annihilation,
hence the role of the GG' matrix in the formula. On
the other hand, a large value of m may causes the
first several data of )(ku to be unregulated by the

GG' matrix, as the matrix is designed to work on the
collective behaviour of 1m data of )(ku . Besides,
it is also not justified to prepare a GG' matrix which
annihilates a signal to the degree that is below the

noise level of the test data. Therefore, a smallest
possible value of m is more preferable.

In practice, this value of m can be determined by
considering the data noise level. From Table 1, it is
seen that a data with a %10 noise-to-signal ratio do
not need a value of m that exceeds unity.

4.5 The selection of m̂ .

In this design, the z transform of the entire )(ku
sequence, which includes )1(u , has a zero relative
order (Chen, 1984), and hence is not proper.
However, by excluding )1(u , which equals 1 and
represents the impulse signal of the sequence, the
remaining data of )(ku , those appear in (4) as
unknowns, form a proper sequence. As a result, a

0̂m can be a workable choice for the designs.

On the other hand, it is also known that the closed-
loop poles of a LQ design approaches the zeros of the
plant as a limit when the ratio of / vanishes
(Chan, 1986). For general discrete plants, where
zeros are less than poles in number (Åström, et.al,
1984), more impulse signals may therefore appear in

)(ku after 0k , shall the ratio of / gets very
small. In this case, a 0̂m shall be used.

Nevertheless, a smallest possible value of m̂ should
be used in order to minimize the number of data of

)(ku that will be unregulated by the GG' matrix. In
general, a 0̂m can be used for a regulator design
when the ratio of / is large. Test computations
of (15) using various values of m̂ also reveal that a

1̂m or a 2̂m is normally suffice when the ratio
of / drops really small, say in the design for a
LQ signal tracker (Chan, 1986).

5. A DESIGN EXAMPLE

The following plant is tested:
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The discrete system is formed with a sampling time
of 05.0 second and the open-loop data of )(ky is
generated using a unit step test command.

For this test, additive pseudo random data noise of
certain noise-to-signal (N/S) ratios are injected into

)(ky , and the induced errors in the computed data of
)(ku and )(ky are examined. Since the subsequent

synthesis of the output feedback controller requires
data of both )(ku and )(ky , the root-mean-square
errors in these sequences are multiplied together to
form a combined error-to-noise (E/N) ratio. As the
DBLQ synthesis is concerned, this ratio reflects the
overall noise amplification effect of the formulas.

Three noise levels, 310S/N  , -210S/N  , and
110S/N  , are used to represent light, medium, and



heavy corruption of the test data. In order to account
for the different data noise levels, two values of m
are also used: 1m for -110S/N  and 210S/N  ,
and 2m for 310S/N  . For each noise level
used, DBLQ synthesis is performed for six /
ratios, from 010/  all the way down to

510/  . These six values of the / ratio are
equally grouped into 3 categories: large, medium,
and small.

The value of m̂ used matches the / ratios in
terms of their categories: 0̂m for the large values
of / , 1̂m for the medium, and 1̂m for the
small. Then, results of the computation using (15) are
plotted in Fig. 1 alongside the plots for the results
obtained using (4). In all tests, a 100N is used.

It is seen that the E/N ratio increases as the /
ratio is decreased. Moreover, the E/N ratio is reduced
on all tests with the inclusion of the GG' matrix into
the DBLQ formula.

For large values of / , 01.0/  , a low E/N
ratio, 1E/N  , results even when the GG' matrix is
not included. For these cases, the error reduction
effect of the auxiliary term is mild.

However, as the noise-induced error increases at
small values of the / ratio, the error reduction
effect of the GG' matrix intensifies, when it is
needed most. For the case with the heavily corrupted
test data, the E/N ratio never exceeds unity when the
auxiliary term is incorporated.

For the low S/N tests, the E/N ratios are large
mainly because they are divided by small noise
levels. The absolute induced errors may be mild.

6. CONCLUDING REMARK

An auxiliary term to reduce the noise-induced design
error in the data-based LQ synthesis has been
developed. The auxiliary term reduces the error in
the synthesis by enhancing the auto-regressive nature
of the optimal solution. Simulation tests show that
significant reduction in the noise-induced error has
been achieved when the auxiliary term is
incorporated into the design formula.
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Fig. 1. Results of the noise reduction tests with the
GG' matrix.


