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Abstract: Successful implementations of simple direct adaptive control techniques in 
various domains of application have been presented over the last two decades in the 
technical literature. The theoretical background concerning basic conditions needed for 
stability of the controller and the open questions relating the convergence of the adaptive 
gains have been recently clarified, yet only for the continuous-time algorithms. 
Apparently, asymptotic tracking in discrete time systems is possible only with step input 
commands and the scope of the so called “almost strictly positive real” condition is also 
not clear. This paper will expand the feasibility of discrete simple adaptive control 
methodology to include any desired input commands and almost all real-world systems. 
The proofs of stability are also rigorously revised to solve the ultimate adaptive gain 
values question that has remained open until now.  Copyright © 2005 IFAC 
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1. INTRODUCTION 

 
Successful implementations of simple direct adaptive 
control (SAC) techniques in various domains of 
application have been presented over the last two 
decades in the technical literature. This methodology 
has been introduced by Sobel, Kaufman and Mabus 
(1982) and further developed by Barkana, Kaufman 
and Balas (1983) and Barkana and Kaufman (1984, 
1985). Initially restricted to step input commands and 
to the so-called “almost strictly positive real 
(ASPR)” systems (Barkana and Kaufman, 1985), the 
feasibility of the continuous-time SAC has been 
extended to any desired input-commands and to any 
stabilizable real-world plant. Many works (Fradkov, 
1976; Owens et al., 1987; Teixeira, 1988; Gu, 1990; 
Huang et al., 1999) have contributed to define those 
special systems that not only can be stabilized, but 
also rendered SPR via constant output feedback. 
Simply summarized (Barkana, 2004a), any 
minimum-phase LTI systems { }, ,A B C is ASPR if 
the matrical product CB is positive definite 
symmetric.  We mention that only the transfer 
function should be called SPR, while the system 

should be called Strictly Passive, although it is 
customary to use either name in LTI systems. The 
applicability of low-order adaptive controllers to 
large scale examples has led to successful 
implementations of SAC in such diverse applications 
as flexible structures (Bayard et al, 1987; Ih et al, 
1987; Lee et al, 1988; Shimada, 1998), flight control 
(Sanchez, 1986; Morse and Ossman, 1990), power 
systems (Barkana and Fischl, 1992), robotics 
(Barkana. and Guez, 1991), motor control (Sun et al, 
2000), drug infusion (Palerm et al, 2002) and other.  
 
Discrete-time versions of SAC have also been 
developed (Barkana 1983 and 1989; Barkana and 
Kaufman, 1983; Ohtsuka et al, 1997). However, 
asymptotically perfect following has apparently 
remained restricted to step inputs, while more general 
input commands seems to allow only bounded rather 
than vanishing errors. Moreover, the extent of the 
ASPR condition in discrete systems has not been 
clarified, as attempts at directly extending the 
continuous systems results to discrete systems have 
failed until recently. Recently, Barkana (2005b) 
managed to extend the previous results, and thus to 

     



establish some useful relations related to the 
passivity of discrete systems with the realization  

     

p ( 1) ( ) ( )p p p px t A x t B u+ = + t  (1) 

  (2) ( ) ( ) ( )p p p p py t C x t D u t= +

The main result of Barkana (2005b) is the proof of 
the following lemma: 
Lemma 1: Any proper but not strictly proper, 
minimum-phase, discrete linear system with positive 
definite and not necessarily symmetric pD is ASPR, 
namely, it can be stabilized and rendered SPR via 
constant feedback.  
Furthermore, if the controller 

{: , , , }fb fb fb fbH A B C D  stabilizes the system G, then 

the augmented system  is minimum-
phase, and if

1
aG G H −= +

fbD is positive definite, the augmented 
system is ASPR Barkana (2005b). This way, basic 
stabilizability properties of systems can be used to 
implement ASPR configurations, thus extending the 
feasibility of adaptive and nonlinear control via 
parallel feedforward to real-world systems.   
 
2. PASSIVITY IN DISCRETE LINEAR SYSTEMS 
 
A system is called ASPR if there exists a positive 
definite output feedback gain eK  (unknown and not 
needed for implementation) such that the fictitious 
closed-loop system is SPR. In other words one could 
use the eK  in the control signal 

  (3) 
( ) ( ) ( ) ( )

         ( ) ( )
p e p p e p p

e p p p

u t K y t v t K C x t

K D u t v t

= − + = −

− +

Define 
  (4) 1( )ec e p eK I K D K−= +

to get 

  (5) 1( ) ( ) ( ) ( )p ec p p e p pu t K C x t I K D v t−= − + +

Substituting in (1)-(2) gives 
 ( 1) ( ) ( )p pc p pc px t A x t B v+ = + t

)

1)−

 (6) 

  (7) ( ) ( ) ( )p pc p pc py t C x t D v t= +

where 
  (8) 1(pc p e pB B I K D −= +

  (9)

 

1 1( ) (pc p e p p eD D I K D D K− −= + = +

( ) 1
pc p eC I D K C

−
= + p  (10) 

 pc p p ec pA A B K C= −  (11) 

The closed-loop system is strictly passive and its 
transfer function is strictly positive real (SPR) if 
there exist three positive definite symmetric (PDS) 
matrices of appropriate dimensions, P , and   
that satisfy the relations 

Q 0Q

 T
pc pc

TA PA P Q L L− = − −  (12) 

 T T
pc pc pc

TA PB C L W− =  (13) 

 0
T T T

pc pc pc pcD D W W B PB Q+ = + +  (14) 

Because the original plant is separated from strict 
positive realness only by a constant output feedback, 
it is called “almost strictly positive real (ASPR)” 
(Barkana and H. Kaufman, 1985; Barkana, 1987). 
Relations (12)-(14) can also be written in a more 
concise form. Substituting TL from (13) into (12) and 
using (14) gives  

( )(
( )

1
0

                           

                  

T
pc pc

T T T T
pc pc pc pc pc pc pc

T
pc pc pc

A PA P

A PB C D D B PB Q

B PA C Q

)−
− +

− + − −

• − = −

(15) 

3. PRIOR CONDITIONS FOR ASYMPTOTIC 
TRACKING OF SIMPLE ADAPTIVE CONTROL: 

 
The adaptive control approach assumes that the plant 
parameters are basically unknown and only   some of 
the plant properties are known. Therefore, adaptive 
control procedures are devised that are called to 
construct the control gains on-line. It will be shown 
that it is sufficient to know that the basic plant (1)-(2) 
is ASPR, even if one does not know the gain that can 
make it SPR.  
 
The adaptive control methodology presented here 
does not just use an output feedback; it instead 
assumes that the controlled plant is required to follow 
a desired behaviour represented by an ideal model 
reference. Because the adaptive system attempts to 
bring the plant to the ideal situation of perfect 
following, it is reasonable to check first whether the 
proposed model following configuration has a perfect 
following solution, and this is the topic of next 
section. 
The plant (1)-(2) is required to follow the output of 
the asymptotically stable model  
 ( 1) ( ) ( )m m m m mx t A x t B u t+ = +  (16) 

 ( ) ( ) ( )m m m m my t C x t D u t= +  (17) 

In the beginning of SAC, the model was considered 
to be excited by step inputs only. In order to extend 
its feasibility, we assume that the input command 
itself can be represented as the output of an unknown 
command generating system (Barkana, 1983) 
 ( )( 1)u u ux t A x+ = t  (18) 

 ( ) ( )m u uu t C x t=  (19) 

When the reference model is fed with an input of 
form (18)-(19), the solution is the sum of the steady 
state solution and the transient. 
 0( ) ( ) t

m u mx t Ex t A δ= +  (20) 

Substituting (20) into (16) gives: 
 0m u m uA E EA B C− + =  (21) 

 0 (0) (0)m ux Exδ = −  (22) 

Notice that the solution (20) always exists for the 
stable model (16)-(17). Therefore, (21)-(22) are not 



conditions; they only show the relations between the 
various values involved. In general, there is an error 
between the model output and the output of the plant. 
  (23) ( ) ( ) ( )y m pe t y t y t= −

The controller uses the available measurable values 
to compute the control signal 
  (24) ( ) ( ) ( ) ( )p e y x m u mu t K e t K x t K u t= + +

One wants to check if the desired asymptotically 
perfect tracking is possible.  

  (25) 
( ) ( ) ( )

        ( ) ( ) ( )
p p p p p

m m m m m

y t C x t D u t

C x t D u t y t

= +

= + =

Ideally, at the ideal steady-state perfect tracking the 
plant moves such the tracking error is zero, and the 
control signal is now the ideal control  that 
allows perfect tracking 

* ( )pu t

  (26) * ( ) ( ) ( )p x m u mu t K x t K u t= +

The plant must move along such ideal trajectories 
that allow perfect tracking. It can be shown that these 
ideal trajectories also get the form 
 * ( ) ( ) ( )p x m u mx t X x t X u t= +  (27) 

Substituting (26) and (27)  in (25)  gives 

  (28) 
( ) ( ) ( )

         ( ) ( ) ( )
p x m p u m p x m

p u m m m m m

C X x t C X u t D K x t

D K u t C x t D u t

+ +

+ = +

As one may want to require satisfaction of the 
perfect tracking conditions at any moment, one gets 
the first set of conditions: 
 p x p xC X D K C+ = m  (29) 

 p u p uC X D K D+ = m

*
p

 (30) 

On the other hand, the ideal trajectories must satisfy 
the plant differential equations: 
 * *( 1) ( ) ( )p p p px t A x t B u+ = + t  (31) 

Also, one gets from the trajectory equation (27): 
  (32) * ( 1) ( 1) ( 1)p x m u mx t X x t X u t+ = + + +

Equating  (31) and (32), and using the model 
equations (16)-(17) and the input command 
equations (18)-(19) finally gives 

*   ( 1) ( ) ( )

( ) ( ) ( )

     ( ) ( )

p p x m p u u u

p x m p u u u x m m

x m u u u u u u

x t A X x t A X C x t

B K x t B K C x t X A x t

X B C x t X C A x t

+ = +

+ + =

+ +

 (33) 

Identifying corresponding coefficients gives 

 p x p x x mA X B K X A+ =  (34) 

 p u u p u u x m u u u uA X C B K C X B C X C A+ = +  (35) 

The four conditions for perfect following are thus 
(29)-(30) and (34)-(35). One gets from (29) and (30) 
  (36) 1 1

x p m p pK D C D C X− −= −

     

x

u  (37) 1 1
u p m p pK D D D C X− −= −

Therefore, if there exist solutions for xX and uX , 
there also exist solutions for the control gains 

xK and uK . Substitute in (34) and (35) to get 

 
( ) ( )1

1                  

p p p p x x m m u

p p m

A B D C X X A B C

B D C

−

−

− − +

= −
 (38)

 
( )1

1      

p p p p u u u u u

x m u p p m

A B D C X C X C A

X B C B D D

−

−

− −

= −
 (39) 

Equation (39) has a unique solution for the matrix 
 u uX X C=  (40) 

if the matrices 1
z p p p pA A B D C−= − and uA  share no 

eigenvalue, yet even if these conditions are satisfied, 
one needs explicit solutions for uX . As (40) has 

*p un n equations with  variables, a solution 
exists in general only if  

*pn m

 un m≤  (41) 

Condition  (41) seems to imply that this model 
following configuration cannot deal with rich input 
commands. For this reason, in the first presentations 
of SAC (Sobel et al, 1982) only step input commands 
were treated. We will show below that this limitation 
is only apparent. If the adaptive control can be shown 
to maintain stability of the system and to ultimately 
bring the plant along those trajectories that satisfy 
perfect tracking, one is entitled to assume that the 
steady-state values of the adaptive gains must belong 
to the solutions of (29)-(30) and (34)-(35). However, 
experiments had shown that this is not the case and 
the adaptation may end with totally different gain 
values than those predicted. This result forces one to 
reconsider the asymptotic tracking conditions. As 
one only expects the adaptive controller to achieve 
perfect tracking after the adaptation process elapses, 
one is led to think of those conditions that the control 
gains must only ultimately satisfy. To this end, 
substitute the solution (20) in (28) and (33) to get 

  (42) 

( ) ( ) ( )

        ( ) ( )

         ( ) ( )

           ( ) ( )

t
p x u p x m p u u u

t
p x v p x m

p u u u m u

t
m m m u u

C X Ex t C X A t C X C x t

D K Ex t D K A t

D K C x t C Ex t

C A t D C x t

δ

δ

δ

+ +

+ +

+ =

+ +

*
0

0

0

      ( 1) ( )

( ) ( )

( ) ( )

        ( ) ( )

t
p p x u p x m

t
p u u u p x u p x m

t
p u u u x m u x m m

x m u u u u u u

x t A X Ex t A X A

A X C x t B K Ex t B K A

B K C x t X A Ex t X A A

X B C x t X C A x t

δ

δ

δ

+ = +

+ + +

+ = +

+ +

 (43) 

that results in 
( )
( ) ( )0

0

( )

( )

                         

p x p u u p x p u u u

t
p x p x m m m u u

t
m m

C X E C X C D K E D K C x t

C X D K A C E D C x t

C A

δ

δ

+ + +

+ + = +

+

 (44) 



     

( )
( )

0

0

( )

                

     ( )

                        

p x p u u p x p u u u

t
p x p x m

x m x m u u u u u
t

x m m

( )A X E A X C B K E B K C x t

A X B K A

X A E X B C X C A x t

X A A

δ

δ

+ + +

+ +

= + +

+

 (45) 

As we are now interested in the steady-state solutions 
of (44)-(45), we get a new set of conditions 

  (46) 
                  

p x p u u p x p u u

m m u

C X E C X C D K E D K C

C E D C

+ + +

= +

 
    

p x p u u p x p u u

x m x m u u u u

A X E A X C B K E B K C

X A E X B C X C A

+ + +

= + +
 (47) 

Denote 
 xu x u uX X E X C= +  (48) 

 xu x u uK K E K C= +  (49) 

 D m mC C E D C= + u  (50) 

and use (21) to finally get 
 p xu p xu xu uA X B K X A+ =  (51) 

 p xu p xu DC X D K C+ =  (52) 

From (52) one gets 
  (53) 1 1

xu p D p p xuK D C D C X− −= −

Substitute xuK  in (51) to get  

 ( )1 1
p p p p xu xu u p p DA B D C X X A B D C− −− − =  (54) 

Equation (54) has a unique solution for xuX if the 

matrices 1
z p p p pA A B D C−= −  and uA share no 

eigenvalue. As zA  is the zero dynamics of the plant, 
perfect tracking is possible if no natural mode of the 
input commands can be blocked by a zero of the 
controlled plant. If (54) has a solution for xuX , then 
(53) gives the solution for xuK . The equations for 
the gains xK  and uK , xX  and uX  are:  
 x u u xuX E X C X+ =  (55) 

 x u u xuK E K C K+ =  (56) 

The first equation has now *p un n  equations with 

 variables, and the second equation has 

 with  variables. Thus, a main 
condition for existence of solutions is  

(*p mn n m+ )
)

u

* um n (* mm n m+

  (57) mn m n+ ≥

Condition (57) implies that if the model reference is 
of the order of any expected input command, the 
control configuration can accommodate those 
commands. The equations of motions and the perfect 
following equations hold asymptotically. Following 
(46) one gets the tracking error  

  (58) 
( )

*

0

( ) ( ) ( ) ( ) ( )

   

y m p p p

t
p x p x m m

e t y t y t y t y t

C X D K C A δ

= − = −

− + −

and after some algebra 
( )

( ) ( )1
0

     ( ) ( ) ( ) ( )y pc x pc

t
p e p x p x m m

e t C e t D K t K r t

I D K C X D K C A δ
−

= − −

− + + −
 (59) 

The trajectory equation is 

 
( )

( )

* * *

0 2

0

       ( 1) ( ) ( )

( )

          ( )

    

p p p p p

x m x m u u u u u
t

x m m u
t

p x p x x m m

x t A x t B u t

X A E X B C X C A x t

X A A A x t

A X B K X A A

δ

δ

+ − −

= + +

+ −

− + −

 (60) 

where from (47) 

 
2

    

                                 0

p x p u u p x

p u u x m x m u

u u u

A A X E A X C B K E

B K C X A E X B C

X C A

= + +

+ − −

− =

 (61) 

Therefore 

 
( )

* *

0

  ( 1) ( ) ( )p p p p p

t
p x p x x m m

*x t A x t B u t

A X B K X A A δ

+ = +

− + −
 (62) 

 
4. IMPLEMENTATION OF SIMPLE ADAPTIVE 

CONTROL: 
The adaptive controller assumes that the (unknown) 
solution for the LTI controller exists. Given the plant 
(1)-(2), one implements the controller  

( ) ( ) ( ) ( ) ( ) ( ) ( )p e p x m u mu t K t e t K t x t K t u t= + +  (63) 

or 
 ( ) ( ) ( )pu t K t r t=  (64) 

Here 
 ( ) ( ) ( ) ( )e x uK t K t K t K t= ⎡ ⎤⎣ ⎦  (65) 

 
( )
( )
( )

( )
y

m

m

e t

r t x t
u t

⎡ ⎤
⎢ ⎥

= ⎢ ⎥
⎢ ⎥
⎣ ⎦

        (66) 
0 0

0
0 0

e

x

u

Γ⎡ ⎤
⎢ ⎥Γ = Γ⎢ ⎥
⎢ ⎥Γ⎣ ⎦

0

For convenience, we also define the fixed gain 
 e x uK K K K= ⎡ ⎤⎣ ⎦  (67) 

The adaptive gain are given by the algorithm 
 ( ) ( 1) ( ) ( )T

yK t K t e t r t= − + Γ  (68) 

Define the state error 
  (69) *( ) ( ) ( )x p pe t x t x t= −

that gives after the appropriate algebra 

 
( )

0

( 1) ( ) ( ) ( )

                     
x pc x pc

t
m

e t A e t B K t K r t

FA δ

+ = − −

+
 (70) 

where 

 
( )

( )   

p ec p x p x m

p x p x x m

F B K C X D K C

A X B K X A

= +

− + −

−
 (71) 

The adaptive control must deal with stability of both 
the state and the gains, or in other words with the 



combined system (68) and (70). Therefore, one 
selects the quadratic Lyapunov equation 

  (72) 
( ) ( )1

( ) ( ) ( )

        ( ) ( )

T
x xV t e t Pe t

tr K t K K t K−

=

⎡ ⎤+ − Γ −⎣ ⎦

Using the ASPR conditions (12)-(14) and following 
the lines of Barkana (1989) finally gives 

     

⎤
⎥⎦

⎤⎦

  (73) 

( ) ( )

( )

( )

( ) ( )

0

0
1

           ( ) ( ) ( )

( ) ( ) ( ) ( )

 ( ) ( ) ( )

      ( ) ( ) ( )

         ( ) ( ) ( ) ( )

         2 ( 1)

 2 ( ) ( )

     

T
x x

TT

TT T T T
x

x

T T
y y

T t
x m

TT
p e

V t e t Qe t

r t K t K Q K t K r t

e t L r t K t K W

Le t W K t K r t

e t e t r t r t

e t PFA

r t K t K I D K

δ
−

∆ = −

− − −

⎡− + −⎢⎣
⎡ + −⎣

− Γ

− +

− − +

i

( ) 0

0 0

 

          

t
p x p x m m

T T t
m m

C X D K C A

A F PFA

δ

δ δ

+ −

−

i

( )V t∆  is not positive definite or even positive 
semidefinite, because of the last transient terms in 
(73). Although the transient terms may keep 

positive and their cumulative effect could lead 
to divergence. However, if either , , 

( )V t∆
( )xe t ( )ye t

( )K t K− , or ( )( ) ( )K t K r t−  becomes large, the 
negative definite terms in (73) become dominant and 

 becomes negative, thus guaranteeing that all 
adaptation variables are bounded. Therefore, the 
transient terms in (73) indeed vanish in time and 
according to the modified LaSalle’s Invariant 
Principle (Barkana, 1983; Kaufman et al, 1998) the 
system ends in that domain of the state space 
where , which implies 

( )V t∆

( ) 0V t∆ ≡ ( ) 0xe t ≡  and 
. Therefore, the system ultimately performs 

perfect tracking, the adaptation ends, and the 
adaptive gains reach a steady state set of values that 
allow perfect following. Moreover, LaSalle’s 
invariance principle allows reaching more detailed 
conclusion on the stability of the adaptive systems, 
as it does not only imply that the errors vanish in 
time, but also that all values involved in adaptation 
reach the domain of perfect tracking. This is 
important in particular with respect to the ultimate 
gain values. The mere fact that the adaptation 
ultimately stops and the gain difference tends to 
vanish is not by itself sufficient to guarantee that the 
adaptive gains ultimately reach constant values, as 
the counterexample 

( ) 0ye t ≡

( ) (sin logk t t= )

)

 seems to 
illustrate. It is easy to show that the gain difference 

 approaches zero 
as time tends to infinity, yet the gain itself continues 
changing and has no limit at all. The example seems 
to suggest that although the assumption on the 
existence of some constant ideal gains was 
convenient for the proof of stability, more general 
ideal control are possible, and the ultimate gains may 
continue varying although the errors are zero. 

Therefore, one must consider the most general 
representation of ideal trajectory and ideal control. 

( ) ( )( ) (sin log 1 sin logk t t t∆ = + −

   (74) * ( ) ( ) ( ) ( ) ( )p x m u mu t K t x t K t u t= +

 * ( ) ( ) ( ) ( ) ( )p x m u mx t X t x t X t u t= +  (75) 

Thus, in spite of successful applications, the fate of 
the adaptive gains seems to be an issue that has 
remained open in adaptive control for more than 25 
years and only very recently has the issue been 
closed for the continuous-time version of SAC 
(Barkana, 2005a) and it will be closed here for the 
discrete SAC. With varying gains, conditions (51)-
(52)  are replaced by the new conditions  
 ( ) ( ) ( )1p xu p xu xu uA X t B K t X t A+ = +  (76) 

 ( ) ( )p xu p xu DC X t D K t C+ =  (77) 

Because pD is not singular, one gets from (77) 

 ( ) ( )( )1
xu p D p xuK t D C C X t−= −  (78) 

and then from (76) 

 
( ) ( )

( )1 1

1

          
xu u p xu

p p p xu p p D

X t A A X t

B D C X t B D C− −

+ −

+ =
 (79) 

Equation (79) is a linear time-invariant difference 
equation with all solutions of the form 
 0( ) l t

lm
l m

x t x x t β= +∑∑  (80) 

Similarly, from (78) the control gains have the form  
 0( ) l t

lm m
l m

k t k k t β= +∑∑  (81) 

and the gain difference has the form 
 ( ) ( )( ) 1 i t

ig j
i j

k t k t k t g t β∆ = − − = ∑∑  (82) 

First, observe that the so called “counterexample” is 
only apparent, because it cannot be a solution of (81). 
Along with the constant term , the gain (81) and 
the difference (82) contain generalized exponential 
terms that could be convergent, divergent, or lead to 
steady sinusoidal. As the proof of stability implies 
that all terms are ultimately bounded, and the gain 
difference ultimately vanishes, the diverging and the 
steady terms are obviated. Therefore, all transient 
terms in (81) vanish in time, ultimately leaving the 
only possible solution   

0k

  (83) 0( )    k t k as t→ →∞

The final ideal gains are therefore constant, and as 
such they belong to the set of solutions of (55)-(56). 
 

5. CONCLUSIONS 
This paper extends the feasibility results of simple 
adaptive control to discrete systems. It showed that 
the simple adaptive controller can perform 
asymptotically perfect tracking of realistic signals. 
As basic stabilizability properties of systems and 
parallel feedforward can be used to implement the 
desired ASPR configurations, this extends the 
feasibility of adaptive control to real-world systems.  
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