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1. INTRODUCTION

Theory of optimal guaranteed control of systems
under uncertainties is one of the actual and impor-
tant for applications fields of control theory (see
the monographs and the paper by N.N. Krasovskij
(1985) and references in them). This paper em-
phasizes on optimal observation problems arising
during optimal control of linear time-varying sys-
tems under set-membership uncertainty. Linear,
piecewise linear optimal observation problems are
introduced to be used in control processes. Finite
algorithms of the solution of optimal observation
problems are justified. The scheme of solving the
optimal on-line control problem to linear time-
varying systems is suggested. The problem of
complexity of algorithms is under discussion. The
algorithms suggested are based on the results of
the authors and their collaborators (Gabasov et
al., 1995, 2000a) on constructive theory of opti-
mization and develop them on new problems.

The paper is organized as follows. Optimal con-
trol problems under uncertainty and classical ap-
proach to construction of optimal guaranteeing
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feedbacks are discussed in Section 2. Optimal on-
line control principle for the problem under con-
sideration is introduced in Section 3. It is shown
that the problem with uncertainties decomposes
into a determined problem of optimal control and
optimal observation problems. The algorithm for
solving the latter is presented in Section 4. The
methods of reducing the large a priory uncertainty
are discussed in Section 5. Section 6 presents a
numerical example for the forth order optimal
control problem under uncertainty.

2. OPTIMAL CONTROL PROBLEMS UNDER
UNCERTAINTY

On the interval T = [t∗, t
∗] consider the system

ẋ = A(t)x + B(t)u + M(t)w. (1)

Here A(t) ∈ Rn×n, B(t) ∈ Rn×r, M(t) ∈ Rn×nw ,
t ∈ T, are given piecewise continuous matrix
functions; x = x(t) ∈ Rn is a state of the control
system at an instant t; u = u(t) ∈ U ⊂ Rr is
a value of a discrete control with a quantization
period h: u(t) ≡ u(τ), t ∈ [τ, τ + h[, τ ∈ Th =
{t∗, t∗ +h, . . . , t∗−h}, (h = (t∗− t∗)/N , (N > 0),
U = {u ∈ Rr : u∗ ≤ u ≤ u∗} is a bounded set of



admissible values of controls; w = w(t), t ∈ T , is
a disturbance function

w(t) = Λ(t)v, t ∈ T,

where Λ(t) ∈ Rnw×nv is a given piecewise con-
tinuous matrix function; v ∈ Rnv is a vector
of disturbance parameters taking values from a
bounded set V = {v ∈ Rnv : w∗ ≤ v ≤ w∗}.

Assume the initial state x(t∗) of system (1) is an
unknown element of a bounded set X0 ⊂ Rn. Let

X0 = x0 + GZ,

where x0 ∈ Rn, G ∈ Rn×nz are known vector and
matrix; Z = {z ∈ Rnz : d∗ ≤ z ≤ d∗} is a set of
unknown parameters z of the initial state x(t∗).

Let a sensor (measurer) be of the form

y(θ) =

θ
∫

θ−h

C(t)x(t)dt + ξ(θ), θ ∈ Th \ t∗, (2)

where C(t) ∈ Rq×n, t ∈ T , is a given piecewise
continuous matrix function; y(θ) ∈ Rq , θ ∈ Th\t∗,
is an output signal of the measurer; ξ(θ) ∈ Rq,
θ ∈ Th \ t∗, are measurement errors satisfying

ξ∗ ≤ ξ(θ) ≤ ξ∗, θ ∈ Th \ t∗; 0 < ‖ξ∗ − ξ∗‖ < ∞.

Discrete closed-loop control of system (1) is per-
formed in the following way. On the interval
[t∗, t∗ + h[ the control function u(t) ≡ u(t∗),
t ∈ [t∗, t∗ + h[, is fed to the input of system
(1), where u(t∗) ∈ U is chosen upon a priori
information. At the instant τ = t∗ + h measurer
(2) measures the first signal y(t∗ + h), generated
by the realized initial state x(t∗), the error ξ(t∗)
and the disturbance w(t), t ∈ [t∗, t∗+h[. Based on
the signal y(t∗ + h) a vector u(t∗ + h) = u(t∗ + h,
y(t∗+h)) ∈ U is chosen following the rules selected
in advance (before the process starts). The control
function u(t) ≡ u(t∗ + h) is fed into system (1)
for t ∈ [t∗ + h, t∗ + 2h[. This control and the
realized disturbance w(t), t ∈ [t∗ + h, t∗ + 2h[,
steer the system into the state x(t∗ + 2h), and
together with the error ξ(t∗ + 2h) generate the
output signal y(t∗ + 2h). At an arbitrary moment
τ ∈ Th \ t∗ based on the measured output signal
y(τ), a vector u(τ) = u(τ, yτ (·)) ∈ U is chosen and
the control function u(t) ≡ u(τ), t ∈ [τ, τ + h[, is
fed into the control system. Here yτ (·) = (y(θ),
θ ∈ Th(τ)), Th(τ) = {t∗ + h, t∗ + 2h, . . . , τ}.

Let Yτ be a set of all output signals yτ (·) of (2)
that can be obtained by the moment τ .

Definition. A functional

u = u(τ, yτ (·)), yτ (·) ∈ Yτ , τ ∈ Th \ t∗, (3)

and the control functions u(t, yt(·)) ≡ u(τ, yτ (·)),
t ∈ [τ, τ + h[, τ ∈ Th \ t∗, generated by (3), are
said to be (discrete) feedback controls.

Let X(t∗|ut∗(·, yt∗(·))) be a set of all terminal
states of the closed system

ẋ = A(t)x + B(t)u(t∗) + M(t)w, t ∈ [t∗, t∗ + h[;

ẋ = A(t)x+B(t)u(t, yt(·))+M(t)w, t ∈ [t∗+h, t∗];

with all possible initial states x(t∗), disturbances
w(t), t ∈ T , and errors ξ(τ), τ ∈ Th \ t∗, able to
generate the signal yt∗(·).

Introduce a terminal set X∗ = {x ∈ Rn : g∗ ≤
Hx ≤ g∗}, where H ∈ Rm×n, g∗ < g∗ are given.

Feedback control (3) is called admissible if
X(t∗|ut∗(·|yt∗(·)) ⊂ X∗.

Let the quality of admissible control (3) is evalu-
ated by a functional

J(u) = min c′x, x ∈ X(t∗|ut∗(·|yt∗(·)) (c ∈ Rn).

Definition. An admissible feedback u0(τ, yτ (·)),
yτ (·) ∈ Yτ , τ ∈ Th \ t∗, is said to be optimal if
J(u0) = maxJ(u), where maximum is calculated
over all admissible feedbacks (3).

According to the definition, optimal feedback pro-
vides the best result under the worse conditions
(optimal guaranteed result).

3. OPTIMAL ON-LINE CONTROL FOR
SYSTEMS UNDER UNCERTAINTY

Describe optimal on-line control principle for a
concrete control process where a signal y∗(θ), θ ∈
Th, would realize. The control process starts at the
moment τ = t∗ with the control u∗∗(t) = u0(t∗),
t ≥ t∗, where u0(t), t ∈ T , is an optimal open-loop
control constructed on the a priori information
(rules are presented below). At the instant τ =
t∗+h the first measurement y∗(t∗+h) is obtained.
On the base of this measurement a control signal
u∗(t∗ + h) is calculated (see below) in time s(t∗ +
h) < h. The control function u∗∗(t) = u0(t∗) is
fed into the control system on the interval [t∗ +h,
t∗ + h + s(t∗ + h)[. Starting from the moment
t∗ + h + s(t∗ + h) the control function switches
on u∗∗(t) = u∗(t∗ + h).

At arbitrary τ the control function

u∗∗(t) = u0(t∗), t ∈ [t∗, t∗ + h + s(t∗ + h)[;

u∗∗(t) = u∗(ϑ), t ∈ [ϑ + s(ϑ), ϑ + h + s(ϑ + h)[,

ϑ ∈ {t∗ + h, t∗ + 2h, . . . , τ − 2h};

u∗∗(t) = u∗(τ − h), t ∈ [τ − h + s(τ − h), τ [;

has been fed into the input of (1) and a current
measurement y∗(τ) is obtained. The calculation of
the control signal u∗(τ) = u00(τ, y∗

τ (·)) is required
to be made in time s(τ) < h. Before it is calculated
the previous signal u∗(τ−h) is fed into the system.



To describe the rules for the calculation of u∗(τ)
let us present the signal y∗(τ) in the form

y(τ) =

τ
∫

τ−h

C(t)(xw(t) + xu(t))dt + ξ(τ),

where xw(t), t ∈ [t∗, τ ], is a trajectory of

ẋ = A(t)x + M(t)w, x(t∗) = Gz, (4)

xu(t), t ∈ [t∗, τ ], is a trajectory of

ẋ = A(t)x + B(t)u, x(t∗) = x0, (5)

with u(t) ≡ u∗∗(t), t ∈ [t∗, τ [.

Subtract the known trajectory xu(t), t ∈ [τ−h, τ ],
from the signal y∗(τ):

y∗

0(τ) = y∗(τ) −

τ
∫

τ−h

C(t)xu(t)dt.

Due to the performance of that operation at every
moment θ ∈ Th(τ) the signal y∗

0τ (·) = (y∗

0(θ), θ ∈
Th(τ) \ t∗) is available by the moment τ . It co-
incides with the signal that would be obtained
by measurer (2) for (4). The signal y∗

0τ (·) repre-
sents additional information about the parameter
vector realized in the process. This information is
contained in an a posteriori distribution set.

Definition. A set Γ̂(τ) = Γ̂(τ ; y∗

0τ (·)) is said to
be the a posteriori distribution set of parameters
if and only if it consists of vectors γ = (z, v) ∈
Γ = Z × V , to which there correspond the initial
state x(t∗) = Gz of (4) and the disturbance
w(t) = Λ(t)v, t ∈ [t∗, τ [, able together with some
errors ξ(θ), θ ∈ Th(τ), to produce the signal y∗

0τ (·).

Definition. A control uτ (·) = (u(t), t ∈ [τ, t∗]) is
said to be an admissible open-loop control if for
every γ ∈ Γ̂(τ) at the moment t∗ it together with
u∗∗(t), t ∈ [t∗, τ [, steers system (1) to X∗, i.e.

g∗i ≤ min h′

(i)(xw(t∗) + xu(t∗)); (6)

maxh′

(i)(xw(t∗) + xu(t∗)) ≤ g∗i ; i = 1, m;

where h(i) is the i-th row of the matrix H , g∗

i ,
g∗i are the i-th components of g∗, g∗; xu(t∗) is a
terminal state of (5) under u(t) = uτ (t), t ∈ [τ, t∗[.

Let X̂∗

w(τ) be a set of all terminal states xw(t∗) of
system (4) generated by (z, v) ∈ Γ̂(τ).

Extremal problems arising in (6)

χ∗

i (τ) = maxh′

(i)x, x ∈ X̂∗

w(τ), i = 1, m; (7)

χ∗i(τ) = min h′

(i)x, x ∈ X̂∗

w(τ), i = 1, m;

are called optimal observation problems accom-
panying the optimal control problem under un-
certainty (the accompanying optimal observation
problems).

Thus, for the control uτ (·) to be admissible in the
position (τ, y∗

0τ (·)) it is necessary and sufficient
that at the moment it steers determined system
(5) with the initial condition x(τ) = xu(τ) to the
set X∗(τ) = {x ∈ Rn : g∗(τ) ≤ Hx ≤ g∗(τ)},
where g∗(τ) = g∗−χ∗(τ), g∗(τ) = g∗−χ∗(τ). The
quality of the admissible control uτ (·) is evaluated
by I(u) = min c′x(t∗), γ ∈ Γ̂(τ). Thus, the
optimal open-loop control uτ0(·) = u0(t|τ, y∗

τ (·)),
t ∈ [τ, t∗], is a solution to the problem

c′x(t∗) → max, (8)

ẋ = A(t)x + B(t)u, x(τ) = xu(τ),

x(t∗) ∈ X∗(τ), u(t) ∈ U, t ∈ [τ, t∗].

Problem (8) is called the determined problem of
optimal control accompanying the optimal control
problem under uncertainty (the accompanying op-
timal control problem).

Let u∗(τ) = u0(τ |τ, y∗

τ (·)). On the interval [τ, τ +
h[ the following control function is fed into the
input of system (1):

u∗∗(t) = u∗(τ − h), t ∈ [τ, τ + s(τ)[;

u∗∗(t) = u∗(τ), t ∈ [τ + s(τ), τ + h[.

The optimal open-loop control u0(t), t ∈ T ,
introduced above, is a solution to

c′x(t∗) → max,

ẋ = A(t)x + B(t)u, x(t∗) = x0,

g∗ − χ∗i(t∗) ≤ Hx(t∗)g∗ − χ∗

i (t∗);

where

χ∗i(t∗) = min h′

(i)x, x ∈ X∗

w(t∗), i = 1, m;

χ∗

i (t∗) = max h′

(i)x, x ∈ X∗

w(t∗), i = 1, m;

X∗

w(t∗) is a set of all terminal states xw(t∗) of
system (4) for all possible parameters (z, v) ∈ Γ.

According to the scheme presented, to construct a
control signal u∗(τ) one has to solve: 1) 2m accom-
panying optimal observation problems (7); 2) one
accompanying optimal control problem (8).

Definition. A device solving the accompanying
optimal observation problem is called an optimal
estimator; a device solving the accompanying op-
timal control problem is called an optimal con-
troller.

If the time s(τ) needed by optimal estimators
and the optimal controller to solve problems (7)
and (8) is less than h, then they are suitable for
optimal on-line control for the system under un-
certainty. The algorithm for operating the optimal
controller is elaborated in (Gabasov et al., 2000b).



4. SOLUTION OF THE ACCOMPANYING
OPTIMAL OBSERVATION PROBLEM

Consider the problem

χ∗(τ) = min p′x, x ∈ X̂∗

w(τ), (9)

which includes accompanying optimal observation
problems (7) and is called a linear optimal obser-
vation problem.

Problem (9) is equivalent to the linear program-
ming problem

p′zz + p′vv → max, (10)

ξ∗ ≤ y∗

0(θ) − D(θ)z − H(θ)v ≤ ξ∗, θ ∈ Th(τ),

d∗ ≤ z ≤ d∗, w∗ ≤ v ≤ w∗;

where p′z = p′F (t∗), p′v = p′P (t∗),

D(θ) =

θ
∫

θ−h

C(t)F (t)dt, H(t) =

θ
∫

θ−h

C(t)P (t)dt;

F (t), t ∈ T : Ḟ = A(t)F, F (t∗) = G; (11)

P (t), t ∈ T : Ṗ = A(t)P + M(t)Λ(t), P (t∗) = 0.

Problem (10) has q(τ − t∗)/h + q general con-
straints and nz+nv variables. Taking into account
that number of the general constraints tends to
infinity at h → 0, one can call problem (10) a semi-
large extremal problem (Kortanek et al., 1993).
The algorithm for operating the suitable optimal
estimator is based on a realization of the dual
adaptive method (Gabasov et al., 1995) of linear
programming where maximal attention is paid to
the peculiarities of problem (10) arising due to its
dynamical nature.

The main tool of the dual method is a support
which is a totality Kb = Kb(τ) = {Qb ; Jb , Lb}
such that for the non-empty subsets Qb ⊂ Q =
K × Th(τ), K = {1, 2, . . . , q}; Jb ⊂ J =
{1, 2, . . . , nz}, Lb ⊂ L, |Qb | = |Jb | + |Lb | the
matrix (Db , Hb) is nonsingular:

Db =

(

−dkj(θ), j ∈ Jb

{k, θ} ∈ Qb

)

,

Hb =

(

−hkl(θ), l ∈ Lb

{k, θ} ∈ Qb

)

,

where dkj(θ) is a k, j-th element of the matrix
D(θ), hkl(θ) is a k, l-th element of the matrix
H(θ). If Qb , Jb , Lb are empty subsets, then Kb

is an empty support by definition.

Along with the support Kb the accompanying
elements are employed:
1. The function of the Lagrange multipliers ν(θ) ∈
Rq, θ ∈ Th(τ): νk(θ) = 0, {k, θ} ∈ Qn = Q \ Qb ;
νb = (νk(θ), {k, θ} ∈ Qb) is a solution to

ν′

b
Db = p′x b

, ν′

b
Hb = p′w b

;

where px b = (pxj , j ∈ Jb), pw b = (pwl, l ∈ Lb);
(ν(θ) = 0, θ ∈ Th(τ), for the support Kb = ∅).

2. The support gradient vectors

δ′z = p′z +
∑

θ∈Th(τ)

ν′(θ)D(θ),

δ′v = p′v +
∑

θ∈Th(τ)

ν′(θ)H(θ).

The support components of the support gradient
vectors are zeroes: δzj = 0, j ∈ Jb ; δvl = 0, l ∈ Lb .

3. The vector of pseudoparameters of the initial
state æ and the vector of pseudoparameters of
the disturbance ω. Define nonsupport components
æj , j ∈ Jn = J \ Jb ; ωl, l ∈ Ln = L \ Lb as

æj = d∗j , if δzj < 0; æj = d∗j , if δzj > 0;

æj ∈ [d∗j , d
∗

j ], if δzj = 0; j ∈ Jn ;

ωl = w∗l, if δvl < 0; ωl = w∗

l , if δvl > 0;

ωl ∈ [w∗l, w
∗

l ], if δvl = 0; l ∈ Ln .

The support components æb = (æj , j ∈ Jb),
ωb = (ωl, l ∈ Lb) are obtained from the equation

Dbæb + Hbωb = (ζk(θ) − ζ0k(θ), {k, θ} ∈ Qb),

where

ζk(θ) = ξ∗k , if νk(θ) < 0; ζk(θ) = ξ∗k , if νk(θ) > 0;

ζk(θ) ∈ [ξ∗k, ξ∗k ], if νk(θ) = 0; {k, θ} ∈ Qb ,

ζ0(θ) = y∗

0(t) −

θ
∫

θ−h

C(t)æ0(t)dt, θ ∈ Th(τ),

æ0(t), t ∈ [t∗, τ ], is a trajectory of (4) with
z = (zj = 0, j ∈ Jb ; zj = æj , j ∈ Jn ); v = (vl =
0, l ∈ Lb ; vl = ωl, l ∈ Ln).

4. The function of pseudoerrors

ζ(θ) = y∗

0(θ) −

θ
∫

θ−h

C(t)æ(t)dt, θ ∈ Th(τ),

where æ(t), t ∈ [t∗, τ ], is a trajectory of (4) with
γ = (æ, ω).

Definition. A support Kb is said to be optimal if
there exist accompanying elements such that

d∗j ≤ æj ≤ d∗j , j ∈ Jb ; w∗l ≤ ωl ≤ w∗

l , l ∈ Lb ;

ξ∗k ≤ ζk(θ) ≤ ξ∗k , {k, θ} ∈ Qn .

These accompanying elements give a solution to
problem (9): z0 = æ, v0 = ω. The optimal esti-
mator constructs the estimate χ∗ = p′z æ+p′vω,
which is used by the optimal controller.

The dual method elaborated is a finite iterative
constructing the optimal support K0

b
= K0

b
(τ) to

optimal observation problem (9). The main oper-
ations follow the scheme proposed in (Gabasov et
al., 2002). According to it, in the course of every
iteration the extreme points of the function ζ(t),



t ∈ Th(τ), move. On the intervals of these move-
ments primal systems (11) are integrated and the
length of the intervals define a complexity of the
iteration (following Fedorenko R.P. we consider
that one integration on the whole T as a unit of
complexity).

Take the optimal support K0
b
(τ − h), obtained at

the moment τ − h (K0
b
(t∗) = ∅), as an initial

support for solving problems (7) at the moment
τ ∈ Th. Due to the optimality of K0

b
(τ − h)

its accompanying elements satisfy the inequalities
d∗ ≤ æ ≤ d∗, w∗ ≤ ω ≤ w∗, ξ∗ ≤ ζ(θ) ≤ ξ∗,
θ ∈ Th(τ − h).

Having obtained y∗(τ) calculate ζ(τ). If ξ∗ ≤
ζ(τ) ≤ ξ∗, then K0

b
(τ − h) is optimal also for

the moment τ . Otherwise the violation of the
constraint at the moment τ is small and small cor-
rections (small movements of the extreme points
of ζ(θ), θ ∈ Th(τ)) for K0

b
(τ − h) are to be

performed to construct an optimal support K0
b
(τ).

The results on complexity of such corrections for
a numerical example are given in Section 6.

5. TWO-STAGE ALGORITHM OF ON-LINE
CONTROL AND PIECEWISE LINEAR
OPTIMAL OBSERVATION PROBLEMS

If a priori uncertainty of system (1) is large, it is
impossible to perform the procedure of optimal
on-line control from Section 3 as there are no
admissible controls in (8) until some moment τ∗.
Keeping in mind that the uncertainty diminishes
in the course of control process, for τ < τ∗ it is
reasonable to use some auxiliary problem that has
admissible controls. This idea can be realized by
two stage algorithm. The aim of the first stage is
to construct admissible controls. The optimal real-
time control to the initial problem are calculated
at the second stage.

The first stage (τ ∈ Th, τ < τ∗) solves a problem

ρ(τ) = min ρ, (12)

ẋ = A(t)x + B(t)u, x(τ) = x∗

0(τ),

x(t∗) ∈ X∗

ρ (τ), u(t) ∈ U, t ∈ [τ, t∗].

where X∗

ρ (τ) = {x ∈ Rn : g∗(τ) − ρe ≤ Hx ≤
g∗(τ) + ρe} (e = (1, . . . , 1) ∈ Rm).

Problem (12) is equivalent to

ρ(τ) = min ρ, q + X̂∗

w(τ) ⊂ X∗

ρ (τ), (13)

where q ∈ Rn is a vector from a set of reachability
of(8).

Problem (13) is called piecewise linear optimal ob-
servation problem. The algorithm for its solution
combines solving 2m linear optimal observation

problems (Section 4) and optimal control problem
(Gabasov et al., 2000b).

If ρ(τ) ≤ 0 is a solution to (12), then τ = τ∗ and
a switch for the second stage where problem (8)
is solved, is performed. Otherwise the problem

c′x(t∗) → max, (14)

ẋ = A(t)x + B(t)u, x(τ) = x∗

0(τ),

x(t∗) ∈ X∗

ρ+ε, u(t) ∈ U, t ∈ [τ, t∗],

is solved. The first part of its optimal open-loop
control u0

ρ+ε(t), t ∈ [τ, t∗], is used by the optimal
controller on the interval [τ +s(τ), τ +h+s(τ +h)[:
u∗∗(t) = u0

ρ+ε(τ), t ∈ [τ + s(τ), τ + h + s(τ + h)[.

Note that in (14) ε > 0 is a small value such that
the time of correction of the solution of (14) to
optimal open-loop control of (8) is less than h.

Remark. To improve the observation process (so
that the moment τ∗ happens earlier) the addi-
tional information about measurements can be
used. In the paper we investigated the cases such
as inertial errors (ξ1

∗
≤ (ξ(t + h) − ξ(t))/h ≤

ξ∗1, t ∈ Th \ t∗) and finite parametric noisy errors

(ξ(θ) =
∑s∗

s=1 ξsχs(θ) + ξ0(θ), where ξs, s ∈ S =
{1, 2, . . . , s∗}, are unknown parameters; χs(θ), s ∈
S, θ ∈ Th, are known functions; ξ0(θ), θ ∈ T , is
an unknown piecewise continuous function which
characterizes noise, ξ∗s ≤ ξs ≤ ξ∗s , s ∈ S; ξ∗0 ≤
ξ0(θ) ≤ ξ∗0 , θ ∈ Th). In both situations the so-
lution of optimal observation problems results in
linear estimates for the a posteriori distribution of
unknown parameters. The algorithms for solving
these problems can be constructed as dynamical
realization of the adaptive method. The new ele-
ments such as points of inflection of the function
ζ(t), t ∈ Th(τ), in case of inertial errors, or new
parameters ξs, s ∈ S, are to be taken into account.

6. EXAMPLE

On the interval T = [0, 15] consider the system

ẍ = −2.1x + 0.31ϕ− u1 + u2 + w1, (15)

ϕ̈ = 0.93x + 6.423ϕ + 1.1u1 + 0.9u2 + w2,

with x(0) = 0.1, ϕ(0) = 0 and unknown ẋ(0) = z1,
ϕ̇(0) = z2: (z1, z2) ∈ Z = {z ∈ Z : |z1| ≤
0.1, |z2| ≤ 0.33}, and disturbances of the form
w1(t) = v1 sin(4t), w2(t) = v2 sin(3t), t ∈ T :
(v1, v2) ∈ V = {v ∈ R2 : |vi| ≤ 0.01, i = 1, 2}.

Let the measurer at moments t ∈ Th =
{0, h, . . . , 15 − h}, h = 0.02, returns values

y1 = −x + 1.1ϕ + ξ1, y2 = x + 0.9ϕ + ξ2,

where ξi = ξi(t), |ξi(t)| ≤ 0.01, t ∈ Th, are
bounded errors.
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Fig. 1. Linear estimates χi(t), t ∈ Th, i = 1, 4.

The aim of the control process is to steer system
(15) at the moment t∗ = 15 to the sets X∗ =
{x ∈ R2 : |x1| ≤ 0.05, |x2| ≤ 0.1}; Φ∗ = {ϕ ∈
R2 : |ϕ1| ≤ 0.05, |ϕ2| ≤ 0.2}; (0 ≤ ui(t) ≤ 0.02),
i = 1, 2, t ∈ T ; minimizing the functional

J(u) =

15
∫

0

(u1(t) + u2(t))dt.

Let in a concrete control process z∗

1 = −0.1; z∗

2 =
0.33; v∗1 = −0.005; v∗

2 = 0.01; ξ∗1(t) =
0.01 cos(2t), ξ∗2 (t) = −0.01 cos(4t), t ∈ Th. The
problem was solved using the algorithms from Sec-
tion 4 and (Gabasov et al., 2000b). The optimal
value of the cost function turned out to be equal
to 0.1046290478. The complexity of iterations at
an arbitrary τ ∈ Th did not exceed 0.042667.

Figure 1 presents the plots for the linear estimates
χ∗i(τ), χ∗

i (τ), i = 1, 4; t ∈ [0, 2]. When t > 1.52
values χ∗i(τ), χ∗

i (τ), i = 1, 4, almost coincide.

Figure 2 shows the projections on the phase planes
xẋ and ϕϕ̇ of the optimal trajectories under
optimal on-line controls (see figure 3).
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Fig. 2. The projections of the optimal trajectories.
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Fig. 3. Optimal on-line controls.

To demonstrate the two-stage method a new ter-
minal sets X∗ = {x ∈ R2 : |xi| ≤ 0.001},
Φ∗ = {ϕ ∈ R2 : |ϕi| ≤ 0.001} were chosen as
well as new bounds on controls: 0 ≤ ui(t) ≤
0.05, t ∈ T, i = 1, 2. Under these conditions
accompanying optimal control problem (5) on the
interval [0,1.52] has no admissible controls and the
first stage described in Section 5 is performed. At
t = 0 a value ρ(0) = 0.16212 of the piecewise
linear estimate was calculated; the values ρ(t),
t ∈]0, 1.52], are presented in Figure 4.
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Fig. 4. Piecewise linear estimate ρ(t), t ∈ Th.

CONCLUSION

In the paper a linear control problem with un-
known but bounded initial state, disturbances and
measurement errors is considered. The finite al-
gorithms of the solution of optimal observation
problems are justified. An algorithm for construct-
ing the optimal guaranteed on-line control is pre-
sented. Observation problems with different types
of constraints are discussed. The scheme suggested
can be applied to nonlinear systems via the linear
and piecewise linear approximations (Balashevich
et al., 2002).
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