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Abstract: This paper presents a case study of the creation of distributed continuous 
simulations using DCOM components. The proposed approach considers each part of the 
simulation as a DCOM component and uses an efficient simulation modeling language, 
EcosimPro, to perform the simulations contained in each one. This procedure has been 
applied to an industrial scale simulation corresponding to a sugar beet factory. The effect 
of the distribution degree in the performance has been studied. The simulation has been 
used to test advanced control algorithms and also in the construction of a simulator 
training system. Copyright© 2005 IFAC 
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1. INTRODUCTION 

 
Simulation is recognised as one of the key 
technologies in the process industry. It is used for 
many purposes but perhaps the two most important 
applications are operator training and controller 
tuning and evaluation. In these cases, it is very 
important to execute the simulation in real time. For 
simple processes it is easy to obtain using 
conventional PCs. But when the complexity of the 
process increases, for instance if a complete factory 
must be simulated, parallel and distributed 
simulation must be used. Parallel simulations 
systems use multiprocessors computers with shared 
memory. Distributed simulations systems use a set of 
computers distributed in a network. Both solutions 
bring a series of benefits (Fujimoto, 2001): reduced 
execution time, allows the geographical distribution 
of the machines and the execution in heterogeneous 
systems. But the option of using conventional PCs 
distributed in a network is usually preferred because 
it can be implemented using existing infrastructure. 

There are several tools and standards in the field of 
distributed simulation like HLA (High Level 
Architecture) (DMSO, 2004) and CAPE-OPEN 
(Computer Aided Process Engineering Open 
Simulation Environment) (CAPE-OPEN, 1999).  
HLA comes from the Department of Defence of US, 
it was approved as an IEEE standard in September of 
2000, IEEE Standard 1516. It is focused on 
interoperability and reusability of the components 
and offers mechanisms for time management, as well 
as sophisticated data distribution concepts. It uses 
their own communication and synchronization 
libraries, called Runtime Infrastructure (RTI). HLA 
has been used mainly in military simulation 
applications, like combat simulators and also in some 
civil simulators applications like flight simulations, 
traffic control, etc. Most of these applications are 
discrete events or hybrid simulations. CAPE-OPEN 
is an European Community project whose purpose is 
the development, specification, test and publication 
of standards for the software components interfaces 
used to the development of process simulators. Like 



  

    

HLA, does not specify the programming language in 
which the simulations must be develop. It 
standardizes the interfaces of the simulation 
components for the middlewares OMG CORBA 
(OMG, 1998) and Microsoft DCOM (Microsoft C., 
1995). This solution is adopted by commercial 
simulators like INDISS (RSI, 2004). 
 
The military simulations commonly are written in 
languages like C++, FORTRAN or Java, while the 
civil simulations are developed with commercial 
simulation tools like ACSL, Arena, GPSS/H, 
Dymola, gProms, Abacuss, EcosimPro, etc. 
 
Distributed simulation is widely used with discrete 
event systems but there are almost no applications in 
the continuous process area. The interesting for this 
type of application is growing and the studies and 
implementation of solutions for this area is an open 
field of research (Acebes, 1999). 
 
In this paper, a sugar beet control room training 
simulator is presented. It consists of a plant wide 
model and a control room environment. The 
simulation is based in EcosimPro (EcosimPro, 2004). 
As an OOML (Object Oriented Modeling Language) 
it allows the construction of libraries of component 
models that can be connected to simulate the 
different parts of a sugar factory. In order to simulate 
the whole factory a distributed architecture is used so 
that different parts of the factory simulation run in 
different interconnected computers performing a 
synchronized execution.  
 
Next section presents the implementation of the 
proposed solution. Section 3 analyses the application 
to the sugar factory and the obtained results. The 
paper ends with the conclusions. 

 
 

2. DISTRIBUTED SIMULATION 
 

EcosimPro acts as a C++ simulation code generator 
that must be compiled with a Microsoft Visual C++ 
compiler. For distributed simulation, anyone of the 
two mentioned middlewares can be used, but for its 
execution under a Windows operating system and in 
a homogenous environment it is more appropriate the 
direct use of DCOM, because it is included in the 
operating system and does not requires the 
installation of additional packages. Also, Microsoft 
development tools include facilities for the 
development of COM components. 
 
In our case study we have a series of simulations 
developed with EcosimPro, corresponding to 
different parts of a sugar factory, including the 
process and its control system. The main steps for 
the development of the distributed simulation with 
EcosimPro vía DCOM are: i) identification of the cut 
points of the simulation, following criteria of data 
interchange, process integrity and number of 
distributed modules; ii) generation of the C++ code 
correspondent to the simulations; iii) encapsulation 

of the simulations in DCOM servers; and iv) 
communication and synchronization among them. 
 
 
2.1 Simulation and partition. 
 
EcosimPro belongs to the family of the so called 
modelling languages, such as gProms, Abacus, 
Dymola… in the sense that they support non-causal 
models able to be modified automatically according 
to the context in which they are used. This means 
that the user can specify different boundary 
conditions without modifying the model code, and 
EcosimPro will manipulate symbolically the 
equations to adapt them to the specifications, which 
increases its re-usability. Being object-oriented it 
support the paradigms of encapsulation, inheritance, 
etc. 
 
Its simulation language, called EL, allows the 
description of process models, named components, 
in a natural way by means of continuous differential-
algebraic equations and discrete events variables. 
Once the user has built a system interconnecting 
components by ports, it is compiled and, after 
establishing a partition, that is, describing which 
variables constitute the known boundary conditions, 
EcosimPro generates C++ simulation code linked to 
the numerical solvers. This increases the open 
character of the language. EcosimPro can deal with 
large models and has been tested in different fields 
such as aerospace, power stations or process 
industries. A typical process model involving several 
thousand DAEs will be integrated normally in a fast 
and reliable way, but the speed of execution, 
assuring a given precision, depends not only in the 
size, but, mainly, in the  nature of the DAE involved. 
This means that, if real time execution is required, 
some large models must be executed in a distributed 
environment. 
 
The choice of the points where a compact simulation 
can be split in several ones is not an easy task. 
Important aspects to be considered are not only the 
number of variables that must be interchanged 
among the parts during the simulation execution, but, 
having in mind the constraints imposed by the 
numerical integration of the model differential 
equations,  it is also important to consider the speed 
of change of these variables. If fast changing 
variables are involved, the time interval between data 
exchanges should be reduced in order to maintain 
integration errors below a desired threshold, which 
can represent a heavier load than another distribution 
with a higher number of slower changing variables to 
interchange. The variable that determines the 
communication time interval is called CINT. It is 
very important to establish a correct value to it. 
Increasing the CINT introduces errors in the 
simulation but at the same time increases the 
execution performance because the communication 
times are smaller. 
 
 



  

    

2.2 Encapsulation in  DCOM Servers. 
 
DCOM is the Microsoft solution for a component 
software bus, and has the same philosophy as 
CORBA. DCOM extends COM (Component Object 
Model) to support communication between objects in 
different computers, in a LAN, WAN, or even in 
Internet and allows the distribution of components 
throughout a network. COM consists of a set of 
interface specifications that allow communications 
between clients and a server in the same machine. It 
provides support for the creation of software 
components, and incorporates properties like 
language independence, location transparency, etc. 
Using this characteristic, simulations can be 
encapsulated in DCOM components. In order to 
control and access the encapsulated simulation, an 
interface with a set of methods must be created (Fig. 
1). After the components were created they must be 
installed in the different computers of the network. 
 

SERVER

ECOSIMPRO
SIMULATION

Start
GetValues
SetValues
Reset
Advance

 
 
Fig. 1. Interface for the component which includes 

the simulation. 
 

The access is done through the methods contained in 
the components interface, which will allow the 
management of the simulation.  
 
In the components, the CINT variable establishes the 
time interval for data interchange between 
simulations. The data that are being interchanged are 
the values of the boundary conditions of every model 
component. Notice that, each simulation assumes 
that during the CINT time interval, the boundary 
conditions remain constant, which is the main source 
of errors. 
 
 
2.3 Communication and Synchronization. 
 
To perform the cooperative execution of the 
simulations it is necessary communicate and 
synchronize them.  For this purpose there is an 
application (coordinator) that acts as a client.  
 
Simulation advance is handled by a thread located in 
each component. The execution basic cycle consists 
of: waiting until all the data have been received, 
integrating the model up to the next time interval and 
notifying the coordinator that the calculation has 
finished and the data are available. Written and read 
data are stored in an intermediate buffer, in order to 
avoid the reads and writes while the simulation is 
performing the model integration.  
 
In the client side, the coordinator, in a first step, 
initializes the servers that are going to be used. After 
that, a cycle of actions begin. The client waits until it 

receives the advance signals from each server, which 
indicate the end of the simulation interval 
calculation. Then it reads the data from the servers, it 
generates the corresponding writing vectors and 
writes them to the target servers. After that, checks if 
the simulation is finished, if not, another iteration 
cycle is done. Once the simulation ends the servers 
finalize their execution. Finally the function that 
closes all the communications is called. The 
synchronization between the client and the servers is 
made through the data writings and the advance 
signals sent from the servers to the client. The 
chronogram in Fig. 2 illustrates the joint execution of 
the servers and the client, and shows how the 
synchronization is made. 
 

 
 
Fig. 2. Chronogram of the communication and 

synchronization. 
 
 

3. APPLICATIONS AND RESULTS 
 

This section describes the process, the training 
simulator and some results related to its operation. 
 
 
3.1 The simulated  process. 

 
Sugar factories are fairly complex plants that involve 
a great variety of processes, ranging from external 
services such as a power plant, distillation and 
fermentation, waste water treatments, to the typical 
sugar process units: diffusers, evaporators, reactors, 
heat exchangers, crystallisers, dryers, filters, etc. 
operating both in continuous and batch modes. A 
schematic of the process can be seen in Fig. 3, 
showing the main sections that compose the main 
line of beet sugar production each one involving 
dozens of process units and thousands of variables. 
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Fig. 3. Main sections in a sugar factory. 
 
The simulation of the factory has been performed in 
EcosimPro, organising several libraries of process 
units, products properties, ports and control 
equipment The components were then linked 
together as in the real process and parameterised 
using process data and technical documentation from 
a factory in Benavente, Spain. As the complete 
simulation of the sugar factory represents a huge 
model that requires a great amount of computational 
time, the execution in a single conventional 
computer is not possible, if real time specifications 
are required, and a distributed simulation must be 
implemented. The fact that each section in Fig. 3 is 
linked to the adjacent ones by a small number of 
pipes which mainly send juices and steam, facilitates 
the task of defining cut-points for the distribution of 
the simulation which correspond roughly to the 
working departments or sections. Thus, the complete 
simulation system was divided into seven individual 
simulations, one for each section, except for the 
depuration, the biggest in terms of computation 
because it involves a lot of mixed continuous and 
batch units, which has been subdivided in two parts. 
Fig. 4 shows how the different sections are 
connected, as well as the number of interchanged 
data. Table 1 illustrates the size of each section.  
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Fig. 4. Data interchange between the different 

sections of the sugar factory. 
 

Table 1. Size of each section. 
 
 Equations Variables Outputs Inputs 
Difussion  3105 5176 9 3 
Pulp Drying 1303 2670 0 3 
Depuration13 4505 7325 20 39 
Depuration2 2608 4643 32 13 
Evaporation 1936 4020 25 11 
Sugar House 5578 9534 2 15 
Steam Boilers 2545 4765 1 5 
 21580 38133 89 89 
 
The architecture of the system has seven servers and 
one client coordinator that interchange data and 
synchronize them. 
 

3.2 Test results. 
 
The tests were done in a set of seven computers, with 
Windows 2000 Pro operating system, connected to a 
standard 10/100 Mb network. The characteristics of 
these computers are listed in Table 2. 
 

Table 2. Computers characteristics. 
 

Id. Processor 
PC1 / PC3 / PC4 / PC5 PIV 1.6 GHz 
PC2 PIII 800 MHz 
PC6 PIII 1GHz 

 
In the tests, different combinations of the sections to 
be distributed were considered, representing several 
degrees of distribution. The simulations were 
assigned to the available computers and the 
calculation and communication times were obtained. 
Table 3 shows how the distribution was done, 
indicating in each row in which computer the 
simulations will be executed. The tests, named Pi, 
begin with the execution in only one computer and 
end with the execution in six computers.  
 

Table 3. Distribution of the simulations. 
 
Test DIF PD D13 DE2 EVA SH SB CL 
P1 PC1 PC1 PC1 PC1 PC1 PC1 PC1 PC1 
P2 PC1 PC3 PC1 PC1 PC3 PC3 PC3 PC1 
P3 PC3 PC2 PC1 PC1 PC2 PC3 PC1 PC1 
P4 PC3 PC2 PC1 PC1 PC3 PC4 PC2 PC1 
P5 PC3 PC3 PC1 PC5 PC2 PC4 PC1 PC1 
P6 PC3 PC6 PC1 PC5 PC6 PC4 PC2 PC1 
 
The results obtained according to the distribution 
indicated in Table 3 are shown in Table 4. The times 
correspond to the execution of 300 seconds of the 
simulation with a CINT of 5 seconds. The last 
column gives the average communication time for 
one time. 
 

Table 4. Execution times (in seconds). 
 

Test Time Comm % Comm Interval Time 
P1 918,037 0,0878 0,0096 0,001489 
P2 533,112 0,1713 0,032 0,002904 
P3 541,806 0,2330 0,043 0,003949 
P4 358,144 0,2196 0,061 0,003722 
P5 320,415 0,2292 0,072 0,003884 
P6 284,965 0,2743 0,096 0,004650 

 
Notice that, in spite of the fact that when the degree 
of distribution increases the time needed to 



  

    

interchange the data between simulations increases, 
the overall execution time decreases. 
 

 
 
Fig. 5. Execution time for different distribution 

degrees. 
 

With the increase of the distribution degree the 
execution time is not always smaller (see P2 P3 in 
Fig. 5). These times are conditioned for the 
computational load of the simulation, and the 
performance of the computer in which it is executed. 
Fig. 6 shows the execution time of each simulation 
and how this time depends on the computational 
requirements of the simulated process, the 
distribution degree and the performance of the 
computer where the simulation is located.   
 
Looking at the times of each simulation it is possible 
to determine how to distribute the simulations when 
the distribution degree increases. Also is it possible 
to determine when the increase in distribution will 
not give an increase in the performance. For 
instance, if we are in case P6 and we add another 
computer, with a performance lower or equal to the 
faster computer used, the final execution time would 
not be reduced because the simulation n. 3 in the 
computer 1 have a execution time higher than the 
execution time of the simulation 2 and 5 in the 
computer 3.  
As can be seen the distribution of the simulation 
gives: (a) lower execution times, (b) larger 
communication times. In this case the 
communication time is always below 0.1% of the 
total time, with an interval communication time 
lower than 5ms. 

 
3.3 Application to a training simulator. 
 
One of the possible fields of application of 
simulation is in a training simulator. To do this, real 
time execution is needed. The simulations have to 
finish their calculation before the CINT, and the 
client must wait until the end of the CINT to 
synchronise them, simulating in this way real time 
operation. In this section a training simulator of 
sugar factories is presented briefly (Acebes, 2003). 
 
The architecture of the simulator includes, besides 
the distributed simulation, a SCADA (Supervisor 
Control And Data Acquisition System) connected to 
the DCOM servers. This SCADA has been 
developed in Microsoft Visual C++, an includes an 
OPC (OLE Process Control) client in order to access 
the developed servers (Iwainitz et al., 2002).  
 
Nevertheless, the DCOM servers who contain the 
simulations are not directly accessible by the 
SCADA. Thus an intermediate OPC server has been 
developed, which allows the access to the variables 
of the simulation via OPC.   
 
Fig. 7 shows the architecture of the training 
simulator, of the sugar factory. The communications 
for the synchronization is done by a DCOM client, 
and the communications with the SCADA are done 
through the OPC servers.  
 
This architecture provides communications at two 
levels. At low level, in which the interchange of data 
and synchronization is made, the communication 
time must be reduced to the minimum possible. With 
this strategy the real time execution of the simulation 
is not delayed. Also, this allows the executions with 
smaller CINTs obtaining greater fidelity. The other 
level is used to communicate the simulations with 
the SCADA. These are not critical communications, 
and the communication times can be higher. 
 

 

 
 

Fig. 6. Calculation times of each simulation when the distribution degree increases. 
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Fig. 7. Sugar factory simulator training system architecture scheme. 
 
 
3.4 Control application. 
 
The sections of the sugar factory have a set of local 
control loops (mainly PID controllers) that manages 
the dynamic behaviour of the process. These ones are 
executed as a part of the process simulation. With the 
use of a SCADA system the parameters and set 
points of these local regulators could be modified on 
line during the simulation execution. Also advanced 
control algorithms could be used to implement a 
MIMO global control of the system. In the particular 
case of the sugar factory model based predictive 
controllers were designed and tested. This procedure 
allows the tuning of the controller parameters before 
the implementation in the real factory.  
 
 

4. CONCLUSIONS 
 

A case study for the development of distributed 
simulations via DCOM oriented to a simulator of the 
process industry has been presented. The 
communication and synchronization problems have 
been solved.  
 
The main advantages of this approach are: (i) 
independent programming of the simulated models 
and the mechanisms of communication, (ii) use of a 
well-known and widely used technology like 
DCOM, (iii) use of conventional computers available 
in a network, (iv) it could be directly applied to 
industrial scale simulations. 
 
Finally, this case study has shown the utility of the 
distributed simulation in the continuous process area, 
when accelerated or real time execution is required. 
With the increase of the distribution degree the 
desired execution times had been obtained. With 
more powerful machines real-time execution has 
been obtained, in almost all of the interval times. 
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